JPH058799B2 - - Google Patents

Info

Publication number
JPH058799B2
JPH058799B2 JP59219440A JP21944084A JPH058799B2 JP H058799 B2 JPH058799 B2 JP H058799B2 JP 59219440 A JP59219440 A JP 59219440A JP 21944084 A JP21944084 A JP 21944084A JP H058799 B2 JPH058799 B2 JP H058799B2
Authority
JP
Japan
Prior art keywords
gamma ray
spent fuel
fuel assembly
ray intensity
gross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59219440A
Other languages
Japanese (ja)
Other versions
JPS6197594A (en
Inventor
Hajime Adachi
Kyoshi Ueda
Yoshuki Sekiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59219440A priority Critical patent/JPS6197594A/en
Publication of JPS6197594A publication Critical patent/JPS6197594A/en
Publication of JPH058799B2 publication Critical patent/JPH058799B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は使用済燃料集合体の平均燃焼度をガン
マ線測定により非破壊的に定量する使用済燃料集
合体の非破壊測定方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method and apparatus for non-destructively measuring the average burn-up of a spent fuel assembly by gamma ray measurement.

[発明の技術的背景とその問題点] 一般に、使用済燃料集合体内に蓄積された長半
減期の核分裂生成核種(以下FPという)の濃度
は、その照射期間中の燃焼度にほぼ比例する。
[Technical background of the invention and its problems] Generally, the concentration of long half-life fission product nuclides (hereinafter referred to as FP) accumulated in a spent fuel assembly is approximately proportional to its burnup during the irradiation period.

使用済燃料から放出されるガンマ線のスペクト
ルをゲルマニウム検出器等の高分解能のガンマ線
検出器で測定し、注目するFPの計数率と燃焼度
との比例性を用いて燃焼度を定量する方法が非破
壊測定方法の一つとしてよく知られている。この
ようなFPの代表例としては、半減期30.2年の
Cs137があげられる。
The method of measuring the spectrum of gamma rays emitted from spent fuel with a high-resolution gamma ray detector such as a germanium detector and quantifying the burnup using the proportionality between the count rate and burnup of the FP of interest is extremely difficult. It is well known as one of the destructive measurement methods. A typical example of such FP is the half-life of 30.2 years.
Cs137 is mentioned.

このような方法を使用済燃料集合体の非破壊測
定に適用して使用済燃料集合体の平均の燃焼度を
求める場合には、使用済燃料集合体内の各燃料棒
で燃焼度が異なり、水平方向分布を有しているた
め、断面四角形状の使用済燃料集合体周辺の対称
な4方向または対向する2方向からガンマ線の測
定を行ない、これらの計数率の平均値から燃焼度
を求める方法が従来行われている。
When applying such a method to nondestructive measurement of spent fuel assemblies to find the average burnup of a spent fuel assembly, each fuel rod in the spent fuel assembly has a different burnup, and Because gamma rays have a directional distribution, gamma rays are measured from four symmetrical directions or from two opposing directions around a spent fuel assembly with a rectangular cross section, and the burnup is calculated from the average value of these count rates. Traditionally done.

断面四角形状の通常の使用済燃料集合体の場合
には、一つの対角方向にほぼ対称な燃焼度分布を
持つため対向する2方向(通常コーナー方向)か
らの測定が行われるが、炉心の周辺部に長く配置
されていた使用済燃料集合体の場合には、必ずし
も分布が対称でないため4方向からの測定が必要
となる。この場合、ガンマ線コリメータおよび検
出器等からなる1台のガンマ線スペクトル測定装
置を用い、使用済燃料集合体を回転させて順次各
2方向または4方向からの測定を行なう第1の方
法、あるいは複数のガンマ線スペクトル測定装置
を、使用済燃料集合体を挾んで対称的な位置に配
置し、2方向または4方向からの測定を同時に行
なう第2の方法が考えられる。
In the case of a normal spent fuel assembly with a rectangular cross section, measurements are performed from two opposing directions (usually corner directions) because the burnup distribution is almost symmetrical in one diagonal direction. In the case of spent fuel assemblies that have been arranged for a long time in the periphery, the distribution is not necessarily symmetrical, so measurements must be taken from four directions. In this case, the first method involves using one gamma ray spectrum measuring device consisting of a gamma ray collimator, a detector, etc., and sequentially measuring from each of two or four directions by rotating the spent fuel assembly; A second method can be considered in which the gamma ray spectrum measurement devices are arranged symmetrically across the spent fuel assembly and measurements are taken from two or four directions simultaneously.

しかしながら、第1の方法では、ガンマ線スペ
クトル測定装置の設置スペースは比較的少なくて
済むが、燃料集合体断面内のガンマ線強度分布が
対称でないため、2方向または4方向からの測定
が必要であり、1方向測定に較べて2倍または4
倍の測定時間が必要となる。また、使用済燃料集
合体を回転して検出器の方向に正確に設定する必
要があり、このような設定に時間を要し、さらに
測定時間を長くするという問題がある。
However, in the first method, although the installation space of the gamma ray spectrum measuring device is relatively small, the gamma ray intensity distribution within the cross section of the fuel assembly is not symmetrical, so measurement from two or four directions is required. 2 times or 4 times more than unidirectional measurement
Double the measurement time is required. In addition, it is necessary to rotate the spent fuel assembly to accurately set it in the direction of the detector, and such setting requires time, which further increases the measurement time.

また、第2の方法では、複数の方向から同時測
定ができ、使用済燃料集合体を回転する必要もな
いため、測定等にかかる時間は少なくてすむが、
大きな空間を占有する大がかりなガンマ線スペク
トル測定装置を、使用済燃料集合体を挾んで対称
的に複数設置しなければならず、著しく広い空間
を必要とするとともに、測定装置に多大な費用が
かかるという問題がある。
In addition, with the second method, measurements can be taken from multiple directions simultaneously and there is no need to rotate the spent fuel assembly, so the time required for measurements etc. is reduced.
Multiple, large-scale gamma-ray spectrum measurement devices that occupy a large space must be installed symmetrically across the spent fuel assembly, which requires an extremely large amount of space and requires a large amount of cost for the measurement devices. There's a problem.

[発明の目的] 本発明はかかる従来の事情に対処してなされた
もので、ガンマ線スペクトル測定装置の設置スペ
ースを広げることなく、かつ短い測定時間で燃焼
度の測定を効率的に行なうことができる使用済燃
料集合体の非破壊測定方法およびその装置を提供
しようとするものである。
[Object of the Invention] The present invention has been made in response to such conventional circumstances, and it is possible to efficiently measure burnup in a short measurement time without increasing the installation space of the gamma ray spectrum measurement device. The present invention aims to provide a method and device for non-destructive measurement of spent fuel assemblies.

[発明の概要] すなわち本発明は、非破壊測定すべき使用済燃
料集合体周辺の一方向から長半減期の核分裂生成
核種のガンマ線強度を測定するとともに前記使用
済燃料集合体周辺の前記一方向を含めた対称な複
数方向からグロスガンマ線強度分布を測定し、前
記一方向のグロスガンマ線強度を対する前記複数
方向のグロスガンマ線強度平均値の比を求め、こ
の値を前記核分裂生成核種のガンマ線強度に乗算
し前記使用済燃料集合体の前記核分裂生成核種の
ガンマ線強度平均値を求め、この後予め較正した
核分裂生成核種のガンマ線強度と燃焼度との相関
関係を用いて前記使用済燃料集合体の平均の燃焼
度を求めることを特徴とする使用済燃料集合体の
非破壊測定方法、および、非破壊測定すべき使用
済燃料集合体周辺の一方向に設置されるガンマ線
スペクトル測定装置と、前記使用済燃料集合体周
辺の近傍に前記一方向を含め複数方向の対称等距
離の位置にそれぞれ設置されるグロスガンマ線測
定装置とからなることを特徴とする使用済燃料集
合体の非破壊測定測置である。
[Summary of the Invention] That is, the present invention measures the gamma ray intensity of fission product nuclides with a long half-life from one direction around the spent fuel assembly to be measured non-destructively, and also measures the gamma ray intensity in the one direction around the spent fuel assembly. The gross gamma ray intensity distribution is measured from a plurality of symmetrical directions including the direction, the ratio of the gross gamma ray intensity average value of the plurality of directions to the gross gamma ray intensity of the one direction is determined, and this value is used as the gamma ray intensity of the fission product nuclide. The average value of the gamma ray intensity of the fission product nuclides in the spent fuel assembly is obtained by multiplying the values, and then the average value of the spent fuel assembly is calculated using the correlation between the gamma ray intensity of the fission product nuclides and the burnup, which has been calibrated in advance. A method for non-destructive measurement of spent fuel assemblies characterized by determining the burn-up of spent fuel assemblies, and a gamma ray spectrum measuring device installed in one direction around the spent fuel assemblies to be non-destructively measured; This non-destructive measurement and measurement of spent fuel assemblies is characterized by comprising gross gamma ray measurement devices installed near the periphery of the fuel assemblies at symmetrically equidistant positions in a plurality of directions including the one direction mentioned above. .

[発明の実施例] 以下本発明方法およびその装置の詳細を一実施
例について図面を用いて説明する。
[Embodiments of the Invention] Details of the method and apparatus of the present invention will be described below with reference to the drawings.

第2図は本発明の使用済燃料集合体の非破壊測
定装置の一実施例を示すもので、この装置はガン
マ線コリメータ1および高分解能ガンマ線検出器
2等からなる1台のガンマ線スペクトル測定装置
3と、断面四角形状の使用済燃料集合体4の周辺
の対称位置に4個のエネルギー積分型ガンマ線検
出器5を配置した小型のグロスガンマ線測定装置
6とから構成されている。
FIG. 2 shows an embodiment of the non-destructive measuring device for spent fuel assemblies of the present invention, which consists of one gamma-ray spectrum measuring device 3 consisting of a gamma-ray collimator 1, a high-resolution gamma-ray detector 2, etc. and a small gross gamma ray measuring device 6 in which four energy-integrating gamma ray detectors 5 are arranged at symmetrical positions around a spent fuel assembly 4 having a rectangular cross section.

ここで高分解能ガンマ線検出器2としては、イ
ントリンシツクGe、Ge(Li)、CdTl等の半導体検
出器が用いられる。また、グロスガンマ線検出器
6としては、ガンマ線イオンチエンバー、シンチ
レーシヨン検出器等が用いられる。
Here, as the high-resolution gamma ray detector 2, a semiconductor detector such as intrinsic Ge, Ge(Li), or CdTl is used. Further, as the gross gamma ray detector 6, a gamma ray ion chamber, a scintillation detector, etc. are used.

一般に、この測定装置を用いた測定はプール水
中で行なわれ、それぞれの検出器からの信号はプ
ール外に配置されるエレクトロニクス測定回路系
に導かれてデータ処理が行なわれる。
Generally, measurements using this measurement device are performed underwater in a pool, and signals from each detector are guided to an electronic measurement circuit system located outside the pool for data processing.

第1図は本発明の使用済燃料集合体の非破壊測
定方法の一実施例のフローチヤートを示すもの
で、この実施例では、まずガンマ線スペクトル測
定装置3により使用済燃料集合体4の1方向から
測定した長半減期FP(Cs137)のガンマ線強度I1
が求められ、これと同時にグロスガンマ線測定装
置6により使用済燃料集合体4の周辺対称2方向
または4方向から同時に測定したグロスガンマ線
強度の平均値GAVと前記1方向(ガンマ線スペク
トル測定装置の方向)のグロスガンマ線強度G1
との比Rが求められる。ここで R=GAV÷G1 である。
FIG. 1 shows a flowchart of an embodiment of the method for non-destructive measurement of spent fuel assemblies according to the present invention. Gamma ray intensity of long half-life FP (Cs137) measured from I 1
At the same time, the average value G AV of the gross gamma ray intensity measured simultaneously from two or four symmetrical directions around the spent fuel assembly 4 by the gross gamma ray measuring device 6 and the one direction (the direction of the gamma ray spectrum measuring device) are determined. ) gross gamma ray intensity G 1
The ratio R is calculated. Here, R=G AV ÷ G 1 .

そして、前記FPガンマ線強度I1に前記グロス
ガンマ線強度比Rを乗算して使用済燃料集合体4
の平均のFPガンマ線強度(近似値)IAVが求めら
れる。すなわち、IAV≒I1×R=I1×GAV÷G1であ
る。
Then, the FP gamma ray intensity I 1 is multiplied by the gross gamma ray intensity ratio R to form the spent fuel assembly 4.
The average FP gamma ray intensity (approximate value) I AV is determined. That is, I AV ≒I 1 ×R=I 1 ×G AV ÷G 1 .

次に予め較正されたFPガンマ線強度と燃焼度
との相関関係を用いて使用済燃料集合体4の平均
の燃焼度が求められる。ここで使用済燃料集合体
4からのグロスガンマ線強度は、燃料取り出し後
の冷却期間が約2年以上では、長半減期のFP(特
にCs137およびCs134等)のガンマ線の寄与がほ
とんどとなり、燃焼度にほぼ比例する。このこと
は、例えば米国特許4335466号に記載されている。
Next, the average burnup of the spent fuel assembly 4 is determined using the pre-calibrated correlation between the FP gamma ray intensity and the burnup. Here, the gross gamma ray intensity from the spent fuel assembly 4 is determined by the contribution of gamma rays from FPs with long half-lives (particularly Cs137 and Cs134, etc.) when the cooling period after fuel removal is approximately 2 years or more, and the burnup is approximately proportional to This is described, for example, in US Pat. No. 4,335,466.

第3図は縦軸に使用済燃料集合体のグロスガン
マ線強度Rを、横軸に燃焼度Bをとり、これらの
相関関係を示している。
FIG. 3 shows the correlation between the gross gamma ray intensity R of the spent fuel assembly on the vertical axis and the burnup B on the horizontal axis.

すなわち、冷却期間Tが1.5年以上では近似的
に R=CBd の関係式が成り立つ。ここでCは比例係数であ
り、またベキ数dは1.5≦T≦10年の冷却期間の
範囲で1.1≦d≦1.35の間で変化する。
That is, when the cooling period T is 1.5 years or more, the relational expression R=CB d approximately holds true. Here, C is a proportional coefficient, and the exponent d changes within 1.1≦d≦1.35 within the cooling period of 1.5≦T≦10 years.

なお、グロスガンマ線の平均エネルギーもおよ
そ0.6〜0.8MeVとなり、Cs137のガンマ線エネル
ギー(0.66MeV)に近いため使用済燃料集合体
4内のこれらのガンマ線の減衰がほぼ等しくな
る。従つて、使用済燃料集合体4の周方向から測
定するグロスガンマ線強度分布は、Cs137のガン
マ線強度分布にほぼ比例することとなる。
Note that the average energy of the gross gamma rays is approximately 0.6 to 0.8 MeV, which is close to the gamma ray energy (0.66 MeV) of Cs137, so that the attenuation of these gamma rays within the spent fuel assembly 4 is approximately equal. Therefore, the gross gamma ray intensity distribution measured from the circumferential direction of the spent fuel assembly 4 is approximately proportional to the gamma ray intensity distribution of Cs137.

グロスガンマ線検出器の使用済燃料集合体4か
らの距離の調整およびガンマ線吸収体の利用等に
より、さらに良好な両者の分布の比例性を得るこ
とができる。なお、使用済燃料集合体4の4コー
ナーから測定されるCs137のガンマ線強度の差は
沸騰水型原子炉燃料の場合10%を越えることがあ
るが、通常はかなり小さいものである。
By adjusting the distance of the gross gamma ray detector from the spent fuel assembly 4, using a gamma ray absorber, etc., even better proportionality of both distributions can be obtained. Note that the difference in gamma ray intensity of Cs137 measured from the four corners of the spent fuel assembly 4 may exceed 10% in the case of boiling water reactor fuel, but is usually quite small.

なお、以上述べた実施例では燃焼度を求めた例
について説明したが、本発明はかかる実施例に限
定されるものではなく、長半減期のFPガンマ線
強度又は異なる二種の長半減期FPガンマ線強度
比から導出される全プルトニウム濃度対全ウラン
濃度比、核分裂性核種濃度、濃縮度、冷却時間等
の他の燃焼パラメータの測定にも適用できる。
In addition, although the example described above describes an example in which burnup was determined, the present invention is not limited to such an example, and the present invention is not limited to such an example. It can also be applied to the measurement of other combustion parameters such as the ratio of total plutonium concentration to total uranium concentration, fissile nuclide concentration, enrichment degree, and cooling time derived from the intensity ratio.

[発明の効果] 以上述べたように本発明の使用済燃料集合体の
非破壊測定方法およびその装置によれば、1方向
からのガンマ線スペクトル測定と、2または4方
向からのグロスガンマ線測定により、燃焼度を求
めることができるので、広い設置スペースを要す
るガンマ線スペクトル測定装置は1台のみです
み、設置スペースの拡大や装置コストの上昇を招
くことがない。
[Effects of the Invention] As described above, according to the method and device for non-destructive measurement of spent fuel assemblies of the present invention, gamma ray spectrum measurements from one direction and gross gamma ray measurements from two or four directions can be performed. Since the burnup can be determined, only one gamma ray spectrum measuring device, which requires a large installation space, is required, and the installation space is not expanded and the device cost does not increase.

また、使用済燃料集合体周辺の対称位置からの
2または4方向からのグロスガンマ線測定と、使
用済燃料集合体の1方向から同時に測定した長半
減期FP(Cs137)のガンマ線強度とから、一回の
測定で使用済燃料集合体周方向平均の燃焼度を求
めることができる。すなわち、使用済燃料集合体
軸方向一点につき一回の測定で周方向平均の燃焼
度を導出でき、さらに軸方向数点の測定を行うこ
とにより使用済燃料集合体平均の燃焼度を求める
ことができる。したがつて、ガンマ線スペクトル
測定装置を1台のみ用いた従来方法のように、使
用済燃料集合を周方向に回転し2方向または4方
向から測定を行う必要がなく、短時間で確実に燃
焼度の測定を行うことができる。
In addition, from gross gamma ray measurements from 2 or 4 directions from symmetrical positions around the spent fuel assembly and the gamma ray intensity of long half-life FP (Cs137) measured simultaneously from one direction of the spent fuel assembly, we The average burnup in the circumferential direction of the spent fuel assembly can be determined by measuring the number of times. In other words, the average burnup in the circumferential direction can be derived by measuring once for each point in the axial direction of the spent fuel assembly, and the average burnup in the spent fuel assembly can be determined by further measuring at several points in the axial direction. can. Therefore, unlike the conventional method using only one gamma ray spectrum measuring device, there is no need to rotate the spent fuel assembly in the circumferential direction and measure it from two or four directions, and the burnup can be measured reliably in a short time. can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の使用済燃料集合体の非破壊測
定方法の一実施例を示すフローチヤート、第2図
は本発明の使用済燃料集合体の非破壊測定装置の
一実施例を示す上面図、第3図は使用済燃料集合
体のグロスガンマ線強度およびCs137ガンマ線強
度と燃焼度との関係を示すグラフである。 3…ガンマ線スペクトル測定装置、4…使用済
燃料集合体、6…グロスガンマ線測定装置。
FIG. 1 is a flowchart showing an embodiment of the method for non-destructive measurement of spent fuel assemblies of the present invention, and FIG. 2 is a top view showing an embodiment of the non-destructive measurement device of spent fuel assemblies of the present invention. 3 are graphs showing the relationship between the gross gamma ray intensity and Cs137 gamma ray intensity of the spent fuel assembly and burnup. 3... Gamma ray spectrum measuring device, 4... Spent fuel assembly, 6... Gross gamma ray measuring device.

Claims (1)

【特許請求の範囲】 1 非破壊測定すべき使用済燃料集合体周辺の一
方向から長半減期の核分裂生成核種のガンマ線強
度を測定するとともに前記使用済燃料集合体周辺
の前記一方向を含めた対称な複数方向からグロス
ガンマ線強度分布を測定し、前記一方向のグロス
ガンマ線強度に対する前記複数方向のグロスガン
マ線強度平均値の比を求め、この値を前記核分裂
生成核種のガンマ線強度に乗算し前記使用済燃料
集合体の前記核分裂生成核種のガンマ線強度平均
値を求め、この後予め較正した核分裂生成核種の
ガンマ線強度と燃焼度との相関関係を用いて前記
使用済燃料集合体の平均の燃焼度を求めることを
特徴とする使用済燃料集合体の非破壊測定方法。 2 非破壊測定すべき使用済燃料集合体周辺の一
方向に設置されるガンマ線スペクトル測定装置
と、前記使用済燃料集合体周辺の近傍に前記一方
向を含めた複数方向の対称等距離の位置にそれぞ
れ設置されるグロスガンマ線測定装置とからなる
ことを特徴とする使用済燃料集合体の非破壊測定
装置。
[Claims] 1 Gamma ray intensity of fission product nuclides with a long half-life is measured from one direction around the spent fuel assembly to be measured non-destructively, and the one direction around the spent fuel assembly is included. The gross gamma ray intensity distribution is measured from a plurality of symmetrical directions, the ratio of the gross gamma ray intensity average value of the plurality of directions to the gross gamma ray intensity of the one direction is determined, and this value is multiplied by the gamma ray intensity of the fission product nuclide. The average value of the gamma ray intensity of the fission product nuclides of the spent fuel assembly is determined, and then the average burnup of the spent fuel assembly is calculated using the correlation between the gamma ray intensity of the fission product nuclides and the burnup, which has been calibrated in advance. A method for non-destructive measurement of spent fuel assemblies. 2. A gamma ray spectrum measuring device installed in one direction around the spent fuel assembly to be measured non-destructively, and a gamma ray spectrum measuring device installed near the spent fuel assembly at symmetrical and equidistant positions in multiple directions including the one direction. A non-destructive measurement device for spent fuel assemblies, comprising a gross gamma ray measurement device installed at each device.
JP59219440A 1984-10-19 1984-10-19 Nondestructive measurement method of spent fuel aggregate and device thereof Granted JPS6197594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219440A JPS6197594A (en) 1984-10-19 1984-10-19 Nondestructive measurement method of spent fuel aggregate and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219440A JPS6197594A (en) 1984-10-19 1984-10-19 Nondestructive measurement method of spent fuel aggregate and device thereof

Publications (2)

Publication Number Publication Date
JPS6197594A JPS6197594A (en) 1986-05-16
JPH058799B2 true JPH058799B2 (en) 1993-02-03

Family

ID=16735438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219440A Granted JPS6197594A (en) 1984-10-19 1984-10-19 Nondestructive measurement method of spent fuel aggregate and device thereof

Country Status (1)

Country Link
JP (1) JPS6197594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151696A (en) * 2008-12-26 2010-07-08 Toshiba Corp Device and method for measuring burnup

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262692A (en) * 1985-05-16 1986-11-20 東京電力株式会社 Nondestructive meaurement method of spent fuel
DE10306648B3 (en) * 2003-02-18 2004-07-01 Forschungszentrum Jülich GmbH Nuclear fuel element burn-up is measured by removing element from reactor, placing it in measurement position, exposing it to neutron flux, and measuring emitted gamma radiation
JP5582402B2 (en) * 2010-11-29 2014-09-03 日立Geニュークリア・エナジー株式会社 Gamma scanning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151696A (en) * 2008-12-26 2010-07-08 Toshiba Corp Device and method for measuring burnup

Also Published As

Publication number Publication date
JPS6197594A (en) 1986-05-16

Similar Documents

Publication Publication Date Title
JP5546174B2 (en) Radioactivity concentration evaluation method and evaluation program for radioactive waste, and radioactivity concentration evaluation apparatus
US4617169A (en) Measurement of radionuclides in waste packages
Matsson et al. Developments in gamma scanning irradiated nuclear fuel
JPH058799B2 (en)
JP3103361B2 (en) Measurement method of burnup of nuclear fuel
JP3349180B2 (en) How to measure spent fuel
JP2526392B2 (en) Nondestructive inspection system for fuel rods for nuclear reactors
King et al. Power Spectral Density Measurements with 252Cf for a Light Water Moderated Research Reactor
Phillips et al. Neutron measurement techniques for the nondestructive analysis of irradiated fuel assemblies
US4881247A (en) Measuring nuclear fuel burnup
JPH0317115B2 (en)
JP3026455B2 (en) Burnup measurement method for irradiated fuel assemblies
Phillips et al. Quantitative determination of fission products in irradiated fuel pins using nondestructive gamma scanning
JP2004514892A (en) Device for determining the nuclide content of radioactive fluids
Tiitta et al. Investigation on the possibility to use fork detector for partial defect verification of spent LWR fuel assemblies: Final report on Task JNT A 1071 (BEL, FIN, SWE) of the Member States' Support Programme to IAEA Safeguards
US20120189088A1 (en) Method for determining the isotope ratio of fissile material
Owen Measurement of power and burn-up in irradiated nuclear reactor fuel by a non-destructive method
US4749866A (en) Method for detecting and correcting for isotope burn-in during long-term neutron dosimetry exposure
JPH0453398B2 (en)
JPH0464438B2 (en)
Martinc et al. Nondestructive testing of fresh and irradiated fuel of research reactor RA
JPS6316298A (en) Nondestructive measuring method of spent nuclear fuel aggregate
Miller et al. Advanced Fuel Cycle Safeguards
Dawson et al. Measurement of thermal power density distributions by fuel pin gamma scanning
De Raedt et al. Assessment of the Fission Power Level in Fuel Rods Irradiated in the High Flux Materials Testing Reactor BR2 with the Aid of Fluence Dosimetry and Comparison with Other Methods