JPS6196738A - Treatment for silicon substrate - Google Patents

Treatment for silicon substrate

Info

Publication number
JPS6196738A
JPS6196738A JP21771884A JP21771884A JPS6196738A JP S6196738 A JPS6196738 A JP S6196738A JP 21771884 A JP21771884 A JP 21771884A JP 21771884 A JP21771884 A JP 21771884A JP S6196738 A JPS6196738 A JP S6196738A
Authority
JP
Japan
Prior art keywords
silicon substrate
treatment
fine particles
alkaline solution
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21771884A
Other languages
Japanese (ja)
Inventor
Mikio Tsuji
幹生 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21771884A priority Critical patent/JPS6196738A/en
Publication of JPS6196738A publication Critical patent/JPS6196738A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Abstract

PURPOSE:To obtain the surface of a silicon substrate, whereon fine particles little stick, by a method wherein a treatment is performed on the silicon substrate using hydrofluoric acid or dilute hydrofluoric acid, and after that, the silicon substrate is dipped in hydrogen peroxide-containing organic alkaline solution of the specific liquid temperature using ultrasonic waves of the specific frequency at the same time and is cried. CONSTITUTION:A silicon substrate 1 is dipped in a treating tank 3 filled up with hydrogen peroxide-containing organic alkaline solution 2 to be performed a treatment. Ultrasonic waves of a frequency of 500kHz or more are applied to the direction parallel to the substrate 1 by an oscillating plate 4 mounted on the sidewall of this treating tank 3. The directivity of the ultrasonic waves is strong at the frequency in this extent and the particle acceleration by oscillation is also large. At this time, the solution 2 is diffused between the silicon substrate 1 and fine particles by a so-called wedge effect, and at the same time, the fine particles are made to liberate from the surface of the silicon substrate by the gentle etching action of the organic alkali in the solution. The liquid temperature of the organic alkaline solution used for the treatment is maintained at 50 deg.C or more by a heater 7.

Description

【発明の詳細な説明】 (技術分野) 本発明はシリコン基板の処理方法に関するものでるる。[Detailed description of the invention] (Technical field) The present invention relates to a method for processing a silicon substrate.

(従来技術〕 従来、牛導体装置の製造過程において、弗酸あるいは希
弗酸による処理工程が多用されている。
(Prior Art) Conventionally, in the manufacturing process of conductor devices, treatment steps using hydrofluoric acid or dilute hydrofluoric acid have been frequently used.

しかしながら、シリコン基板に上記処理を施し次場合、
露出したシリコン単結晶面は非常に活性化され、薬品中
や装置内壁おるいに治具等からの微粒子が付着しやすく
なる。ま九、微粒子のシリコン基板表面への付着には、
ζ−電位と呼ばれる電位が関係していると言われている
。このζ−電位の働きに工って、シリコン基板表面と微
粒子との間には、酸性溶液の場合には引力が働き、アル
カリ性溶液の場合1cに反発力が働く。
However, if the silicon substrate is subjected to the above treatment,
The exposed silicon single crystal plane becomes highly activated, and fine particles from jigs and the like tend to adhere to the chemicals and the inner walls of the device. Nine, for the adhesion of fine particles to the silicon substrate surface,
It is said that a potential called ζ-potential is involved. Due to the action of this ζ-potential, an attractive force acts between the silicon substrate surface and the fine particles in the case of an acidic solution, and a repulsive force acts on 1c in the case of an alkaline solution.

し九がって、弗酸あるいは希弗酸処理によってシリコン
基板表面に付着した微粒子はアルカリ性溶液に浸漬する
ことによってめる程度までは除去できる。しかしながら
、従来では、このアルカリ性溶液による処理上行なう際
に併用される超音波は周波数が20−50)G(z程度
である。この範囲の周波数では媒体中での減衰は小さい
が、キャビテーシ冒ン効果に工って発生する気泡の崩壊
に併な5衝激波や局部的な温度上昇?利用しているため
、気泡の発生が不均一でめっ7t+ジすると洗浄むらが
生じ良ジする。ま穴1周波数が20〜50KHzの範囲
では、振動による粒子加速度にあまり大きくなく、付着
微粒子に加わる力もめ19太きくないために、シリコン
基板表面に付着した微粒子t−有効に除去することがで
きない。
Therefore, fine particles attached to the surface of the silicon substrate by hydrofluoric acid or dilute hydrofluoric acid treatment can be removed to a certain degree by immersing the silicon substrate in an alkaline solution. However, conventionally, the frequency of ultrasonic waves used in combination with this alkaline solution treatment is around 20-50) G (z). Attenuation in the medium is small at frequencies in this range, but cavitation damage is caused. Because it utilizes shock waves and local temperature rises along with the collapse of air bubbles that are generated during the cleaning process, air bubbles are generated unevenly, resulting in uneven cleaning and poor quality. When the hole 1 frequency is in the range of 20 to 50 KHz, the particle acceleration due to vibration is not so large and the force exerted on the adhered particles is not large enough to effectively remove the particles attached to the silicon substrate surface. .

まt、シリコン基板の乾燥方法としては、従来経済性あ
るいにスループットの高さから、遠心乾燥法が多用され
ている。しかし、この方法では水滴による飛沫や微粒子
の付着が本質的に避けられない上に、シリコン基板全高
速で回転するために、シリコン基板の割れが生ずること
もめる。
Conventionally, as a method for drying silicon substrates, centrifugal drying has been frequently used due to its economical efficiency and high throughput. However, in this method, splashing by water droplets and adhesion of fine particles are essentially unavoidable, and since the silicon substrate rotates at full speed, cracks may occur in the silicon substrate.

上記に示し友工うに、従来技術では、弗酸ろるいは希弗
酸処理に工っでシリコン基板表面に付着しt微粒子全十
分に取り除くことができない。
As shown above, in the prior art, it is not possible to sufficiently remove all the fine particles that adhere to the silicon substrate surface by hydrofluoric acid treatment or dilute hydrofluoric acid treatment.

近年の超LSIと呼ばれる半導体装置の製造工程におい
ては、シリコン基板表面上の微粒子がそ抄 の歩留りに大@な影響を与えるエリになってき皮。
In recent years, in the manufacturing process of semiconductor devices called VLSIs, fine particles on the surface of silicon substrates have become a major factor in the production yield.

例えばリングラフィ工程においては、2μmの設計基準
の場合直径0.2μm以上の微粒子によって、パターン
くずれ等の不良音引き起こす。1友拡散工程においてシ
リコン基板表面に微粒子が存在すると異常拡散の原因と
なっ′fcりして、半導体素子の特性を劣化させ1歩留
りの低下1品質の低下を招く問題がめった。
For example, in the phosphorography process, when the design standard is 2 μm, fine particles with a diameter of 0.2 μm or more cause pattern distortion and other defects. The presence of fine particles on the surface of the silicon substrate during the diffusion process causes abnormal diffusion, leading to deterioration of the characteristics of semiconductor devices, resulting in a frequent problem of decreased yield and quality.

(発明の目的) 本発明の目的に上記欠点を取り除@、微粒子の付着が少
ないシリコン基板表面?得ることができる。シリコン基
板の処理方法を提供することでろる0 (発明の構成・手段) 本発明のシリコン基板の処理方法はシリコン基板に弗酸
あるいは希弗酸による処理七施しに後にシリコン基板全
超音波を併用して、過酸化水素金倉む有機アルカリ溶液
に浸漬する工程と、蒸気法によって乾燥する工程?有し
、前記超音波の周波数1500)G(z以上とし、且つ
有機アルカリ溶液の液温に50℃以上とすることを特徴
とする〇(作用) 本発明によれば、微粒子の付着が少なく、清浄な表面を
持つ7リコン基板が得られる。
(Objective of the Invention) The object of the present invention is to eliminate the above-mentioned drawbacks@silicon substrate surface with less adhesion of fine particles? Obtainable. By providing a method for processing a silicon substrate, the method for processing a silicon substrate of the present invention involves treating a silicon substrate with hydrofluoric acid or diluted hydrofluoric acid, and then applying ultrasonic waves to the entire silicon substrate. Then, the process of immersing it in an organic alkaline solution containing hydrogen peroxide, and the process of drying it using a steam method? The frequency of the ultrasonic wave is 1500) G (z or more), and the temperature of the organic alkaline solution is 50° C. or more. A 7-recon substrate with a clean surface is obtained.

(実施例) 以下2図面全参照し本発明の実施例について説明する。(Example) Embodiments of the present invention will be described below with reference to all of the two drawings.

第1図は本発明の一実施例を示す模式図である。図にお
いて1は弗酸あるいは希弗酸処理を施し几シリコン基板
である。このシリコン基板1會過酸化水素金含む有機ア
ルカリ溶液2t−満友した処理槽3にて浸漬処理する。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. In the figure, 1 is a silicon substrate treated with hydrofluoric acid or dilute hydrofluoric acid. This silicon substrate is immersed in a treatment tank 3 filled with 2 tons of an organic alkaline solution containing hydrogen peroxide and gold.

この処理槽3の側壁に取り付けられ几発振板4に工って
基板1と平行な方向に周波数500KHz以上の超音波
がかけられる。この範囲の周波数では、超音波の指向性
が強く、振動による粒子加速度も太きい。ま友。
An oscillating plate 4 attached to the side wall of the processing tank 3 is used to apply ultrasonic waves with a frequency of 500 KHz or more in a direction parallel to the substrate 1. In this range of frequencies, the directivity of the ultrasonic waves is strong, and the particle acceleration due to vibration is also large. Mayu.

基板と平行な方向で超音波が進むので減衰も小さい。こ
の超音波の働きによって基板上の微粒子は10ルウ程度
の振動する。この時、いわゆるくきび効果によって溶液
2がシリコン基板と微粒子の間に拡散するのと同時に、
溶液中の有機アルカリのおだやかなエツチング作用によ
って微粒子はシリコy基板上から遊離する。発振板4か
ら発射され几超音波に工っで処理槽側壁がダメージ?受
けないように2発振板と対向方向に石英の反射板5が置
かれている。発振板4は発振器6によって撮動させられ
る。
Since the ultrasonic waves travel in a direction parallel to the substrate, attenuation is also small. Due to the action of this ultrasonic wave, the fine particles on the substrate vibrate by approximately 10 lou. At this time, at the same time as the solution 2 diffuses between the silicon substrate and the fine particles due to the so-called neck effect,
The fine particles are released from the silicon substrate by the gentle etching action of the organic alkali in the solution. Is the processing tank side wall damaged due to the ultrasonic waves emitted from the oscillator plate 4? A quartz reflection plate 5 is placed opposite the two oscillation plates so as not to receive the oscillation. The oscillator plate 4 is activated by an oscillator 6.

処理に用いられた有機アルカリ溶液の液温にヒーター7
によって設定された温度に保たれる。浸 。
Heater 7 is used to maintain the temperature of the organic alkaline solution used in the treatment.
The temperature is maintained at the set temperature. Soak.

漬処理終了後直ちにこの有機アルカリ溶液にドレイン管
8會通して槽外に排出される。有機アルカ・す溶液の排
液が終了し几処理檜内Vcに、給液管9全通して純水が
供給され、シリコン基板に十分に水洗される。水洗処理
後の水はオーバーフローによって槽外に排出され、構内
の純水に常に清浄に僚友れる。
Immediately after the soaking process is completed, the organic alkaline solution is passed through 8 drain pipes and discharged out of the tank. After the draining of the organic alkali solution is completed, pure water is supplied to the inside Vc of the treated cypress through the entire liquid supply pipe 9, and the silicon substrate is sufficiently washed with water. The water after the washing process is discharged outside the tank by overflow, and is always kept clean in the pure water inside the premises.

一度、処理に用いられ次有機アルカリに回収槽10に回
収され、過酸化水素を添加されに後、ポンプ11によっ
て汲み上げられ、0.1μm のフィルタ−12全通し
て、補助タンク13に貯えられる。この補助タンク13
に貯えられた有機アルカリ溶液に、給液管9七通して槽
内に戻され次の処理が行なわれる。勿論このとき、槽内
の水に排水用ドレイン管(図示してない)七通して排出
されている。有機アルカリ溶液と純水の供給の切り換え
はパルプ14によって行なわれる。
Once used for treatment, the organic alkali is collected in a recovery tank 10, hydrogen peroxide is added thereto, and then pumped up by a pump 11, passed through a 0.1 μm filter 12, and stored in an auxiliary tank 13. This auxiliary tank 13
The organic alkaline solution stored in the tank is returned to the tank through a liquid supply pipe 9 for the next treatment. Of course, at this time, the water in the tank is drained through seven drain pipes (not shown). Switching between the supply of organic alkaline solution and pure water is performed by the pulp 14.

水洗の終わったシリコン基板は直ちに例えばイングロビ
ルアルコールを用いた蒸気乾燥処理槽15に移され蒸気
乾燥される。ヒーター16によって作られた蒸気はシリ
コン基板乾燥に用いられた後冷却器17に工って液化さ
れ槽内に戻される。乾燥処理終了後、この薬液(グドレ
イ/管18によって槽外に排出され、ボン119によっ
て汲み上げられ、0.1μmのフィルター20を通して
再び処理槽15に戻される。
The silicon substrate that has been washed with water is immediately transferred to a steam drying treatment tank 15 using, for example, Inglobil alcohol, and is steam-dried. The steam produced by the heater 16 is used to dry the silicon substrate, and then is liquefied in the cooler 17 and returned to the tank. After the drying process is completed, this chemical solution is discharged out of the tank through the Gudray/pipe 18, pumped up by the bong 119, and returned to the processing tank 15 through a 0.1 μm filter 20.

以上の処理で用いられ上薬液は、使用前にフィルター食
通しているので常に微粒子の少ない清浄な状態に保たれ
ている。従ってシリコン基板への微粒子の付着も少ない
。例えば、従来技術に裏って処理し九場合のシリコン基
板上の微粒子の除去率に約25%でめっmが2本発明の
シリコン基板の処理方法では80%程度となっ之。
The chemical solution used in the above treatment is passed through a filter before use, so it is always kept in a clean state with few particles. Therefore, the adhesion of fine particles to the silicon substrate is also reduced. For example, the removal rate of fine particles on a silicon substrate when treated according to the conventional technique is about 25%, while the removal rate of fine particles on a silicon substrate using two metals is about 80%.

(効果) 以上詳細に説明し友ように2本発明によれば。(effect) As described above in detail, there are two aspects according to the present invention.

弗酸あるいは希弗酸処理後の微粒子の付着が少ないシリ
コン基板が得られる舶しいシリコン基板の処理方法全提
供することができる。従りてLSIの品質及び少留り向
上に寄与できるものでるる。
It is possible to provide a complete method for processing a silicon substrate, which can yield a silicon substrate with less adhesion of fine particles after treatment with hydrofluoric acid or dilute hydrofluoric acid. Therefore, it will be possible to contribute to improving the quality and small size of LSI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一冥施例を示す模式図でaる。 図において、1・・・シリコン基板、2・・・NGアル
カリ溶液、3・・・処理槽、4・・・発振板、5・・・
反射板。 6・・・発振器、7・・・ヒーター、8・・・ドレイン
管、9・・・給液管、10・・・回収槽、11・・・ボ
ン1,12・・・フィルター、13・・・補助タンク、
14・・・切り換パルプ、15・・・蒸気乾燥処理槽、
16・・・ヒーター。 17・・・冷却器、18・・・ドレイン管、19・・・
ボン1゜20・・・フィルター。
FIG. 1 is a schematic diagram showing one embodiment of the present invention. In the figure, 1... silicon substrate, 2... NG alkaline solution, 3... processing tank, 4... oscillation plate, 5...
a reflector. 6... Oscillator, 7... Heater, 8... Drain pipe, 9... Liquid supply pipe, 10... Recovery tank, 11... Bonn 1, 12... Filter, 13...・Auxiliary tank,
14...Switched pulp, 15...Steam drying treatment tank,
16...Heater. 17...Cooler, 18...Drain pipe, 19...
Bon 1°20...filter.

Claims (1)

【特許請求の範囲】[Claims]  シリコン基板に弗酸あるいは希弗酸による処理を施す
工程に該シリコン基板を超音波を併用して、過酸化水素
を含む有機アルカリ溶液に浸漬する工程と、蒸気法によ
って乾燥する工程を含むシリコン基板の処理方法であっ
て、前記超音波の周波数を500KHz以上とし、且つ
有機アルカリ溶液の液温を50℃以上とすることを特徴
とするシリコン基板の処理方法。
A silicon substrate that includes a process of treating a silicon substrate with hydrofluoric acid or dilute hydrofluoric acid, a process of immersing the silicon substrate in an organic alkaline solution containing hydrogen peroxide using ultrasonic waves, and a process of drying the silicon substrate by a steam method. A method for processing a silicon substrate, characterized in that the frequency of the ultrasonic wave is 500 KHz or higher, and the temperature of the organic alkaline solution is 50° C. or higher.
JP21771884A 1984-10-17 1984-10-17 Treatment for silicon substrate Pending JPS6196738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21771884A JPS6196738A (en) 1984-10-17 1984-10-17 Treatment for silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21771884A JPS6196738A (en) 1984-10-17 1984-10-17 Treatment for silicon substrate

Publications (1)

Publication Number Publication Date
JPS6196738A true JPS6196738A (en) 1986-05-15

Family

ID=16708645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21771884A Pending JPS6196738A (en) 1984-10-17 1984-10-17 Treatment for silicon substrate

Country Status (1)

Country Link
JP (1) JPS6196738A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348830A (en) * 1986-08-19 1988-03-01 Toshiba Corp Treatment for semiconductor surface
US4826784A (en) * 1987-11-13 1989-05-02 Kopin Corporation Selective OMCVD growth of compound semiconductor materials on silicon substrates
US5081068A (en) * 1989-07-17 1992-01-14 Mitsubishi Denki Kabushiki Kaisha Method of treating surface of substrate with ice particles and hydrogen peroxide
EP0674343A2 (en) * 1994-03-25 1995-09-27 Shin-Etsu Handotai Company Limited Method for storing silicon wafers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348830A (en) * 1986-08-19 1988-03-01 Toshiba Corp Treatment for semiconductor surface
US4826784A (en) * 1987-11-13 1989-05-02 Kopin Corporation Selective OMCVD growth of compound semiconductor materials on silicon substrates
US5081068A (en) * 1989-07-17 1992-01-14 Mitsubishi Denki Kabushiki Kaisha Method of treating surface of substrate with ice particles and hydrogen peroxide
EP0674343A2 (en) * 1994-03-25 1995-09-27 Shin-Etsu Handotai Company Limited Method for storing silicon wafers
US5484748A (en) * 1994-03-25 1996-01-16 Shin-Etsu Handotai Co., Ltd. Method for storage of silicon wafer
EP0674343A3 (en) * 1994-03-25 1997-07-02 Shinetsu Handotai Kk Method for storing silicon wafers.

Similar Documents

Publication Publication Date Title
TWI447799B (en) Method of cleaning substrates and substrate cleaner
US7021319B2 (en) Assisted rinsing in a single wafer cleaning process
US4633804A (en) Spinner and method for processing a substrate
JPH01143218A (en) Processing of semiconductor substrate
JPH11340184A (en) Manufacture of semiconductor device
JP2000330262A (en) Method for washing photomask, apparatus therefor and photomask washing solution
JPH0855827A (en) Wafer cassette and cleaning equipment using it
JP3380021B2 (en) Cleaning method
JPH1022246A (en) Cleaning method
CN207952128U (en) A kind of multi-wire cutting silicon wafer stripping ultrasonic cleaning equipment
JPS6196738A (en) Treatment for silicon substrate
JP2001345301A (en) Method of cleaning electronic material
JP2002009033A (en) Washing device for semiconductor wafer
JPH05308067A (en) Ultrasonic washing device and method
JPH01303724A (en) Method and device for wet cleaning
JPH0513397A (en) Cleaning device
JPH1022245A (en) Method and apparatus for removing foreign matter from semiconductor device
JPH01278310A (en) Dicing of semiconductor wafer
JPH10154677A (en) Method and apparatus for manufacturing semiconductor integrated circuit
JP2908157B2 (en) Circuit board etching method and etching apparatus
JP2001007073A (en) Cleaning method
JPH04164324A (en) Semiconductor manufacturing device
JPS61148821A (en) Processing apparatus
KR20100034091A (en) Wafer cleaning apparatus and method using megasonic
JPH10150016A (en) Method and device for cleaning electrode plate of plasma treating device