JPH04249797A - Burnup measurement method of irradiated fuel assembly - Google Patents

Burnup measurement method of irradiated fuel assembly

Info

Publication number
JPH04249797A
JPH04249797A JP3000438A JP43891A JPH04249797A JP H04249797 A JPH04249797 A JP H04249797A JP 3000438 A JP3000438 A JP 3000438A JP 43891 A JP43891 A JP 43891A JP H04249797 A JPH04249797 A JP H04249797A
Authority
JP
Japan
Prior art keywords
burnup
fuel assembly
irradiated fuel
gamma ray
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3000438A
Other languages
Japanese (ja)
Other versions
JP3026455B2 (en
Inventor
Kiyoshi Ueda
精 植田
Hironori Kumanomidou
宏徳 熊埜御堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3000438A priority Critical patent/JP3026455B2/en
Publication of JPH04249797A publication Critical patent/JPH04249797A/en
Application granted granted Critical
Publication of JP3026455B2 publication Critical patent/JP3026455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To precisely find proportion constant when the burnup of an irradiated fuel assembly is obtained by the use of a gamma radiation spectrum analysis method. CONSTITUTION:A neutron radiation rate radiated from a specified position of a standard irradiated fuel assembly 1 in which initial concentration has been known and irradiation history and a cooling period have been known or the cooling period of at least 1.5 years, normally 2 years or more has passed is measured 2. And the neutron radiation rate is found from long half life nuclide except for the neutron radiation rate based on Ca-242 of the standard irradiation fuel assembly and the burnup 3 is determined from the neutron radiation rate. On the other hand, a gamma radiation spectrum 4 radiated from a specified position of the standard irradiation fuel assembly 1 is measured to determine the proportion factor 6 with the burnup of gamma radiation strength on the basis of Cs-137.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は原子炉で照射された燃料
の燃焼度を正確かつ効率的に測定するための照射燃料集
合体の燃焼度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the burnup of an irradiated fuel assembly for accurately and efficiently measuring the burnup of fuel irradiated in a nuclear reactor.

【0003】0003

【従来の技術】原子炉で照射された原子燃料の燃焼度を
測定する方法は破壊測定と非破壊測定とに大別すること
ができる。これらの場合、どのような方法を採るにして
も測定量と燃焼度との関係を決める必要がある。
2. Description of the Related Art Methods for measuring the burn-up of nuclear fuel irradiated in a nuclear reactor can be broadly classified into destructive measurement and non-destructive measurement. In these cases, whatever method is used, it is necessary to determine the relationship between the measured quantity and burnup.

【0004】破壊測定では燃料中に蓄積した安定核種の
核分裂生成物(以下、FPと記す)であるNd −14
8 を質量分析により測定する方法が実施されるが、こ
の方法はすぐれた精度で測定することができるが、反面
、時間と労力を要することが大きな欠点である。
In destructive measurements, Nd-14, which is a fission product of stable nuclides (hereinafter referred to as FP) accumulated in the fuel,
A method of measuring .

【0005】一方、非破壊測定では原子燃料から放出さ
れるガンマ線または中性子を放射線検出器により測定す
る方法、あるいはサ―モメ―タで燃料の発熱量を測定す
る方法等が知られている。
On the other hand, known non-destructive measurements include a method of measuring gamma rays or neutrons emitted from nuclear fuel using a radiation detector, and a method of measuring the calorific value of the fuel using a thermometer.

【0006】燃料の放出するガンマ線を測定して燃焼度
を測定する方法(ガンマ線スペクトル分析法)において
、エネルギ分解能の高いゲルマニウム(Ge)半導体検
出器等を用いてガンマ線スペクトルを判定した場合、測
定されたスペクトルデ―タを解析することによりFP核
種ごとに独自に放出される単一エネルギのガンマ線の強
度を求めることができる。対象とする測定燃料の原子炉
における照射が終了してから測定までの冷却期間が1年
以上の場合には、燃料内に蓄積されたFPのうち半減期
の短い核種は殆どが崩壊しているため、測定できるのは
半減期がある程度長いCs −137 (Ba −13
7 )、Cs −134 、Eu −154 、Ce 
−144 (Pr −144 )およびRu −106
 (Rh −106 )等限られた核種となる。
[0006] In the method of measuring burnup by measuring gamma rays emitted by fuel (gamma ray spectrum analysis method), when the gamma ray spectrum is determined using a germanium (Ge) semiconductor detector etc. with high energy resolution, the measured By analyzing the obtained spectral data, it is possible to determine the intensity of single-energy gamma rays uniquely emitted for each FP nuclide. If the cooling period from the end of irradiation in the reactor to the measurement of the target measurement fuel is more than one year, most of the nuclides with short half-lives among the FP accumulated in the fuel have decayed. Therefore, only Cs-137 (Ba-13), which has a somewhat long half-life, can be measured.
7), Cs-134, Eu-154, Ce
-144 (Pr -144 ) and Ru -106
(Rh-106) and other limited nuclides.

【0007】これらのうちCs −137 は、軽水炉
において主に核分裂を起すU−235 およびPu −
239 による核分裂収率が同程度であることと、半減
期が約30年と長いことから、燃料の燃焼度と非常によ
い比例関係にある。 図4に原子燃料中の燃焼に伴なう組成変化を計算する“
ORIGEN”コ―ドにより計算したCs −137 
、Cs −134 およびEu −154 の燃焼度に
よる変化の計算例を示す。図中、BWRは沸騰水型原子
炉、Ei は初期濃縮度(wt%)、PDは出力密度/
重量当りの出力、Tc は冷却時間(単位は日)をそれ
ぞれ示している。
Among these, Cs-137 is mainly used for U-235 and Pu-235, which cause nuclear fission in light water reactors.
Since the fission yield of 239 is about the same and the half-life is long, about 30 years, there is a very good proportional relationship with the burnup of the fuel. Figure 4 shows the calculation of compositional changes due to combustion in nuclear fuel.
Cs -137 calculated by "ORIGEN" code
, Cs -134 and Eu -154 according to their burn-up. In the figure, BWR is a boiling water reactor, Ei is initial enrichment (wt%), and PD is power density/
The output per weight and Tc indicate the cooling time (in days).

【0008】“ORIGEN”コ―ドは米国で開発され
た燃焼シュミレ―ションコ―ドで、核分裂生成物(FP
)の生成率の変化を計算するものである。
The “ORIGEN” code is a combustion simulation code developed in the United States.
) is used to calculate the change in the production rate.

【0009】しかしながら、Cs −137 のガンマ
線強度を単独で測定して燃焼度を求めようとした場合、
測定体系または燃料の形状によって決るガンマ線検出効
率に応じたCs −137 が放出するガンマ線の計数
率と燃焼度との比例定数を正確に求めておく必要がある
。従来の技術においては、この比例定数は燃料形状と測
定体系を条件とした計算によって求める方法、例えば特
開昭61−262693号公報に開示された方法、また
は測定燃料の燃焼度計算値とCs −137 のガンマ
線計数実測値とから求める方法、あるいは測定燃料の燃
焼度破壊分析によって測定してこれとCs −137 
計数とから求める方法などを用いることができる。計算
によって比例定数を求める方法は測定体系と計算条件と
に正確さが要求され、また、その正確さを確認する必要
がある。燃焼度の計算値を用いる方法も計算値の確かさ
を確認する必要がある。破壊分析で燃焼度を測定する方
法では燃焼度の信頼性は高いが、これを実施するには非
常に時間と労力を要求する。
However, when trying to determine the burnup by measuring the gamma ray intensity of Cs -137 alone,
It is necessary to accurately determine the proportionality constant between the count rate and burnup of gamma rays emitted by Cs −137, which corresponds to the gamma ray detection efficiency determined by the measurement system or the shape of the fuel. In conventional technology, this proportionality constant is determined by calculations based on the fuel shape and measurement system, such as the method disclosed in Japanese Patent Application Laid-Open No. 61-262693, or by calculating the burnup value of the measured fuel and Cs - Cs-137 can be calculated from the measured gamma ray count value of Cs-137, or measured by burn-up destruction analysis of the measured fuel.
A method of calculating from counting can be used. The method of determining the proportionality constant by calculation requires accuracy in the measurement system and calculation conditions, and it is also necessary to confirm the accuracy. In the method of using calculated burnup values, it is also necessary to confirm the accuracy of the calculated values. Although the burn-up measurement method using destructive analysis has high reliability, it requires a great deal of time and effort.

【0010】一方、Cs −134 /Cs −137
 の強度比またはEu −154 /Cs −137の
強度比を測定して燃焼度を求める方法が知られている。 この方法ではガンマ線強度の比を測定することによりガ
ンマ線検出効率における測定体系または燃料の形状等に
よる要因はキャンセルされ、ガンマ線のエネルギに応じ
た検出効率のエネルギ依存性だけを注意すればよい。
On the other hand, Cs -134 /Cs -137
A known method is to determine the burnup by measuring the intensity ratio of Eu -154 /Cs -137. In this method, by measuring the ratio of gamma ray intensities, factors such as measurement system or fuel shape in gamma ray detection efficiency are canceled out, and only the energy dependence of detection efficiency according to gamma ray energy needs to be taken into account.

【0011】Cs −134 およびEu −154 
は原子炉内での生成の過程がCs −137 のように
直接核分裂によって生成した核種の崩壊によるものでな
く、核分裂で1次的に生成した核種が中性子を吸収して
生成するものである。具体的には、Cs −134 は
1次FPであるCs −133 の中性子吸収により生
成し、Eu −154 はEu −153 の中性子吸
収により生成する。したがって、これらの核種は核分裂
における中性子吸収とその後の中性子吸収との2回の中
性子吸収を経て生成するものであるため、その生成量は
中性子照射量に対し直線的ではなく、図4に示すように
中性子照射量に対して概ね二次曲線的に増加する。これ
に対し、Cs −137 は中性子照射量に対し直線的
に増加するので、Cs −134 あるいはEu −1
54 とCs −137 との比は中性子照射量に対し
比較的直線的な関係を持っている。また、中性子照射量
と燃焼度とはほぼ比例するものと考えることができる。 したがって、燃焼度に対して二次曲線的な変化をするC
s −134 の強度とかEu −154 の強度を燃
焼度と比例するCs −137 強度で割った値は燃焼
度に対して概ね直線的な変化をする。Cs −134 
/Cs −137 の比またはEu −154 /Cs
 −137 の比を測定して燃焼度を測定する方法はこ
の性質を利用したものである。
Cs-134 and Eu-154
The process of production in a nuclear reactor is not due to the decay of nuclides produced directly by nuclear fission, as in Cs -137, but by the absorption of neutrons by nuclides primarily produced by nuclear fission. Specifically, Cs −134 is generated by neutron absorption of Cs −133 , which is a primary FP, and Eu −154 is generated by neutron absorption of Eu −153 . Therefore, since these nuclides are produced through two neutron absorptions, one during nuclear fission and the other after that, the amount produced is not linear with respect to the neutron irradiation amount, but as shown in Figure 4. It increases almost quadratically with respect to the neutron irradiation dose. On the other hand, Cs -137 increases linearly with the neutron irradiation amount, so Cs -134 or Eu -1
The ratio of 54 and Cs -137 has a relatively linear relationship to the neutron irradiation dose. Further, it can be considered that the amount of neutron irradiation and the burnup are approximately proportional. Therefore, C changes like a quadratic curve with respect to burnup.
The value obtained by dividing the s -134 intensity or the Eu -154 intensity by the Cs -137 intensity, which is proportional to the burnup, changes approximately linearly with the burnup. Cs-134
/Cs −137 or Eu −154 /Cs
The method of measuring burnup by measuring the -137 ratio takes advantage of this property.

【0012】しかしながら、これらの強度比から燃焼度
を求めようとした場合、対象燃料の仕様または原子炉に
おける照射履歴による影響が大であるため、精度よく燃
焼度を求めるためには照射履歴に関する十分な情報が必
要であり、これが大きな欠点となる。
However, when trying to calculate the burnup from these intensity ratios, it is greatly influenced by the specifications of the target fuel or the irradiation history in the reactor. information is required, which is a major drawback.

【0013】原子炉の出力密度が異なると、同じ燃焼度
に到達するまでに要する時間が異なるが、Cs −13
4 は半減期が約2年とそれほど長くないため、この時
間の差が生成、崩壊のバランスに影響を及ほす。Eu 
−154 は半減期が約 8.5年あり出力密度の影響
は比較的小さい。
[0013] When the power density of the reactor differs, the time required to reach the same burnup differs, but Cs -13
4 has a not-so-long half-life of about two years, so this difference in time affects the balance between production and decay. Eu
-154 has a half-life of about 8.5 years, so the influence of power density is relatively small.

【0014】また、Cs −134 とEu −154
 の核分裂収率はU−234 とPu −239 とで
かなり差があるため、これらは共に燃料の初期濃縮度お
よび中性子エネルギスペクトル等の影響を受ける。
[0014] Furthermore, Cs-134 and Eu-154
Since the fission yields of U-234 and Pu-239 differ considerably, both of them are affected by the initial enrichment of the fuel, the neutron energy spectrum, etc.

【0015】このような理由により、Cs −134 
/Cs−137 の強度比およびEu −154 /C
s −137 の強度比を測定して燃焼度を求めようと
する場合には対象燃料の初期濃縮度または照射中の出力
密度の履歴等の詳細な情報を得たうえで、これらの計算
比と燃焼度とを関係付ける必要がある。このことは、た
とえば原子炉から他の貯蔵施設または再処理施設へ燃料
を輸送する際に燃料の燃焼度を測定する場合または、貯
蔵施設とか、再処理施設で燃料を受け入れる際に燃焼度
を測定する場合等、大量の燃料を測定しなければならな
い場合に、それらの燃料の照射履歴情報がすべて把握で
きないことも想定されるため、扱うことのできる燃料を
限定することになり、効率的な測定の実施の妨げとなる
For these reasons, Cs-134
/Cs-137 intensity ratio and Eu-154 /C
When attempting to determine the burnup by measuring the intensity ratio of s-137, first obtain detailed information such as the initial enrichment of the target fuel or the history of the power density during irradiation, and then calculate the It is necessary to relate it to burnup. This is useful, for example, when measuring the burnup of fuel during transport from a nuclear reactor to another storage or reprocessing facility, or when measuring burnup when receiving fuel at a storage or reprocessing facility. When a large amount of fuel must be measured, such as when performing a impede implementation.

【0016】また上記ガンマ線スペクトル分析法の他に
、原子燃料の燃焼度を測定する方法として、燃料から放
出される中性子を測定する方法、たとえば特開昭61−
262689号公報に開示された中性子放出率法も知ら
れている。この方法において、燃料の放出する中性子の
量と燃焼度との関係は、両者それぞれの対数値がある範
囲において、ほぼ直線関係にあることが分ってはいるも
のの、初期濃縮度の影響があり、また測定体系または燃
料の形状の影響はなんらかの方法で把握する必要がある
In addition to the above-mentioned gamma ray spectrum analysis method, a method for measuring the burnup of nuclear fuel is a method of measuring neutrons emitted from the fuel, for example, Japanese Patent Laid-Open No. 1986-61-
The neutron emission rate method disclosed in Japanese Patent No. 262689 is also known. In this method, although it is known that the relationship between the amount of neutrons emitted by the fuel and the burnup is almost linear within a certain range of logarithmic values of both, there is an influence of the initial enrichment. , and the influence of the measurement system or fuel shape must be understood in some way.

【0017】[0017]

【発明が解決しようとする課題】照射燃料集合体の燃焼
度をガンマ線スペクトルによって測定する場合、Cs 
−137 のガンマ線強度から燃焼度を求めようとする
には、測定体系および燃料形状ごとにCs −137 
のガンマ線計数と燃焼度との比例定数を求めておく必要
がある。従来の技術において計算によってその比例定数
を決める場合にはその確かさを確認するための手段が必
要となり、破壊分析を行って比例定数を決める場合には
非常に労力を要する作業を必要とする。一方、Cs −
134 /Cs−137 の強度比またはEu −15
4 /Cs −137 の強度比から燃焼度を求めるた
めには測定燃料の詳細な照射履歴を必要とするため、多
くの燃料を測定しようとする場合には効率的な測定を行
うことが困難となる。
Problem to be Solved by the Invention When measuring the burnup of an irradiated fuel assembly using a gamma ray spectrum, Cs
In order to determine the burnup from the gamma ray intensity of -137 Cs -137
It is necessary to find the proportionality constant between the gamma ray count and the burnup. In conventional techniques, when determining the constant of proportionality by calculation, a means is required to confirm its accuracy, and when determining the constant of proportionality by performing destructive analysis, a very labor-intensive task is required. On the other hand, Cs −
134 /Cs-137 intensity ratio or Eu-15
Determining the burnup from the intensity ratio of 4/Cs -137 requires a detailed irradiation history of the measured fuel, which makes it difficult to perform efficient measurements when trying to measure a large number of fuels. Become.

【0018】本発明は上記課題を解決するためになされ
たもので、上述した比例係数を(1)計算で求める、(
2)破壊分析で求める、(3)照射歴と放射能強度比を
用いて求める3通りの方法の短所を補うことで、ガンマ
線スペクトルの測定から燃焼度を正確かつ効率的に測定
することができる照射燃料集合体の燃焼度測定方法を提
供することにある。[発明の構成]
The present invention has been made to solve the above-mentioned problems, and consists of (1) calculating the above-mentioned proportionality coefficient;
By compensating for the shortcomings of the three methods: 2) Determining by destructive analysis and (3) Determining by using irradiation history and radioactivity intensity ratio, burnup can be measured accurately and efficiently from gamma ray spectrum measurement. An object of the present invention is to provide a method for measuring burnup of an irradiated fuel assembly. [Structure of the invention]

【0019】[0019]

【課題を解決するための手段】本発明は原子炉で照射さ
れた照射燃料集合体から放出されるガンマ線の強度を測
定して燃焼度を測定する照射燃料集合体の燃焼度測定方
法において、初期濃縮度が既知で、かつ照射歴と冷却期
間が既知もしくは冷却期間が少くとも 1.5年である
標準照射燃料集合体から放出される中性子を測定して、
前記標準照射燃料集合体のキュリウム 242(Cm−
242 )に基づく中性子放出率を除く中性子放出率を
求め、この中性子放出率から燃焼度を決定し、一方、前
記標準照射燃料集合体の軸方向同一高さ(レベル)から
放出されるガンマ線スペクトルを測定してセシウム 1
37(Cs −137 )に基づくガンマ線強度を求め
、このガンマ線強度と燃焼度との比例係数を決定し、前
記標準照射燃料集合体を除く他の照射燃料集合体では、
初期濃縮度および照射歴を知ることなくCs −137
 に基づくガンマ線の測定値から燃焼度を測定るするこ
とを特徴とする。
[Means for Solving the Problems] The present invention provides a method for measuring the burnup of an irradiated fuel assembly in which burnup is measured by measuring the intensity of gamma rays emitted from the irradiated fuel assembly irradiated in a nuclear reactor. measuring neutrons emitted from a standard irradiated fuel assembly of known enrichment and known irradiation history and cooling period or a cooling period of at least 1.5 years;
Curium 242 (Cm-) of the standard irradiated fuel assembly
The neutron emission rate excluding the neutron emission rate based on 242) is determined, and the burnup is determined from this neutron emission rate.On the other hand, the gamma ray spectrum emitted from the same height (level) in the axial direction of the standard irradiated fuel assembly is calculated. Measure cesium 1
37 (Cs -137 ), and determine the proportional coefficient between this gamma ray intensity and burnup, and for other irradiated fuel assemblies other than the standard irradiated fuel assembly,
Cs-137 without knowing the initial concentration and irradiation history.
It is characterized by measuring burnup from gamma ray measurement values based on .

【0020】[0020]

【作用】本発明に係る照射燃料集合体の燃焼度測定方法
では、初期濃縮度が既知であり、かつ照射歴と冷却期間
が既知もしくは冷却期間が少くとも 1.5年、通常2
年以上有する標準となる燃料集合体(以下標準照射燃料
集合体という)の所定の位置から放出される中性子放出
率を測定する。そして、その標準照射燃料集合体のCm
 −242 に基づく中性子放出率を除く長半減期核種
からの中性子放出率を求め、この中性子放出率から燃焼
度を決定する。一方、前記標準照射燃料集合体の前記所
定位置から放出されるガンマ線スペクトルを測定してC
s −137 に基づくガンマ線強度を求め、このガン
マ線強度と燃焼度との比例係数を決定する。
[Operation] In the method for measuring the burnup of an irradiated fuel assembly according to the present invention, the initial enrichment is known, and the irradiation history and cooling period are known or the cooling period is at least 1.5 years, usually 2 years.
The neutron emission rate emitted from a predetermined position of a standard fuel assembly (hereinafter referred to as a standard irradiated fuel assembly) that has been in use for more than a year is measured. And Cm of the standard irradiated fuel assembly
The neutron emission rate from long half-life nuclides excluding the neutron emission rate based on -242 is determined, and the burnup is determined from this neutron emission rate. On the other hand, measuring the gamma ray spectrum emitted from the predetermined position of the standard irradiated fuel assembly,
The gamma ray intensity based on s −137 is determined, and the proportionality coefficient between this gamma ray intensity and burnup is determined.

【0021】しかして、前記標準照射燃料集合体とほぼ
同一構造を有する他の照射燃料集合体では、初期濃縮度
および照射歴を知ることなく、Cs −137 に基づ
くガンマ線強度の測定値から燃焼度を決定することがで
きる。
[0021] However, in other irradiated fuel assemblies having almost the same structure as the standard irradiated fuel assembly, the burnup can be determined from the measured value of gamma ray intensity based on Cs -137 without knowing the initial enrichment and irradiation history. can be determined.

【0022】[0022]

【実施例】図1から図3を参照しながら本発明に係る照
射燃料集合体の燃焼度測定方法の一実施例を説明する。
[Embodiment] An embodiment of the method for measuring burnup of an irradiated fuel assembly according to the present invention will be described with reference to FIGS. 1 to 3.

【0023】図1は本発明の基本構成で、図2は図1に
おけるガンマ線スペクトル分析法を,図3は図1におけ
る中性子放出率測定法をそれぞれブロック図で示してい
る。
FIG. 1 shows the basic configuration of the present invention, FIG. 2 shows the gamma ray spectrum analysis method in FIG. 1, and FIG. 3 shows the neutron emission rate measurement method in FIG. 1 in block diagrams.

【0024】すなわち、図1において照射された標準照
射燃料集合体1は中性子放出率測定2が行われ、初期濃
縮度,照射歴または冷却期間、形状効果などを取入れる
ことで燃焼度3が決定される。一方、図2に示したよう
にガンマ線スペクトル分析法においてスペクトル測定4
を行い、Cs −137 ガンマ線強度5を求め、比例
係数6を介して燃焼度7を求める。この図2のスキムを
実施する為の比例係数を求める。このように中性子放出
率測定2により中性子放出率を測定し、初期濃縮度,照
射歴または冷却時間、形状効果を取入れる事によって燃
焼度3を求め、これとCs −137 ガンマ線強度と
から比例係数6が求められる。図2に示す基本的なフロ
―は特開昭61−262693号公報によって、また図
3に示す基本的なフロ―は特開昭61−262689号
公報によって開示されている。
That is, the standard irradiated fuel assembly 1 irradiated in FIG. 1 is subjected to neutron emission rate measurement 2, and the burnup 3 is determined by taking into account initial enrichment, irradiation history or cooling period, shape effect, etc. be done. On the other hand, as shown in Figure 2, in the gamma ray spectrum analysis method, the spectrum measurement
The Cs -137 gamma ray intensity 5 is obtained, and the burnup degree 7 is obtained via the proportionality coefficient 6. A proportional coefficient for implementing the skim shown in FIG. 2 is determined. In this way, the neutron emission rate is measured by neutron emission rate measurement 2, and burnup 3 is determined by incorporating the initial concentration, irradiation history or cooling time, and shape effect, and from this and the Cs-137 gamma ray intensity, the proportional coefficient 6 is required. The basic flow shown in FIG. 2 is disclosed in Japanese Patent Laid-Open No. 61-262693, and the basic flow shown in FIG. 3 is disclosed in Japanese Patent Laid-Open No. 61-262689.

【0025】図3を参照しながら中性子放出率測定法の
基本的なフロ―を簡単に説明する。即ち、標準照射燃料
集合体1を1体水中に置き、その外周で中性子束測定8
を行う。ガンマ線測定の場合、照射燃料集合体内部から
放出されるガンマ線は外周部に位置する燃料集合体でし
ゃへいされ、ガンマ線検出器への応答が小さいが、中性
子束測定8の場合にはこのようなしゃへい現象は大幅に
緩和され、照射燃料集合体を平均的に特徴づける中性子
束が得られる。中性子束が得られると次は全中性子放出
率10を導出することになるが、中性子束は増倍効果の
影響を受けているため、中性子放出率(1次中性子放出
率とも呼ばれる)を求めるためには増倍効果補正9を行
わなければならない。このような補正の方法は既に充分
確立されている中性子輸送・拡散コ―ドを利用するため
測定条件即ち形状効果が必要となる。このようにして全
核種から放出される中性子放出率(全中性子放出率10
と呼ぶことにする)が求められる。全中性子放出率10
に寄与する核種はCm −244 ,Cm −242 
,Pu −238 ,Pu −240 ,Am −24
1 が代表的なものである。照射終了後3ケ月あたりま
では核分裂生成物(FP)のBa −140 がβ崩壊
して生成したLa −140 のβ崩壊に続いて放出さ
れる高エネルギ―ガンマ線(2.53MeV)が水中の
重水素核と反応して中性子を放出するが、それ以後は完
全に無視できる。上記5核種のうちCm −242 の
半減期が一番短く 163日、Cm −244 がその
次に短いものの18年と大幅に長い。照射終了後2〜3
年経てばCm −242 に基づく中性子放出率は殆ん
ど無視でき、冷却期間1年でCm −242 に基づく
中性子放出率と、その他4核種に基づく中性子放出率と
は同程度の大きさになることが多い。 従って冷却期間1〜2年の間はCm −242 に基づ
く中性子放出率を除去しなければなない(図中符号11
を参照)。半減期のちがいを利用して2回又はそれ以上
冷却期間を変えた測定からそれを実施する方法は特開昭
53− 22993号公報で本発明者等によって開示さ
れている。冷却期間が1〜2年の間では計算によって除
去しても大きな誤差の原因となる可能性は小さい。こう
してCm −242 の効果が除去される。この中性子
放出率の主成分は通常Cm −244 で、通常に燃焼
した燃料集合体ではCm −242 成分除去後の値の
90%程度又はそれ以上の割合を占めている。特開昭6
1−262689号公報ではCm −244 のみを取
出し、それと燃焼度との相関から燃焼度を求める方法を
主に開示しているが、Cm −244 以外のものを含
めてもよい事も本発明者等は開示している。このように
して得られた中性子放出率は照射歴の影響はあまり受け
ないので、照射歴の影響の補正は殆んど必要ない事が多
い。初期濃縮度(εi )の影響は明確に現われる。す
なわちCm −244 成分を除く中性子放出率(S)
の理論計算値を燃焼度(Bu )およびεiを変数する
次の式でフィットできる。即ち、   (Bu )=exp 〔1/A(lnS−B)〕・
F(A,Bは定数)        A=A2 εi 
2 +A1 εi   +A0   (A2 , A1
 , A0 は定数)        B=B2 εi
 2 +B1 εi 2 +B0   (B2 , B
1 , B0 は定数)        F=F2 ε
i 2 +F1 εi 2 +F0   (F2 , 
F1 , F0 は定数)この式を実際に数値計算して
みるとわかるが、実際の燃料集合体では、たとえば中性
子放出率(測定値)に10%誤差があったとしても、燃
焼度への誤差の伝播は2〜3%程度に縮小されるという
優れた性質があり、精度のよい燃焼度を決定することが
できる。しかしてCm −242 除去放出率11に初
期濃縮度(εi )の補正12を加えることにより燃焼
度13が求められる。もしこの燃焼度13の値が増倍効
果補正9で想定した燃焼度の値と大幅に異る場合にはた
とえば特開昭61−262689号公報に開示されたも
のと同様のくり返し計算によって増倍効果を正しく補正
した燃焼度が求められる。
The basic flow of the neutron emission rate measurement method will be briefly explained with reference to FIG. That is, one standard irradiated fuel assembly 1 is placed in water, and the neutron flux is measured 8 at its outer periphery.
I do. In the case of gamma ray measurement, gamma rays emitted from inside the irradiated fuel assembly are blocked by the fuel assembly located on the outer periphery, and the response to the gamma ray detector is small; however, in the case of neutron flux measurement 8, such shielding The phenomenon is significantly mitigated, resulting in a neutron flux that on average characterizes the irradiated fuel assembly. Once the neutron flux is obtained, the next step is to derive the total neutron emission rate 10, but since the neutron flux is affected by the multiplication effect, in order to obtain the neutron emission rate (also called the primary neutron emission rate), In this case, multiplication effect correction 9 must be performed. Since such a correction method utilizes a well-established neutron transport/diffusion code, measurement conditions, that is, shape effects, are required. In this way, the neutron emission rate emitted from all nuclides (total neutron emission rate 10
) is required. Total neutron emission rate 10
The nuclides contributing to are Cm -244 and Cm -242
, Pu -238 , Pu -240 , Am -24
1 is representative. Until about 3 months after the end of irradiation, the high-energy gamma rays (2.53 MeV) released following the β-decay of La-140 produced by the β-decay of the fission product (FP) Ba-140 are It reacts with hydrogen nuclei and releases neutrons, but after that it can be completely ignored. Of the five nuclides mentioned above, Cm -242 has the shortest half-life at 163 days, while Cm -244 has the next shortest half-life at 18 years. 2-3 after irradiation
As years pass, the neutron emission rate based on Cm -242 becomes almost negligible, and after a cooling period of one year, the neutron emission rate based on Cm -242 and the neutron emission rate based on the other four nuclides become comparable in size. There are many things. Therefore, during the cooling period of 1 to 2 years, the neutron emission rate based on Cm -242 must be removed (numeral 11 in the figure).
). The present inventors have disclosed a method of carrying out measurements by changing the cooling period twice or more by taking advantage of the difference in half-life in Japanese Patent Application Laid-Open No. 53-22993. If the cooling period is 1 to 2 years, even if it is removed by calculation, it is unlikely to cause a large error. The effect of Cm −242 is thus removed. The main component of this neutron emission rate is usually Cm -244 , and in a normally burned fuel assembly, it accounts for about 90% or more of the value after removing the Cm -242 component. Tokukai Showa 6
Publication No. 1-262689 mainly discloses a method of extracting only Cm -244 and calculating the burnup from the correlation between it and the burnup, but the inventors have also discovered that other than Cm -244 may also be included. etc. are disclosed. Since the neutron emission rate obtained in this way is not significantly influenced by the irradiation history, correction for the influence of the irradiation history is often not necessary. The influence of the initial enrichment (εi) is clearly visible. That is, the neutron emission rate (S) excluding the Cm −244 component
The theoretically calculated value of can be fitted using the following equation with burnup (Bu) and εi as variables. That is, (Bu)=exp [1/A(lnS-B)]・
F (A, B are constants) A=A2 εi
2 +A1 εi +A0 (A2 , A1
, A0 is a constant) B=B2 εi
2 +B1 εi 2 +B0 (B2 , B
1, B0 is a constant) F=F2 ε
i 2 +F1 εi 2 +F0 (F2,
(F1 and F0 are constants) When this equation is actually calculated numerically, it can be seen that in an actual fuel assembly, even if there is a 10% error in the neutron emission rate (measured value), the error in the burnup will be It has the excellent property that the propagation of is reduced to about 2 to 3%, and burnup can be determined with high accuracy. Thus, the burnup degree 13 is obtained by adding the correction 12 for the initial enrichment (εi) to the Cm -242 removal/release rate 11. If the value of this burnup 13 is significantly different from the burnup value assumed in the multiplication effect correction 9, the burnup is multiplied by repeated calculations similar to those disclosed in JP-A No. 61-262689. The burnup that correctly corrects the effects is required.

【0026】このようにして図1に示す燃焼度3が求め
られると、その測定位置に対してガンマ線スペクトルの
測定を行い、得られたデ―タを分析してCs−137 
ガンマ線強度(相対強度でもよい)が求められているの
で、両者の比から比例係数6が求められる。いったん比
例係数6が求められると、図2の手順により、標準照射
燃料集合体1と同寸法又は同じ設計の照射燃料集合体に
対して、ガンマ線スペクトル分析法により、照射歴の詳
細な情報なしに、そして初期濃縮度の情報なしに燃焼度
を求めることができる。燃焼度からは核分裂性核種濃度
やPu 濃度等が導出できる。
When the burnup 3 shown in FIG. 1 is determined in this way, the gamma ray spectrum is measured at that measurement position, the obtained data is analyzed, and Cs-137
Since the gamma ray intensity (relative intensity may also be used) is determined, the proportionality coefficient 6 is determined from the ratio of the two. Once the proportionality factor 6 has been determined, an irradiated fuel assembly of the same size or design as the standard irradiated fuel assembly 1 is analyzed by gamma ray spectrometry without detailed information on the irradiation history using the procedure shown in Figure 2. , and the burnup can be determined without information on the initial enrichment. The fissile nuclide concentration, Pu concentration, etc. can be derived from the burnup.

【0027】[0027]

【発明の効果】本発明によれば、最初に詳細な照射履歴
情報が明らかな照射燃料集合体でCs −137 の強
度と燃焼度との比例定数を決めることによって、その後
測定する照射燃料集合体については、照射履歴情報を知
ることなく、正確でかつ効率的に燃焼度を測定すること
が可能になる。
According to the present invention, by first determining the proportionality constant between Cs -137 intensity and burnup in an irradiated fuel assembly for which detailed irradiation history information is clear, the irradiated fuel assembly to be subsequently measured is determined. It becomes possible to accurately and efficiently measure burnup without knowing irradiation history information.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る照射燃料集合体の燃焼度測定方法
の一実施例をすブロック図。
FIG. 1 is a block diagram illustrating an embodiment of a method for measuring burnup of an irradiated fuel assembly according to the present invention.

【図2】図1におけるガンマ線スペクトル測定法を説明
るするためのブロック図。
FIG. 2 is a block diagram for explaining the gamma ray spectrum measurement method in FIG. 1.

【図3】図1における中性子放出率測定法を説明するた
めのブロック図。
FIG. 3 is a block diagram for explaining the neutron emission rate measurement method in FIG. 1.

【図4】従来例を説明するためのCs −137 ,C
s −134 およびEu −154 の放出するガン
マ線強度の燃焼度変化を示す特性図。
[Fig. 4] Cs -137, C for explaining the conventional example
FIG. 2 is a characteristic diagram showing burnup changes in gamma ray intensity emitted by s -134 and Eu -154.

【符号の説明】[Explanation of symbols]

1…標準照射燃料集合体、2…中性子放出率測定、3…
燃焼度、4…ガンマ線スペクトル測定、5…Cs −1
37 ガンマ線強度、6…比例係数、7…燃焼度、8…
中性子束測定、9…増倍効果補正、10…全中性子放出
率、11…Cm −242 除去放出率、12…初期濃
縮度効果補正、13…燃焼度。
1...Standard irradiated fuel assembly, 2...Neutron emission rate measurement, 3...
Burnup, 4... Gamma ray spectrum measurement, 5... Cs −1
37 Gamma ray intensity, 6... proportionality coefficient, 7... burnup, 8...
Neutron flux measurement, 9... Multiplication effect correction, 10... Total neutron emission rate, 11... Cm -242 removal emission rate, 12... Initial enrichment effect correction, 13... Burnup.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  原子炉で照射された照射燃料集合体か
ら放出されるガンマ線の強度を測定して燃焼度を測定す
る照射燃料集合体の燃焼度測定方法において、初期濃縮
度が既知で、かつ照射歴と冷却期間が既知もしくは冷却
期間が少くとも 1.5年有する標準照射燃料集合体か
ら放出される中性子を測定して、前記標準照射燃料集合
体のキュリウム 242(Cm −242 )に基づく
中性子放出率を除く中性子放出率を求め、この中性子放
出率から燃焼度を決定し、一方前記標準照射燃料集合体
の軸方向同一高さ(レベル)から放出されるガンマ線ス
ペクトルを測定してセシウム 137(Cs −137
 )に基づくガンマ線強度を求め、このガンマ線強度と
前記燃焼度との比例係数を決定し、前記標準照射燃料集
合体を除く他の照射燃料集合体では、初期濃縮度および
照射歴を知ることなくCs −137 に基づくガンマ
線強度の測定値から燃焼度を測定することを特徴とする
照射燃料集合体の燃焼度測定方法。
Claim 1: A method for measuring the burnup of an irradiated fuel assembly, which measures the burnup by measuring the intensity of gamma rays emitted from the irradiated fuel assembly irradiated in a nuclear reactor, wherein the initial enrichment is known, and Neutrons emitted from a standard irradiated fuel assembly with a known irradiation history and cooling period or a cooling period of at least 1.5 years are measured to determine the neutrons based on curium 242 (Cm -242 ) of the standard irradiated fuel assembly. The neutron emission rate excluding the emission rate is determined, and the burnup is determined from this neutron emission rate. On the other hand, the gamma ray spectrum emitted from the same height (level) in the axial direction of the standard irradiated fuel assembly is measured and cesium 137 ( Cs-137
), and determine the proportional coefficient between this gamma ray intensity and the burnup. 1. A method for measuring burnup of an irradiated fuel assembly, characterized in that burnup is measured from a measured value of gamma ray intensity based on -137.
JP3000438A 1991-01-08 1991-01-08 Burnup measurement method for irradiated fuel assemblies Expired - Fee Related JP3026455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3000438A JP3026455B2 (en) 1991-01-08 1991-01-08 Burnup measurement method for irradiated fuel assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3000438A JP3026455B2 (en) 1991-01-08 1991-01-08 Burnup measurement method for irradiated fuel assemblies

Publications (2)

Publication Number Publication Date
JPH04249797A true JPH04249797A (en) 1992-09-04
JP3026455B2 JP3026455B2 (en) 2000-03-27

Family

ID=11473819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3000438A Expired - Fee Related JP3026455B2 (en) 1991-01-08 1991-01-08 Burnup measurement method for irradiated fuel assemblies

Country Status (1)

Country Link
JP (1) JP3026455B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236194A (en) * 2001-02-08 2002-08-23 Toshiba Corp Method and device for evaluating burn-up
JP2006112804A (en) * 2004-10-12 2006-04-27 Toshiba Corp Neutron emission rate measuring method and measuring evaluation program of irradiated fuel assembly
JP2014070920A (en) * 2012-09-27 2014-04-21 Toshiba Corp Nuclear fuel burnup estimation device, method, and program
JP2015227817A (en) * 2014-05-30 2015-12-17 株式会社東芝 Burnup measurement apparatus of fuel debris and burnup measurement method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236194A (en) * 2001-02-08 2002-08-23 Toshiba Corp Method and device for evaluating burn-up
JP4601838B2 (en) * 2001-02-08 2010-12-22 株式会社東芝 Burnup evaluation method and apparatus
JP2006112804A (en) * 2004-10-12 2006-04-27 Toshiba Corp Neutron emission rate measuring method and measuring evaluation program of irradiated fuel assembly
JP2014070920A (en) * 2012-09-27 2014-04-21 Toshiba Corp Nuclear fuel burnup estimation device, method, and program
JP2015227817A (en) * 2014-05-30 2015-12-17 株式会社東芝 Burnup measurement apparatus of fuel debris and burnup measurement method of the same

Also Published As

Publication number Publication date
JP3026455B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
JP4761829B2 (en) Axial void ratio distribution measuring method and fuel assembly neutron multiplication factor evaluation method before storage device storage
JP5546174B2 (en) Radioactivity concentration evaluation method and evaluation program for radioactive waste, and radioactivity concentration evaluation apparatus
JP5752467B2 (en) Reactor fuel non-destructive burnup evaluation method and apparatus
JP4327522B2 (en) Nondestructive measurement method of plutonium 238 in fuel material
JP3103361B2 (en) Measurement method of burnup of nuclear fuel
Blanchet et al. Qualification of a gamma-ray heating calculation scheme for the future Jules Horowitz material testing reactor (RJH)
JP6038575B2 (en) Nuclear fuel burnup evaluation apparatus, method and program
Bosler et al. Production of actinide isotopes in simulated PWR fuel and their influence on inherent neutron emission
JP2003043183A (en) Heating rate measuring method of irradiated fuel
JP3026455B2 (en) Burnup measurement method for irradiated fuel assemblies
Phillips et al. Neutron measurement techniques for the nondestructive analysis of irradiated fuel assemblies
Gauld Validation of ORIGEN-S decay heat predictions for LOCA analysis
JPH045356B2 (en)
US4881247A (en) Measuring nuclear fuel burnup
Hsue et al. Passive neutron assay of irradiated nuclear fuels
JPH0426718B2 (en)
Eigenbrodt Spent fuel measurements: passive neutron albedo reactivity (PNAR) and photon signatures
JPS6316298A (en) Nondestructive measuring method of spent nuclear fuel aggregate
Lundkvist Investigation of possible non-destructive assay (NDA) techniques for at the future Swedish encapsulation facility
Larsen et al. The Yield of Short-Lived Gamma-Ray Emitting Nuclides from Fast-and Thermal-Neutron Fission
JPH0453398B2 (en)
Robin et al. The importance of fission product nuclear data in burnup determination
Ilas et al. New Radiochemical Assay Experiments to Improve the Validation Basis for High Burnup Fuel
Sokcic-Kostic et al. Nuclear fuel assemblies and fuel debris monitor for characterization of fuel assemblies for final storage
JPS6315197A (en) Nondestructive measuring method of spent nuclear fuel aggregate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees