JPS6197594A - Nondestructive measurement method of spent fuel aggregate and device thereof - Google Patents
Nondestructive measurement method of spent fuel aggregate and device thereofInfo
- Publication number
- JPS6197594A JPS6197594A JP59219440A JP21944084A JPS6197594A JP S6197594 A JPS6197594 A JP S6197594A JP 59219440 A JP59219440 A JP 59219440A JP 21944084 A JP21944084 A JP 21944084A JP S6197594 A JPS6197594 A JP S6197594A
- Authority
- JP
- Japan
- Prior art keywords
- gamma ray
- spent fuel
- ray intensity
- cross
- fuel assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は使用済燃料集合体の平均燃焼度をガンマ線測定
により非破壊的に定量する使用済燃料集合体の非破壊測
定方法およびその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method and apparatus for non-destructively measuring the average burn-up of a spent fuel assembly by gamma ray measurement.
[発明の技術的背景とその問題点1
一般に、使用済燃料集合体内に蓄積された長半減期の核
分裂生成核種(以下FPという)の濃度は、その照射期
間中の燃焼度にほぼ比例する。[Technical background of the invention and its problems 1 Generally, the concentration of long half-life fission product nuclides (hereinafter referred to as FP) accumulated in a spent fuel assembly is approximately proportional to the burnup during the irradiation period.
使用済燃料から放出されるガンマ線のスペクトルをゲル
マニウム検出器等お高分解能のガンマ線検出器で測定し
、注目するFPの計数率と燃焼度とめ比例性を用いて燃
焼度を定量する方法が非破壊測定方法の一つとしてよく
知られている。このようなFPの代表例としては、半減
期30.2年のC3137があげられる。A non-destructive method is to measure the spectrum of gamma rays emitted from spent fuel with a high-resolution gamma ray detector such as a germanium detector, and quantify burnup using the count rate and burnup proportionality of the FP of interest. It is well known as one of the measurement methods. A typical example of such FP is C3137, which has a half-life of 30.2 years.
このような方法を使用済燃料集合体の非破壊測定に適用
して使用済燃料集合体の平均の燃焼度を求める場合には
、使用済燃料集合体内の各燃料棒で燃焼度が異なり、水
平方向分布を有しているため、断面四角形状の使用済燃
料集合体周辺の対称な4方向または対向する2方向から
ガンマ線の測定を行ない、これらの計数率の平均値から
燃焼度を求める方法が従来性われている。When applying such a method to nondestructive measurement of spent fuel assemblies to find the average burnup of a spent fuel assembly, each fuel rod in the spent fuel assembly has a different burnup, and Because gamma rays have a directional distribution, gamma rays are measured from four symmetrical directions or from two opposing directions around a spent fuel assembly with a rectangular cross section, and the burnup is calculated from the average value of these count rates. Traditional.
断面四角形状の通常の使用済燃料集合体の場合には、一
つの対角方向にほぼ対称な燃焼度分布を持つため対向す
る2方向(通常コーナ一方向)からの測定が行われるが
、炉心の周辺部に長く配置されていた使用済燃料集合体
の場合には、必ずしも分布が対称でないため4方向から
の測定が必要となる。この場合、ガンマ線コリメータお
よび検出器等からなる1台のガンマ線スペクトル測定装
置を用い、使用済燃料集合体を回転させて順次各2方向
または4方向からの測定を行なう方法、あるいは複数の
ガンマ線スペクトル測定装置を、使用済燃料集合体を挾
んで対称的な位置に配置し、2方向または4方向からの
測定を同時に行なう方法が考えられる。In the case of a normal spent fuel assembly with a rectangular cross section, the burnup distribution is almost symmetrical in one diagonal direction, so measurements are performed from two opposing directions (usually one corner direction). In the case of spent fuel assemblies that have been placed for a long time in the periphery of the fuel cell, the distribution is not necessarily symmetrical, so measurements must be taken from four directions. In this case, one method is to use one gamma ray spectrum measuring device consisting of a gamma ray collimator and a detector, etc., and to rotate the spent fuel assembly and sequentially perform measurements from each of two or four directions, or to perform multiple gamma ray spectrum measurements. A possible method is to arrange the devices at symmetrical positions across the spent fuel assembly and simultaneously perform measurements from two or four directions.
しかしながら、前者の方法では、ガンマ線スペクトル測
定装置の設置スペースは比較的少なくて済むが、多大な
測定時間を要するという問題がある。また、後者の方法
では、測定時間は少なくて済むが、ガンマ線スペクトル
測定装置の設置スペースが広く必要とされるという問題
がある。However, although the former method requires a relatively small installation space for the gamma ray spectrum measuring device, there is a problem in that it requires a long measurement time. Furthermore, although the latter method requires less measurement time, there is a problem in that it requires a large installation space for the gamma ray spectrum measuring device.
[発明の目的]
本発明はかかる従来の事情に対処してなされたもので、
ガンマ線スペクトル測定装置の設置スペースを広げるこ
となく、かつ短い測定時間で燃焼度の測定を効率的に行
なうことのできる使用済燃料集合体の非破壊測定方法お
よびその装置を提供しようとするものである。[Object of the invention] The present invention has been made in response to such conventional circumstances,
The present invention aims to provide a method and device for non-destructive measurement of spent fuel assemblies that can efficiently measure burnup in a short measurement time without increasing the installation space of a gamma ray spectrum measurement device. .
[発明の概要]
すなわち本発明は、非破壊測定すべき使用済燃料集合体
周辺の一方向から長半減期の核分裂生成核種のガンマ線
強度を測定するとともに前記使用済燃料集合体周辺の前
記一方向を含めた対称な複数方向からクロスガンマ線強
度分布を測定し、前記一方向のクロスガンマ線強度に対
する前記複数方向のクロスガンマ線強度平均値の比を求
め、こ゛の値を前記核分裂生成核種のガンマ線強度に乗
算し前記使用済燃料集合体の前記核分裂生成核種のガン
マ線強度平均値を求め、この後予め較正した核分裂生成
核種のガンマ線強度と燃焼度との相関関係を用いて前記
使用済燃料集合体の平均の燃焼度を求めることを特徴と
する使用済燃料集合体の非破壊測定方法、および、非破
壊測定すべき使用済燃料集合体周辺の一方向に設置され
るガンマ線スペクトル測定装置と、前記使用済燃料集合
体周辺の近傍に前記一方向を含め複数方向の対称等距離
の位置にそれぞれ設置されるクロスガンマ線測定装置と
からなることを特徴とする使用済燃料集合体の非破壊測
定装置である。[Summary of the Invention] That is, the present invention measures the gamma ray intensity of fission product nuclides with a long half-life from one direction around the spent fuel assembly to be measured non-destructively, and also measures the gamma ray intensity in the one direction around the spent fuel assembly. The cross gamma ray intensity distribution is measured from multiple symmetrical directions including the cross gamma ray intensity, the ratio of the cross gamma ray intensity average value of the multiple directions to the cross gamma ray intensity of the one direction is determined, and this value is used as the gamma ray intensity of the fission product nuclide. The average value of the gamma ray intensity of the fission product nuclides in the spent fuel assembly is obtained by multiplying the values, and then the average value of the spent fuel assembly is calculated using the correlation between the gamma ray intensity of the fission product nuclides and the burnup, which has been calibrated in advance. A method for non-destructive measurement of spent fuel assemblies characterized by determining the burn-up of spent fuel assemblies, and a gamma ray spectrum measuring device installed in one direction around the spent fuel assemblies to be non-destructively measured; This non-destructive measuring device for spent fuel assemblies is characterized by comprising cross gamma ray measuring devices installed near the periphery of the fuel assemblies at symmetrically equidistant positions in a plurality of directions including the one direction.
[発明の実施例]
以下本発明方法およびその装置の詳細を一実施例につい
て図面を用いて説明する。[Embodiments of the Invention] Details of the method and apparatus of the present invention will be described below with reference to the drawings.
第2図は本発明の使用済燃料集合体の非破壊測定装置の
一実施例を示すもので、この装−はガンマ線コリメータ
1および高分解能ガンマ線検出器2等からなる1台のガ
ンマ線スペクトル測定装置3と、断面四角形状の使用済
燃料集合体4の周辺の対称位置に4個のエネルギー積分
型ガンマ線検出器5を配置した小型のクロスガンマ線測
定装置6とから構成されている。FIG. 2 shows an embodiment of the non-destructive measuring device for spent fuel assemblies of the present invention, which consists of one gamma-ray spectrum measuring device consisting of a gamma-ray collimator 1, a high-resolution gamma-ray detector 2, etc. 3, and a small cross gamma ray measuring device 6 in which four energy integrating gamma ray detectors 5 are arranged at symmetrical positions around a spent fuel assembly 4 having a rectangular cross section.
ここで高分解能ガンマ線検出器2としては、イントリン
シックGe %Ge (Li )、Cd TJ!等の
半導体検出器が用いられる。また、クロスガンマ線検出
器6としては、ガンマ線イオンチェンバー、シンチレー
ション検出器等が用いられる。Here, as the high-resolution gamma ray detector 2, intrinsic Ge%Ge (Li), Cd TJ! Semiconductor detectors such as Further, as the cross gamma ray detector 6, a gamma ray ion chamber, a scintillation detector, etc. are used.
一般に、この測定装置を用いた測定はプール水 −
中で行なわれ、それぞれの検出器からの信号はプール外
に配置されるエレクトロニクス測定回路系に導かれてデ
ータ処理が行なわれる。Generally, measurements using this measuring device are performed on pool water −
The signals from each detector are guided to an electronic measurement circuit system located outside the pool for data processing.
第1図は本発明の使用済燃料集合体の非破壊測定方法の
一実施例のフローチャートを示すもので、この実施例で
は、まずガンマ線スペクトル測定装置3により使用済燃
料集合体4の1方向から測定した長半減期FP(Cs1
37)のガンマ線強度11が求められ、これと同時にク
ロスガンマ線測定装置6により使用済燃料集合体4の周
辺対称2方向または4方向から同時に測定したクロスガ
ンマ線強度の平均値GAVと前記1方向(ガンマ線スペ
クトル測定装置の方向)のクロスガンマ線強度G1との
比Rが求められる。ここで
R= G A V÷01
である。FIG. 1 shows a flowchart of an embodiment of the method for non-destructive measurement of spent fuel assemblies according to the present invention. The measured long half-life FP (Cs1
37) is obtained, and at the same time, the average value GAV of the cross gamma ray intensity measured simultaneously from two or four symmetrical directions around the spent fuel assembly 4 by the cross gamma ray measurement device 6 and the gamma ray intensity 11 in the one direction (gamma ray The ratio R to the cross gamma ray intensity G1 (direction of the spectrum measuring device) is determined. Here, R=G A V ÷01.
そして、前記FPガンマ線強度11に前記クロスガンマ
線強度比Rを乗算して使用済燃料集合体4の平均のFP
ガンマ線強度(近似値)■^Vが求められる。すなわら
、IAVΦ(+XR=I+XG^■÷G1である。Then, the average FP of the spent fuel assembly 4 is calculated by multiplying the FP gamma ray intensity 11 by the cross gamma ray intensity ratio R.
Gamma ray intensity (approximate value) ■^V is determined. In other words, IAVΦ(+XR=I+XG^■÷G1.
次に予め較正されたFPガンマ線強度と燃焼度との相関
関係を用いて使用済燃料集合体4の平均の燃焼度が求め
られる。ここで使用済燃料集合体4からのクロスガンマ
線強度は、燃料取り出し後の冷却期間が約2年以上では
、長半減期のFP(特にC3137およびC3134等
)のガンマ線の寄与がほとんどとなり、燃焼度にほぼ比
例する。このことは、例えば米国特許4335466号
に記載されている。Next, the average burnup of the spent fuel assembly 4 is determined using the pre-calibrated correlation between the FP gamma ray intensity and the burnup. Here, when the cooling period after fuel removal is approximately 2 years or more, the cross gamma ray intensity from the spent fuel assembly 4 is mostly contributed by gamma rays from FPs with long half-lives (particularly C3137 and C3134, etc.), and the burnup is approximately proportional to This is described, for example, in US Pat. No. 4,335,466.
第3図は縦軸に使用済燃料集合体のクロスガンマ線強度
Rを、横軸に燃焼度Bをとり、これらの相関関係を示し
ている。FIG. 3 shows the correlation between the cross gamma ray intensity R of the spent fuel assembly on the vertical axis and the burnup B on the horizontal axis.
すなわち、冷却期間Tが1.5年以上では近似的に
R= CB’
の関係式が成り立つ。ここでCは比例係数であり、また
ベキ数dは1.5≦T≦10年の冷却期間の範囲で1.
1≦d≦1.35の間で変化する。That is, when the cooling period T is 1.5 years or more, the relational expression R=CB' approximately holds true. Here, C is a proportional coefficient, and the exponent d is 1.5≦T≦10 years in the cooling period range.
It changes between 1≦d≦1.35.
なお、クロスガンマ線の平均エネルギーもおよそ0.6
〜0.8Me Vとなり、Cs137のガンマ線エネル
ギー(0,66Me V)に近いため使用済燃料集合体
4内のこれらのガンマ線の減衰がほぼ等しくなる。従っ
て、使用済燃料集合体4の周方向から測定するクロスガ
ンマ線強度分布は、C3137のガンマ線強度分布にほ
ぼ比例することどなる。The average energy of cross gamma rays is also approximately 0.6.
~0.8 Me V, which is close to the gamma ray energy of Cs137 (0.66 Me V), so that the attenuation of these gamma rays within the spent fuel assembly 4 is approximately equal. Therefore, the cross gamma ray intensity distribution measured from the circumferential direction of the spent fuel assembly 4 is approximately proportional to the gamma ray intensity distribution of C3137.
クロスガンマ線検出器の使用済燃料集合体4からの距離
の調整およびガンマ線吸収体の利用等により、さらに良
好な両者の分布の比例性を得ることができる。なお、使
用済燃料集合体4の4コーナーから測定されるCs13
7のガンマ線強度の差は沸騰水型原子炉燃料の場合10
%を越えることがあるが、通常はかなり小さいものであ
る。By adjusting the distance of the cross gamma ray detector from the spent fuel assembly 4, using a gamma ray absorber, etc., even better proportionality of both distributions can be obtained. In addition, Cs13 measured from the four corners of the spent fuel assembly 4
The difference in gamma ray intensity of 7 is 10 for boiling water reactor fuel.
%, but it is usually quite small.
なお、以上述べた実施例では燃焼度を求めた例について
説明したが、本発明はかかる実施例に限定されるもので
はなく、長半減期のFPガンマ線強度又は異なる二種の
長半減期FPガンマ線強度比から導出される全プルトニ
ウム濃度対全ウラン濃度比、核分裂性核種濃度、濃縮度
、冷却時間等の他の燃焼パラメータの測定にも適用でき
る。In addition, although the example described above describes an example in which burnup was determined, the present invention is not limited to such an example, and the present invention is not limited to such an example. It can also be applied to the measurement of other combustion parameters such as the ratio of total plutonium concentration to total uranium concentration, fissile nuclide concentration, enrichment degree, and cooling time derived from the intensity ratio.
[発明の効果]
以上述べたように本発明の使用済燃料集合体の非破壊測
定方法およびその装置によれば、測定装置の設置スペー
スを広げることなく、かつ短い測定時間で燃焼度の測定
を確実に行なうことができる。[Effects of the Invention] As described above, according to the method and device for non-destructive measurement of spent fuel assemblies of the present invention, burnup can be measured in a short measurement time without increasing the installation space of the measuring device. It can be done reliably.
第1図鳩本発明の使用済燃料集合体の非破壊測定方法の
一実施例を示すフローチャート、第2図は本発明の使用
済燃料集合体の非破壊測定装置の一実施例を示す上面図
、第3図は使用済燃料集合体゛のクロスガンマ線強度お
よびC3137ガンマ線強度と燃焼度との関係を示すグ
ラフである。
3・・・・・・・・・ガンマ線スペクトル測定装置4・
・・・・・・・・使用済燃料集合体6・・・・・・・・
・クロスガンマ線測定装置代理人弁理士 須 山
佐 −
第1図
第3図
B虐ツ嵯 (欧/1)Fig. 1 is a flowchart showing an embodiment of the method for non-destructive measurement of spent fuel assemblies of the present invention, and Fig. 2 is a top view showing an embodiment of the non-destructive measurement device of spent fuel assemblies of the present invention. , FIG. 3 is a graph showing the relationship between the cross gamma ray intensity and C3137 gamma ray intensity of the spent fuel assembly and burnup. 3... Gamma ray spectrum measurement device 4.
・・・・・・・・・Spent fuel assembly 6・・・・・・・・・
・Cross Gamma Ray Measurement Device Patent Attorney Suyama
- Figure 1 Figure 3
Claims (2)
から長半減期の核分裂生成核種のガンマ線強度を測定す
るとともに前記使用済燃料集合体周辺の前記一方向を含
めた対称な複数方向からクロスガンマ線強度分布を測定
し、前記一方向のクロスガンマ線強度に対する前記複数
方向のクロスガンマ線強度平均値の比を求め、この値を
前記核分裂生成核種のガンマ線強度に乗算し前記使用済
燃料集合体の前記核分裂生成核種のガンマ線強度平均値
を求め、この後予め較正した核分裂生成核種のガンマ線
強度と燃焼度との相関関係を用いて前記使用済燃料集合
体の平均の燃焼度を求めることを特徴とする使用済燃料
集合体の非破壊測定方法。(1) Measure the gamma ray intensity of long-half-life fission product nuclides from one direction around the spent fuel assembly to be measured non-destructively, and in multiple symmetrical directions including the one direction around the spent fuel assembly. The cross gamma ray intensity distribution is measured from the cross gamma ray intensity distribution, the ratio of the cross gamma ray intensity average value in the plurality of directions to the cross gamma ray intensity in the one direction is determined, and this value is multiplied by the gamma ray intensity of the fission product nuclide. The average value of the gamma ray intensity of the fission product nuclides is determined, and then the average burnup of the spent fuel assembly is determined using a pre-calibrated correlation between the gamma ray intensity of the fission product nuclides and the burnup. A non-destructive measurement method for spent fuel assemblies.
に設置されるガンマ線スペクトル測定装置と、前記使用
済燃料集合体周辺の近傍に前記一方向を含めた複数方向
の対称等距離の位置にそれぞれ設置されるクロスガンマ
線測定装置とからなることを特徴とする使用済燃料集合
体の非破壊測定装置。(2) A gamma ray spectrum measurement device installed in one direction around the spent fuel assembly to be measured non-destructively, and a symmetrical equidistant measurement device in multiple directions including the one direction near the spent fuel assembly. A non-destructive measuring device for spent fuel assemblies, comprising cross gamma ray measuring devices installed at respective positions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59219440A JPS6197594A (en) | 1984-10-19 | 1984-10-19 | Nondestructive measurement method of spent fuel aggregate and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59219440A JPS6197594A (en) | 1984-10-19 | 1984-10-19 | Nondestructive measurement method of spent fuel aggregate and device thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6197594A true JPS6197594A (en) | 1986-05-16 |
JPH058799B2 JPH058799B2 (en) | 1993-02-03 |
Family
ID=16735438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59219440A Granted JPS6197594A (en) | 1984-10-19 | 1984-10-19 | Nondestructive measurement method of spent fuel aggregate and device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6197594A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61262692A (en) * | 1985-05-16 | 1986-11-20 | 東京電力株式会社 | Nondestructive meaurement method of spent fuel |
JP2006518036A (en) * | 2003-02-18 | 2006-08-03 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for measuring the relative amount of burnup of fuel elements of a pebble bed type high temperature reactor (HTR) and apparatus suitable for the method |
JP2012117824A (en) * | 2010-11-29 | 2012-06-21 | Hitachi-Ge Nuclear Energy Ltd | Gamma scan device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5121695B2 (en) * | 2008-12-26 | 2013-01-16 | 株式会社東芝 | Burnup measurement apparatus and burnup measurement method |
-
1984
- 1984-10-19 JP JP59219440A patent/JPS6197594A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61262692A (en) * | 1985-05-16 | 1986-11-20 | 東京電力株式会社 | Nondestructive meaurement method of spent fuel |
JPH0453398B2 (en) * | 1985-05-16 | 1992-08-26 | Tokyo Denryoku Kk | |
JP2006518036A (en) * | 2003-02-18 | 2006-08-03 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for measuring the relative amount of burnup of fuel elements of a pebble bed type high temperature reactor (HTR) and apparatus suitable for the method |
JP2012117824A (en) * | 2010-11-29 | 2012-06-21 | Hitachi-Ge Nuclear Energy Ltd | Gamma scan device |
Also Published As
Publication number | Publication date |
---|---|
JPH058799B2 (en) | 1993-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8946645B2 (en) | Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors | |
US4617169A (en) | Measurement of radionuclides in waste packages | |
JP2006322727A (en) | Measuring method of axial-direction void fraction distribution, and fuel assembly neutron multiplication factor evaluation method before storage in storing device | |
US8428215B2 (en) | Method of improving the spent nuclear fuel burnup credit | |
JPS6197594A (en) | Nondestructive measurement method of spent fuel aggregate and device thereof | |
JP3349180B2 (en) | How to measure spent fuel | |
JP3103361B2 (en) | Measurement method of burnup of nuclear fuel | |
JP2526392B2 (en) | Nondestructive inspection system for fuel rods for nuclear reactors | |
King et al. | Power Spectral Density Measurements with 252Cf for a Light Water Moderated Research Reactor | |
Tunnicliffe et al. | A Method for the Accurate Determination of Relative Initial Conversion Ratios | |
JPH0317115B2 (en) | ||
JP2004514892A (en) | Device for determining the nuclide content of radioactive fluids | |
LaFleur et al. | Nondestructive Measurements of Fissile Material Using Self-Indication Neutron Resonance Absorption Densitometry (SINRAD) | |
Tiitta et al. | Investigation on the possibility to use fork detector for partial defect verification of spent LWR fuel assemblies: Final report on Task JNT A 1071 (BEL, FIN, SWE) of the Member States' Support Programme to IAEA Safeguards | |
Stegemann et al. | Application of the slowing down time spectrometer for the control of fissionable material | |
Schillebeeckx et al. | Cadmium zinc telluride detectors for safeguards applications | |
JPH04249797A (en) | Burnup measurement method of irradiated fuel assembly | |
US4749866A (en) | Method for detecting and correcting for isotope burn-in during long-term neutron dosimetry exposure | |
Fry et al. | Neutron-fluctuation Measurements at Oak Ridge National Laboratory | |
De Raedt et al. | Assessment of the Fission Power Level in Fuel Rods Irradiated in the High Flux Materials Testing Reactor BR2 with the Aid of Fluence Dosimetry and Comparison with Other Methods | |
Martinc et al. | Nondestructive testing of fresh and irradiated fuel of research reactor RA | |
Ahmadnia et al. | Improving the Performance of the Power Monitoring Channel in Tehran Research Reactor (TRR) | |
GB917776A (en) | Method of measuring the amount of material fissile by thermal neutrons and present in any arbitrary substance, particularly for controlling the state of exhaustion of fuel elements in nuclear reactors | |
JPH0464438B2 (en) | ||
Dawson et al. | Measurement of thermal power density distributions by fuel pin gamma scanning |