JPS6197141A - Preparation of synthetic quartz glass - Google Patents

Preparation of synthetic quartz glass

Info

Publication number
JPS6197141A
JPS6197141A JP21862484A JP21862484A JPS6197141A JP S6197141 A JPS6197141 A JP S6197141A JP 21862484 A JP21862484 A JP 21862484A JP 21862484 A JP21862484 A JP 21862484A JP S6197141 A JPS6197141 A JP S6197141A
Authority
JP
Japan
Prior art keywords
quartz glass
base material
porous quartz
glass base
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21862484A
Other languages
Japanese (ja)
Other versions
JPH0421614B2 (en
Inventor
Shigeyoshi Kobayashi
小林 重義
Masaaki Ikemura
政昭 池村
Susumu Hachiuma
八馬 進
Shinya Kikukawa
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP21862484A priority Critical patent/JPS6197141A/en
Publication of JPS6197141A publication Critical patent/JPS6197141A/en
Publication of JPH0421614B2 publication Critical patent/JPH0421614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To prepare the titled glass contg. less defects such as bubbles in the surfacial layer part by regulating the density distribution in the diametral direction by calcining a porous quartz glass parent material, then converting the parent material to transparent glass. CONSTITUTION:A porous quartz glass parent material 11 formed at an end of a seed rod 10 by a vapor phase reaction process, is inserted into a heating furnace 21 provided with an annular heater 22 and the inside being held in an atmosphere contg. >=50% gaseous He. The parent material 11 is calcined at 1,100-1,300 deg.C for 1-10hr while revolving the parent material 11 to regulate thus the density distribution in the diametral direction, and calcined thereafter at 1,400-1,600 deg.C for 1-5hr in an atmosphere contg. >=80% He gas to convert to transparent glass.

Description

【発明の詳細な説明】 「技術分野」 本発明は、気相反応合成法によって製造された多孔質石
英ガラス母材を加熱炉中で加熱して透明合成石英ガラス
を得るための多孔質石英カラス母材のガラス化方法に関
する。
Detailed Description of the Invention [Technical Field] The present invention relates to a porous quartz glass for obtaining transparent synthetic quartz glass by heating a porous quartz glass base material produced by a gas phase reaction synthesis method in a heating furnace. This invention relates to a method for vitrifying a base material.

「従来技術およびその問題点」 従来より1合成石芙ガラスを製造する方法の一つとして
、気相反応法により多孔質石英ガラス母材を形成し、こ
の母材を加熱してガラス化する方法が採用されている。
"Prior art and its problems" One of the conventional methods for manufacturing synthetic quartz glass is to form a porous quartz glass base material by a gas phase reaction method, and heat this base material to vitrify it. has been adopted.

すなわち、バーナーから珪素化合物、水素、酸素等の原
料ガスを鉛直に懸下した種棒に向けて供給し、四塩化珪
素等の珪素化合物を酸水稟炎中で加水分解させ、石英製
等の種棒の下端部にシリカ微粒子を付着、堆積させて多
孔質石英ガラス母材を形成する。そして、この多孔質石
英ガラス母材を加熱炉に入れ、ヒーターで加熱して母材
を焼結することによりガラス化する方法である。
That is, raw material gases such as silicon compounds, hydrogen, and oxygen are supplied from a burner to a vertically suspended seed rod, and silicon compounds such as silicon tetrachloride are hydrolyzed in an acidic water flame. Fine silica particles are attached and deposited on the lower end of the seed rod to form a porous quartz glass matrix. Then, this porous quartz glass base material is placed in a heating furnace and heated with a heater to sinter the base material, thereby vitrifying it.

この方法により大口径の合成石英ガラスを製造しようと
する場合、大口径のバーナーを用いるが、バーナーから
出る火炎は中心部は高温であるがその外周は中心部より
温度が低い状態となり、かかる温度の違いにより、多孔
質石英ガラス母材の外周部の密度はその中心部より低く
なる傾向にある9例えば、上記方法により径250■の
円柱状の多孔質石英カラス母材を製造した場合、より低
い温度でS i02微粒子が付着する外周部の密度は0
.10〜O,15g/ccとなる一方。
When attempting to manufacture large-diameter synthetic quartz glass using this method, a large-diameter burner is used, but the flame emitted from the burner is hot at the center, but the temperature at the outer periphery is lower than the center. Due to the difference in The density of the outer periphery where Si02 fine particles adhere at low temperatures is 0.
.. 10~O, 15g/cc.

中心部の密度は0.30〜0.401/cc程度となる
。かかる密度分布を持った多孔質石英ガラス母材を加熱
炉へ入れて1400〜1600℃に加熱してガラス化す
ると、ガラス化した石英ガラス母材の中心部は気泡等の
欠点が無いものの、その表面から5〜10mmの表面層
に数10井脂程度の径の気泡等の欠点が多数発生すると
いう欠点が見出された。かかる欠点発生の1つの原因と
しては、多孔質石英ガラス母材を焼結してガラス化する
際、密度の低い外周部分の方の収縮が先に起る故、ガラ
ス化する際に発生するガスの除去が不充分となり、ガラ
ス化した石英ガラス母材の表面層に残存するものと認め
られる。また、他の原因としては、密度に低い外周部分
に一部密度の高いシリカ粒子が入り込み、周辺と均一に
ガラス化せず異質なものとして欠点となると考えられる
。上記したような多孔質石英ガラス母材の径方向の密度
分布を一定にして母材の収縮を均一化ならしめ、欠点の
発生を防ぐことも考えられるが、火炎の温度分布を均一
にすることが困難であり、径方向に密度分布の一定した
多孔質母材を得ることははなはだ困難である。
The density at the center is about 0.30 to 0.401/cc. When a porous quartz glass base material with such a density distribution is put into a heating furnace and heated to 1,400 to 1,600°C to vitrify it, the center of the vitrified quartz glass base material has no defects such as bubbles. It was found that a large number of defects such as bubbles having a diameter of several tens of bubbles occurred in the surface layer 5 to 10 mm from the surface. One reason for the occurrence of such defects is that when the porous quartz glass base material is sintered and vitrified, the outer periphery, which has a lower density, shrinks first, so the gas generated during vitrification occurs. It is recognized that the removal of the silica glass was insufficient and that it remained on the surface layer of the vitrified quartz glass base material. Another reason is that some high-density silica particles enter the outer circumference where the density is low, and the vitrification is not uniform with the surrounding area, resulting in a defect as foreign matter. It is possible to make the radial density distribution of the porous quartz glass base material constant as described above to make the shrinkage of the base material uniform and prevent the occurrence of defects, but it is also possible to make the temperature distribution of the flame uniform. It is extremely difficult to obtain a porous base material with a constant density distribution in the radial direction.

「発明の目的及び概要」 本発明は、上記従来技術の問題点を解決し、大口径の多
孔質石英ガラス母材をガラス化しても、得られた石英ガ
ラス中に気泡等の欠点が含まれないようにした多孔質石
英ガラス母材のガラス化方法を提供することを目的とし
て研究の結果発明されたものであり、その要旨は1石英
ガラス製造用種棒の一端に堆積、成長させた多孔質石英
ガラス母材を加熱して透明ガラス化して合成石英ガラス
を製造する方法において、予め多孔質石英ガラス母材を
1100〜1300℃で仮焼して該母材の径方向の密度
分布を整えた後。
"Objective and Summary of the Invention" The present invention solves the above-mentioned problems of the prior art, and even when a large-diameter porous quartz glass base material is vitrified, the resulting quartz glass does not contain defects such as bubbles. It was invented as a result of research with the aim of providing a method for vitrifying a porous quartz glass base material that avoids the formation of porous silica glass. In a method of producing synthetic quartz glass by heating a porous quartz glass base material to make it transparent, the porous quartz glass base material is calcined in advance at 1100 to 1300°C to adjust the radial density distribution of the base material. After.

1400−1800℃で焼成し透明ガラス化することを
特徴とする合成質石英ガラスの製造方法に関するもので
ある。
The present invention relates to a method for producing synthetic quartz glass, which is characterized by firing at 1400-1800°C to form transparent glass.

「発明の構成」 本発明において、多孔質石英ガラス母材は、例えば、第
1図に示したような装置により製造される。
"Structure of the Invention" In the present invention, a porous quartz glass base material is manufactured by, for example, an apparatus as shown in FIG.

すなわち、ポンベ1およびボンベ2から水素および酸素
がフローコントローラー3 、41通して多重管バーナ
5に供給される。また、四塩化珪素、トリクロロシラン
、四臭化珪素等の珪素化合物のガスが、タンク6からポ
ンプ7により熱交換器8を通して多重管バーナ5に供給
される。
That is, hydrogen and oxygen are supplied from the cylinder 1 and the cylinder 2 to the multi-tube burner 5 through the flow controllers 3 and 41. Further, a gas of a silicon compound such as silicon tetrachloride, trichlorosilane, silicon tetrabromide, etc. is supplied from the tank 6 to the multi-tube burner 5 by a pump 7 through a heat exchanger 8.

多重管バーナー5は反応室s内において酸水素炎を形成
し、珪素化合物を加水分解してシリカ微粒子を生成する
。なお、図示されていないが、窒素、アルゴンなどの不
活性ガスもバーナー5に供給され、これらは珪素化合物
のキャリヤガスとして、あるいは酸水素炎中のエアーカ
ーテンとして利用される。この加水分解反応を珪素化合
物が四塩化珪素である場合について化学式で示すと次の
ようになる。
The multi-tube burner 5 forms an oxyhydrogen flame in the reaction chamber s, and hydrolyzes the silicon compound to produce silica fine particles. Although not shown, inert gases such as nitrogen and argon are also supplied to the burner 5, and these are used as a carrier gas for the silicon compound or as an air curtain in the oxyhydrogen flame. The chemical formula for this hydrolysis reaction when the silicon compound is silicon tetrachloride is as follows.

2H2◆02呻2H20・・・・・・・・・l)S i
c 14◆2H20→S i02+4001・・・・・
・・・・2)このシリカ微粒子が反応室9で鉛直に懸下
された石英製の!i棒1(lの下端部に付若、堆植して
、順次成長し、大口径(例えば径2001〜3scm)
の多孔質石英ガラス母材11が形成される。なお、反応
によって発生する)101はMail(液の貯槽12か
ら循環されるNa0)1液と洗浄塔13で向流接触して
吸収除去される。
2H2◆02 groan 2H20・・・・・・・・・l)S i
c 14◆2H20→S i02+4001・・・・・・
...2) These silica particles are suspended vertically in the reaction chamber 9 made of quartz! i-rod 1 (plant at the lower end of l, grow sequentially, have a large diameter (e.g. diameter 2001~3 scm)
A porous quartz glass base material 11 is formed. Note that 101 (generated by the reaction) is absorbed and removed by contacting the Mail (Na0) 1 liquid circulated from the liquid storage tank 12 in countercurrent contact with the cleaning tower 13.

本発明においては、上記した方法により製造された多孔
質石英ガラス母材が、1400〜1800℃の焼成によ
りガラス化する前に、予め1100〜1300℃の範囲
において仮焼して多孔質石英ガラス母材を径方向の密度
分布を整える。この仮焼はHeガスを少なくとも50%
以上含む雰囲気下。
In the present invention, the porous quartz glass base material produced by the method described above is pre-calcined in the range of 1100 to 1300°C before being vitrified by firing at 1400 to 1800°C. Adjust the radial density distribution of the material. This calcination contains at least 50% He gas.
Under an atmosphere containing the above.

加熱炉において上記温度域において行なう、仮焼の時間
は仮焼温度及び多孔質石英ガラス母材の大きさ、密度等
にもよるが、1〜10時間が適当である。かかる仮焼を
行なった多孔質石英ガラス母材は、同一の加熱炉におい
て、又、別の加熱炉に移して、直ちに、又は所定時間を
おいて本焼結し、ガラス化させる。この本焼結は。
The calcination time, which is carried out in the heating furnace at the above temperature range, is suitably 1 to 10 hours, although it depends on the calcination temperature and the size, density, etc. of the porous quartz glass base material. The porous quartz glass base material subjected to such calcination is transferred to the same heating furnace or another heating furnace, and is subjected to main sintering and vitrification immediately or after a predetermined period of time. This book sintering is.

Heガスを少なくとも80%含む加熱炉において140
0〜1600℃の温度域において行なう0本焼結の時間
も、多孔質石英ガラス母材の大きさ、密度等にもよるが
、1〜5時間が適当である。
140 in a heating furnace containing at least 80% He gas.
The time for zero-strand sintering, which is carried out in the temperature range of 0 to 1600°C, also depends on the size, density, etc. of the porous quartz glass base material, but a suitable time is 1 to 5 hours.

多孔質石英ガラス母材の仮焼及び本焼結においては、多
孔質石英ガラス母材の下端から加熱して徐々に仮焼及び
本焼結を行なうのが最適である。
In the calcination and final sintering of the porous quartz glass base material, it is optimal to gradually perform the calcination and final sintering by heating from the lower end of the porous quartz glass base material.

このように、多孔質石英ガラス母材を下端部から加熱し
て仮焼及び本焼結によるガラス化を行なうようにしたの
で、種棒の下端部近傍が最初に軟化することなくなり、
仮焼、本焼結が終了するまで母材を落下させることなく
支持することができる。また、種棒の熱変形を防止して
繰り返しの使用に耐えるようにすることができる。さら
に、ガラス化に伴なって流出する気泡は、まだガラス化
されていない母材の上部へ逃げることができるので、得
られた石英ガラス中に気泡が含有されることを防止でき
る。
In this way, since the porous quartz glass base material is heated from the lower end to perform vitrification through calcination and final sintering, the vicinity of the lower end of the seed rod does not soften first.
The base material can be supported without falling until calcination and main sintering are completed. Further, the seed rod can be prevented from being thermally deformed and can withstand repeated use. Furthermore, since the air bubbles that flow out due to vitrification can escape to the upper part of the base material that has not yet been vitrified, it is possible to prevent air bubbles from being contained in the obtained quartz glass.

又、本発明の仮焼又は本焼結においては、母材の加熱は
多孔質石英ガラス母材を回転させIがら加熱炉に上方か
ら徐々に挿入し、種棒のF端部加熱炉内のヒーターの上
端より少し手前になった時点で停止させることによって
行なうようにするのが最適である。このように加熱すれ
ば、母材を種棒に支持した状態でそのまま仮焼、ガラス
化することができ1回転させることにより加熱を平均し
て行なうことができ1種棒の近傍を加熱しないようにし
て母材の落下や種棒の熱変形を確実に防止できる。
In addition, in the calcination or main sintering of the present invention, the base material is heated by rotating the porous quartz glass base material and gradually inserting it into the heating furnace from above while rotating the seed rod. It is best to do this by stopping the heater a little before the top of the heater. By heating in this way, the base material can be calcined and vitrified as it is while being supported by the seed rod, and heating can be averaged by rotating it once, so that the vicinity of the first seed rod is not heated. This can reliably prevent the base material from falling and the seed rod from being deformed by heat.

更に、本焼結用の加熱炉内のヒーターには上部から下部
に向けて高まる温度勾配が設けられているようくするの
が好ましい、このようにすれば、多孔質石英ガラス母材
をヒーター中に挿入するに際し、母材の温度を徐々に高
めていくようにして、加熱効率を向上させることができ
る。なお、温度勾配は、多孔質石英ガラス母材のガラス
化温度が1410℃以上であることから、ヒーターの上
部を1200℃前後、中間部を1430℃前後、下部を
1400℃前後とするのが適当である。
Furthermore, it is preferable that the heater in the heating furnace for main sintering is provided with a temperature gradient that increases from the top to the bottom. The heating efficiency can be improved by gradually increasing the temperature of the base material when inserting the base material into the base material. In addition, since the vitrification temperature of the porous quartz glass base material is 1410°C or higher, it is appropriate to set the temperature gradient at around 1200°C at the upper part of the heater, around 1430°C at the middle part, and around 1400°C at the lower part. It is.

「発明の実施例」 第1図に示した装置を利用して製造された石英製の種棒
に形成された円柱状の多孔質石英ガラス母材(直径は2
5c11.長さは80cm、中心部(中心から径1 c
mの部分)の平均密度は0.40g/cc、表面部(表
面層から2cmの部分)の平均密度は0.12g/cc
)を1250℃に保持され、 Heガスを80%含有す
る雰囲気にコントロールされた加熱炉内に上方から入れ
て密封し、5時間保持し、仮焼を行なった。この仮焼後
の多孔質石英ガラス母材は半透明化しており、中心部の
平均密度は0.508/cc、表面部の平均密度は0.
42g/ccであった・ 仮焼を行なった後、直ちに第2図に示すように、石英製
の種棒10+tきの仮焼した多孔質石英ガラス母材11
を、内部にヘリウムガス80%とN2ガス10%が導入
され、内部に環状のヒーター22が配置されている加熱
炉21内に上方から挿入した。このヒーター22は、こ
の多孔質石英ガラス母材IIが挿入できる大きさをイJ
するものが使用され、又、ヒーター22はE部が120
0℃程度。
"Embodiments of the Invention" A cylindrical porous quartz glass base material (diameter 2
5c11. Length is 80 cm, center (1 cm diameter from center)
The average density of the part (m) is 0.40 g/cc, and the average density of the surface part (2 cm from the surface layer) is 0.12 g/cc.
) was placed from above into a heating furnace maintained at 1250° C. and controlled to have an atmosphere containing 80% He gas, sealed, and held for 5 hours to perform calcination. After this calcining, the porous quartz glass base material has become translucent, with an average density of 0.508/cc at the center and 0.508/cc at the surface.
Immediately after calcining, as shown in Fig. 2, the calcined porous quartz glass base material 11 of the quartz seed rod 10 + tons was heated.
was inserted from above into a heating furnace 21 into which 80% helium gas and 10% N2 gas were introduced and an annular heater 22 was disposed inside. This heater 22 has a size that allows insertion of this porous quartz glass base material II.
The heater 22 has an E section of 120 mm.
Around 0℃.

中間部が1430℃程度、下部が1400’Q程度とな
るように温度勾配を設けた0種棒10を図中矢印で示す
如く回転しながら下降させ、多孔質石英ガラス母材11
をその下端部からヒーター22内に徐々に挿入した。こ
の、多孔賀石芙ガラス母材11は、下端部から徐々に加
熱溶融し、脱泡がなされて透明ガラス化し、母材11よ
りも径の小さい石英ガラス23となった。
The type 0 rod 10, which has a temperature gradient of about 1430°C in the middle part and about 1400'Q in the lower part, is lowered while rotating as shown by the arrow in the figure, and the porous quartz glass base material 11
was gradually inserted into the heater 22 from its lower end. This porous glass base material 11 was gradually heated and melted from the lower end, defoamed, and became transparent vitrified to become quartz glass 23 having a smaller diameter than the base material 11.

このようにしたガラス化した石英ガラス母材は、その表
面層(5m−厚)から内側の中心部には欠点の発生はな
く、又、この表面層に発生した気泡も表面積1 cm2
 当り平均1.3個と少なかった。一方、仮焼を行なわ
ずに同上の方法により焼成しガラス化した石英ガラス母
材は、その表面層(lc−厚)から内側の中心部には欠
点の発生はなかったものの、この表面層に発生した表面
積1cm2mり平均10個と多量であった。
The thus vitrified quartz glass base material has no defects in the inner center from its surface layer (5 m-thickness), and the air bubbles generated in this surface layer have a surface area of 1 cm2.
The average number of pieces per serving was 1.3. On the other hand, the quartz glass base material that was fired and vitrified by the above method without calcination did not have any defects in the inner center from the surface layer (lc-thickness); There were a large number of particles on average, 10 pieces per 1cm2m of surface area.

「発明の効果」 以上説明したように、本発明によれば、多孔質石英ガラ
ス母材を本焼結によるガラス化処理前に、予め仮焼した
多孔質石英ガラス母材の径方向の密度分布の均一化をは
かっているので、本焼結によるガラス化処理を行なって
もその中心部は勿論、その表面層部分に発生する欠点数
をsしく低下することができ1品質の向上1歩留の向上
が得られる。
"Effects of the Invention" As explained above, according to the present invention, the density distribution in the radial direction of the pre-calcined porous quartz glass base material is obtained before the vitrification treatment by main sintering. Even if vitrification treatment is performed by main sintering, the number of defects that occur not only in the center but also in the surface layer can be significantly reduced, resulting in 1 quality improvement and 1 yield. can be improved.

特に、大口径の多孔質石英ガラス母材のガラス化に本発
明の方法は最適である。
In particular, the method of the present invention is most suitable for vitrifying large-diameter porous quartz glass base materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多孔質石英ガラス母材を得るための装置の一例
を示す説明図、第2図は本発明によるガラス化方法の実
施例を示す説明図、である。 図中、lOは種棒、11は多孔質石英ガラス母材、21
は加熱炉、22はヒーター、23は石英ガラスである。
FIG. 1 is an explanatory diagram showing an example of an apparatus for obtaining a porous quartz glass base material, and FIG. 2 is an explanatory diagram showing an example of the vitrification method according to the present invention. In the figure, lO is a seed rod, 11 is a porous quartz glass base material, 21
2 is a heating furnace, 22 is a heater, and 23 is quartz glass.

Claims (1)

【特許請求の範囲】[Claims] (1)石英ガラス製造用種棒の一端に堆積、成長させた
多孔質石英ガラス母材を加熱して透明ガラス化して合成
石英ガラスを製造する方法において、予め多孔質石英ガ
ラス母材を1100〜1300℃で仮焼して該母材の径
方向の密度分布を整えた後、1400〜1600℃で焼
成し透明ガラス化することを特徴とする合成質石英ガラ
スの製造方法。
(1) In a method of producing synthetic quartz glass by heating and transparent vitrifying a porous quartz glass base material deposited and grown on one end of a seed rod for quartz glass production, the porous quartz glass base material is pre-heated to a temperature of 1100 to A method for producing synthetic quartz glass, which comprises calcining at 1,300°C to adjust the density distribution in the radial direction of the base material, and then firing at 1,400 to 1,600°C to form transparent glass.
JP21862484A 1984-10-19 1984-10-19 Preparation of synthetic quartz glass Granted JPS6197141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21862484A JPS6197141A (en) 1984-10-19 1984-10-19 Preparation of synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21862484A JPS6197141A (en) 1984-10-19 1984-10-19 Preparation of synthetic quartz glass

Publications (2)

Publication Number Publication Date
JPS6197141A true JPS6197141A (en) 1986-05-15
JPH0421614B2 JPH0421614B2 (en) 1992-04-13

Family

ID=16722868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21862484A Granted JPS6197141A (en) 1984-10-19 1984-10-19 Preparation of synthetic quartz glass

Country Status (1)

Country Link
JP (1) JPS6197141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337119A (en) * 1989-07-03 1991-02-18 Shinetsu Sekiei Kk Production of heat-resistant synthetic quartz glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337119A (en) * 1989-07-03 1991-02-18 Shinetsu Sekiei Kk Production of heat-resistant synthetic quartz glass

Also Published As

Publication number Publication date
JPH0421614B2 (en) 1992-04-13

Similar Documents

Publication Publication Date Title
JPH0733258B2 (en) Method for producing article containing high silica glass body
JPS5844619B2 (en) Manufacturing method of optical fiber base material
JPH029727A (en) Production of optical fiber preform
JPS6197141A (en) Preparation of synthetic quartz glass
CN103118995A (en) Process for producing a quartz glass crucible having a transparent inner layer of synthetically produced quartz glass
JPH07121813B2 (en) Method for producing flat quartz glass
JPH03109223A (en) Quartz glass and production thereof
JPS63201025A (en) Production of high-purity transparent glass
JPS6283325A (en) Production of quartz glass having high purity
JPS6272536A (en) Production of high-purity quartz glass
JPS6040566Y2 (en) Heating furnace for manufacturing optical fiber base material
JP2002154838A (en) Method for manufacturing glass preform for optical fiber
JPS6324937B2 (en)
JP2002249342A (en) Glass body and method for manufacturing it
US20010015079A1 (en) Method for producing dopant doped high pure silica Glass
CN220788372U (en) Melting furnace for producing quartz glass ingot by gas melting
JPS6186431A (en) Vitrification of porous quartz glass parent material
JPH0226848A (en) Production of high-purity quartz glass
JPH0232668Y2 (en)
JPH01179736A (en) Production of titanum-doped fiber base material
JPS5854097B2 (en) Manufacturing method of optical fiber base material
JPS62187127A (en) Production of optical fiber base material
JPH04238828A (en) Production of optical fiber preform
JPS6278124A (en) Production of high-purity quartz pipe
JPS62105935A (en) Baking of porous quartz glass preform