JPS619553A - Magnetic powder and its manufacture - Google Patents

Magnetic powder and its manufacture

Info

Publication number
JPS619553A
JPS619553A JP59130509A JP13050984A JPS619553A JP S619553 A JPS619553 A JP S619553A JP 59130509 A JP59130509 A JP 59130509A JP 13050984 A JP13050984 A JP 13050984A JP S619553 A JPS619553 A JP S619553A
Authority
JP
Japan
Prior art keywords
iron
coercive force
magnetic powder
metal powder
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59130509A
Other languages
Japanese (ja)
Other versions
JPH0312125B2 (en
Inventor
Takao Inoue
隆夫 井上
Munehiko Takahashi
高橋 宗彦
Yoshishige Oozeki
大関 淑茂
Tokio Fukuoka
福岡 時雄
Akio Kawada
川田 秋穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP59130509A priority Critical patent/JPS619553A/en
Publication of JPS619553A publication Critical patent/JPS619553A/en
Publication of JPH0312125B2 publication Critical patent/JPH0312125B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain magnetic powder having coercive force and saturation magnetic flux density suitable for high density recording and showing a significant erasing effect by manufacturing Fe-base magnetic powder contg. specified mol% of Ni and Cu and having specified coercive force. CONSTITUTION:An Ni compound and a Cu compound are stuck, adsorbed or precipitated on iron oxyhydroxide or iron oxide having 0.5-3mum average major axis size and 0.01-0.5mum average minor axis size. The iron compound may contain 0.5-5wt% metal other than iron such as Mn, Ni, Ti or Bi. The treated iron compound is dried and reduced to manufacture magnetic powder contg. 20- 70mol% Ni and 0.5-10mol% Cu basing on the amount of Fe and having 700- 1,200Oe coercive force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強磁性金属粉末及びその製造方法に関するもの
である。特に高密度記録に適した保磁力及び飽和磁束密
度を有し、消去効果の太きい磁性粉末及びその製造方法
に関するものでらる0 〔従来の技術〕 現在使用されている磁気記録媒体は、極めて多様であシ
、用いられる強磁性粉末に要求される特性もそれぞれ異
なっている。従来、磁気記録媒体に使用されていた強磁
性粉末としては。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferromagnetic metal powder and a method for producing the same. This article relates to a magnetic powder that has a coercive force and saturation magnetic flux density suitable for high-density recording and has a strong erasing effect, and a method for manufacturing the same.[Prior art] The magnetic recording media currently in use are extremely They are diverse, and the properties required of the ferromagnetic powders used are also different. As a ferromagnetic powder conventionally used in magnetic recording media.

γ−Fe20. 、 Co含有7−11’e 20s 
、 Fe v、 Ox 、 Co含有Fe、04. F
e、01l−γ−Fe、、0.、0r02等があったが
γ-Fe20. , Co-containing 7-11'e 20s
, Fev, Ox, Co-containing Fe, 04. F
e, 01l-γ-Fe, 0. , 0r02, etc.

これらの強磁性粉末は、保磁力、飽和磁束密度等に限界
がおるために、近年強磁性金属粉末(メタル粉)がその
保磁力及び飽和磁束密度等の高さの故に注目されている
Since these ferromagnetic powders have limitations in coercive force, saturation magnetic flux density, etc., ferromagnetic metal powder (metal powder) has recently attracted attention because of its high coercive force, saturation magnetic flux density, etc.

〔発明が解決しようとする問題点“〕[Problem that the invention seeks to solve”]

しかし、オーディオ機器、ビデオ機器、デジタル用機器
等においては、従来の強磁性金属粉末では保磁力が高過
ぎて既存のメタル対応以外のオーディオ機器、ビデオ機
器、デジタル用機器等に使用できない欠点がある。そこ
でこの欠点を無くした保磁力が低く、飽和磁束密度の大
きく、消去効果の高い、従来のオーディオ機器。
However, for audio equipment, video equipment, digital equipment, etc., conventional ferromagnetic metal powder has a drawback that its coercive force is too high and cannot be used in audio equipment, video equipment, digital equipment, etc. other than those compatible with existing metals. . Therefore, conventional audio equipment eliminates this drawback by having a low coercive force, a high saturation magnetic flux density, and a high erasing effect.

ビデオ機器、デジタル用機器等で使用し得る強磁性金属
粉末の出現が望まれているが、それらの特性を満たした
強磁性金属粉末は未だ知られていない。
Although the emergence of ferromagnetic metal powder that can be used in video equipment, digital equipment, etc. is desired, ferromagnetic metal powder that satisfies these characteristics is not yet known.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、前述したような特性を持つ強磁性金属粉
末を製造するために鋭意研究し、平均長軸長0.5〜5
μm、平均短軸長0.01〜0,5μmのオキシ水酸化
鉄、酸化鉄又はこれらにMn、Ni。
The present inventors have conducted intensive research to produce ferromagnetic metal powder with the characteristics described above, and have determined that the average major axis length is 0.5 to 5.
m, average short axis length of 0.01 to 0.5 m, iron oxyhydroxide, iron oxide, or Mn, Ni.

Ti、Bi、Mo、Ag等の鉄以外の金属を好ましくは
0.5〜5 wt%含有した鉄酸化物にNi化合物及び
Ou化合物を付着、吸着あるいは沈澱させ、乾燥後還元
して得られるNiを20〜70M%(M%はモル%を意
味する。以下同じ。)及びCuを0.5〜10M%(い
ずれもF’eに対して)含有する強磁性金属粉末が、従
来の強磁性金属粉末に比べ保磁力が低く、飽和磁束密度
が大きく、消去効果が高い上に、#且つメタル粉の特徴
を有する強磁性金属粉末であることを見出し本発明を完
成した。
Ni obtained by attaching, adsorbing or precipitating Ni compounds and Ou compounds to iron oxide containing preferably 0.5 to 5 wt% of metals other than iron such as Ti, Bi, Mo, Ag, etc., and reducing after drying. A ferromagnetic metal powder containing 20 to 70 M% of Cu (M% means mol%. The same applies hereinafter) and 0.5 to 10 M% of Cu (all based on F'e) is The present invention was completed by discovering that the ferromagnetic metal powder has a lower coercive force, a higher saturation magnetic flux density, and a higher erasing effect than metal powder, and also has the characteristics of # and metal powder.

本発明で得られる強磁性金属粉末を使用した磁気記録媒
体は、メタル対応のオーディオ機器、ビデオ機器、デジ
タル用機器尋にはもちろん使用できるが、既存のメタル
対応以外のオーディオ機器、ビデオ機器、デジタル用機
器等にも使用できる0 強磁性金属粉末の製造法としては従来から次の様な方法
が検討されてきた。
The magnetic recording medium using the ferromagnetic metal powder obtained by the present invention can of course be used in metal-compatible audio equipment, video equipment, and digital equipment, but it can also be used in existing non-metal audio equipment, video equipment, and digital equipment. The following methods have been considered for producing 0 ferromagnetic metal powder that can be used in industrial equipment, etc.

(1)金属の有機酸塩(主としてシュウ酸塩)を熱分解
し、還元性気体で還元する方法。
(1) A method of thermally decomposing metal organic acid salts (mainly oxalates) and reducing them with a reducing gas.

(2)  オキシ水酸化鉄、あるいはこれに他の金属を
含有させたもの、あるいは酸化鉄又はフェライト組成蒙
化物を還元性気体セ還元する方法0 (3)強磁性金属塩金を不活性ガス中で蒸発させる方法
0 (4)金属カルボニル化合物を分解する方法。
(2) Method 0 of reducing iron oxyhydroxide, or iron oxyhydroxide containing other metals, or iron oxide or ferrite composition monoxide with a reducing gas (3) Ferromagnetic metal salt gold in an inert gas (4) Method of decomposing metal carbonyl compounds.

(5)水銀電解法によって強磁性金属粉末を電析させ九
彼■gを分離する方法0 (6)強磁性金属塩をその溶液中で水素化ホウ素ナトリ
ウム、次亜リン酸ナトリウム等により湿式還元する方法
(5) A method of electrodepositing ferromagnetic metal powder using mercury electrolysis to separate nine particles. (6) Wet reduction of ferromagnetic metal salts with sodium borohydride, sodium hypophosphite, etc. in the solution. how to.

(7)衝撃大電流を通じて放am−発によって強磁性金
属粉末を生じさせる方法。
(7) A method of generating ferromagnetic metal powder by am-emission through a large impact current.

これらの製造法の中でも磁気特性、工業性、経済性の面
から(2)のオキシ水酸化鉄、又は酸化鉄を還元性ガス
で乾式還元する方法が最も有望であυ1、本発明の方法
もこの製造方法に属するものである。
Among these production methods, the method (2) of dry reduction of iron oxyhydroxide or iron oxide with a reducing gas is the most promising in terms of magnetic properties, industrial efficiency, and economic efficiency υ1, and the method of the present invention is also It belongs to this manufacturing method.

本発明によれば、Niを20〜70M%及びCuを0.
5〜IOM%(何れもFeに対して)含み。
According to the present invention, Ni is 20-70M% and Cu is 0.
Contains 5 to IOM% (both relative to Fe).

保磁力が700〜12000θ、飽和磁束密度が90〜
170 erΩu / ’tである高分散性の強磁性金
属粉末の製造法が提供される。即ち、還元工程に入る前
にある範囲内の粒子の大きさに規制したオキシ水落′化
鉄又は酸化鉄(鉄以外の金属を含んでいてもよい)の表
面にNi及びOuの化合物を付着、吸着又は沈澱させ、
その後水素などの還元性ガスで乾式還元して、微細な鉄
を基とじたニッケル及び銅との合金とすることによって
、形状の崩れ、焼結が防止され、目的とする保磁力、角
型比を持ち、しかも分散性に優れ、且つ発火性のおさえ
られた安定な強磁性金属粉末を得ることが出来る。
Coercive force is 700~12000θ, saturation magnetic flux density is 90~
A method is provided for producing a highly dispersed ferromagnetic metal powder with a ferromagnetic metal powder of 170 erΩu/'t. That is, before entering the reduction process, a compound of Ni and O is attached to the surface of oxywater-depleted iron or iron oxide (which may contain metals other than iron) whose particle size is regulated within a certain range. adsorption or precipitation;
After that, by dry reduction with reducing gas such as hydrogen to create an alloy with nickel and copper based on fine iron, shape collapse and sintering are prevented, and the desired coercive force and squareness ratio are achieved. It is possible to obtain a stable ferromagnetic metal powder with excellent dispersibility and suppressed ignitability.

本発明の方法に於て出発原料粒子の大きさと強磁性金属
粉末中のNi及びOu含有量とを変化させることによシ
、保持力及び飽和磁束密度を変化させることができる。
In the method of the present invention, the coercive force and saturation magnetic flux density can be varied by varying the size of the starting material particles and the Ni and O contents in the ferromagnetic metal powder.

即ち、保磁力は500oeと低いものから1500Oe
と高いものまで得ることができるが、5oooθと低い
ものけ粒子が大きいためノイズ特性が悪くなる。又、1
300Oeと高いものは既存のメタル対応以外のオーデ
ィオ機器、ビデオ機器、デジタル用機器では消去特性が
悪くなシ、いず五の場合も実用的でない〇一方、飽和磁
束密度については60〜20Oemu/y  の範囲の
強磁性金属粉末を得ることができるが、 90 emu
/r未満では高出力を特色とするメタル粉の特徴がなく
なってしまい実用的でない。又% 171 emu /
 を以上の強磁性金属粉末を得ようとすると高温度で長
時間の還元を必要とし、形状が崩れ、角型比が低下して
しまい使用できない。
In other words, the coercive force ranges from as low as 500 oe to as low as 1500 oe.
However, since the Mononoke particles as low as 5oooθ are large, the noise characteristics deteriorate. Also, 1
Those as high as 300 Oe have poor erasing characteristics in existing non-metal audio equipment, video equipment, and digital equipment, and are not practical in any case. On the other hand, the saturation magnetic flux density is 60 to 20 Oemu/ It is possible to obtain ferromagnetic metal powders in the range of y, but 90 emu
If it is less than /r, the characteristics of metal powder, which is characterized by high output, are lost and it is not practical. Also% 171 emu /
Attempting to obtain a ferromagnetic metal powder with a ferromagnetic metal powder of more than 20% requires reduction at high temperatures for a long period of time, resulting in the shape being distorted and the squareness ratio being reduced, making it unusable.

以上のことから、既存のメタル対応及びメタル対も以外
のオーディオ機器、ビデオ機器、デジタル用機器等にも
使用できる強磁性金属粉末の保磁力は700〜1200
Oe 、飽和磁束密度は90〜170 emu/rであ
る必要がある。
From the above, the coercive force of ferromagnetic metal powder, which can be used for audio equipment, video equipment, digital equipment, etc. other than existing metal compatible and metal compatible equipment, is 700 to 1200.
Oe, the saturation magnetic flux density needs to be 90 to 170 emu/r.

本発明の方法に於ける出発物質の平均長軸長及び平均短
軸長は、出発物質の電子顕微鏡写真の中から粒子を無差
別に選んだ時の長軸長及び短軸長の平均値である。平均
長軸長が0.5μm未満であり平均短軸長が0.01μ
m未満であると保磁力は、1200Oeより高くなる。
The average major axis length and average minor axis length of the starting material in the method of the present invention are the average values of the major axis length and minor axis length when particles are randomly selected from electron micrographs of the starting material. be. The average major axis length is less than 0.5 μm and the average minor axis length is 0.01 μm.
If it is less than m, the coercive force will be higher than 1200 Oe.

又、平均長軸長が3μmよシ大きく、平均短軸長が0.
5μmより大きいと、保磁力は700Oeよシ小さくな
る。従って出発物質は平均長軸長が0.5μm〜3μm
でsb且つ平均短軸長がO、,01μm〜0.5μmの
ものが好ましい。
In addition, the average major axis length is greater than 3 μm, and the average minor axis length is 0.
When it is larger than 5 μm, the coercive force becomes smaller than 700 Oe. Therefore, the starting material has an average major axis length of 0.5 μm to 3 μm.
sb and an average minor axis length of 0.01 μm to 0.5 μm are preferred.

強磁性金属粉末中のNi及びOu含有量は原子吸光分析
によって求めたものであるが、この強磁性金属粉末中の
Ni含有量がFeに対し20M%未満では、保磁力が1
200Oeよりも高くなる。
The Ni and O contents in the ferromagnetic metal powder were determined by atomic absorption spectrometry, but if the Ni content in the ferromagnetic metal powder is less than 20 M% with respect to Fe, the coercive force is 1.
It becomes higher than 200 Oe.

又、 Ni含有量がFeに対し70M%以上では保磁力
が700Oeよシも低くなる。従って、強磁性金属粉末
中のNi含有量はyeに対して20〜70M%であるこ
とを要する。又OuがFeに対して10M%を越えると
保磁力が700Oeよシ低くなシ、角形比も低くなる。
Furthermore, if the Ni content is 70 M% or more relative to Fe, the coercive force will be as low as 700 Oe. Therefore, the Ni content in the ferromagnetic metal powder is required to be 20 to 70 M% with respect to ye. Furthermore, if O exceeds 10 M% relative to Fe, the coercive force will be as low as 700 Oe and the squareness ratio will also be low.

OuがFeに対して0.5 M%未満では消去効果が充
分でない。
If O is less than 0.5 M% with respect to Fe, the erasing effect is not sufficient.

以下更に詳細に本発明の好ましい実施態様を説明すると
、本発明の出発物質としては、α−FeOOH、β−F
elon 、 7− Fe1onなどのオキシ水酸化性
、α−Fe20. 、γ−F e20−、、Fe 50
4sγ−Fe2O3・Fe2O棒(ベルトライド化合物
)などの酸化鉄及びこれらに0.5〜5 wt%のMn
 、 Ni 。
Preferred embodiments of the present invention will be described in more detail below. Starting materials of the present invention include α-FeOOH, β-F
oxyhydroxidation properties such as elon, 7-Fe1on, α-Fe20. , γ-F e20-,, Fe 50
Iron oxides such as 4sγ-Fe2O3/Fe2O rods (bertolide compound) and 0.5 to 5 wt% Mn to these
, Ni.

Ti 、 Bi 、 Mo 、 Agなどの鉄以外の金
属の1つ又は2つ以上がドープされたものが適当である
A material doped with one or more metals other than iron, such as Ti, Bi, Mo, and Ag, is suitable.

本発明で用い得るNi及びOuの化合物としては、可溶
性のもの、もしくはコロイド状のものであればいずれも
使用できる。好適に使用できルNi化合物トシテは1n
ch、 、 Ni(no、)2.1uso。
As the Ni and O compounds that can be used in the present invention, any soluble or colloidal compound can be used. The Ni compound which can be suitably used is 1n.
ch, , Ni(no,)2.1uso.

などの水可溶性塩類、  ul(on)Xa7.−、、
Ni(OH)X(N05)2−X  (x: o ”−
2)の如き水酸化物、もしくは部分水酸化物、コロイド
状化合物等が例示される。
Water soluble salts such as ul(on)Xa7. −、、
Ni(OH)X(N05)2-X (x: o ”-
Examples include hydroxides, partial hydroxides, and colloidal compounds such as 2).

又Ou化合物としては0uOi2. au(No、)2
.ousollなど゛の水可溶性塩類、Ou(OR)x
す2− x、 Ou (OR)x(No、)2−X(x
 : O〜2 )の如き水酸化物、もしくは部分水酸化
物、コロイド状化合物等が例示される。これらの化合物
を二種以上使用することもできる。
Also, as an Ou compound, OuOi2. au(No,)2
.. Water-soluble salts such as Ou(OR)x
S2-x, Ou (OR)x(No,)2-X(x
:O~2) hydroxides, partial hydroxides, colloidal compounds, etc. are exemplified. Two or more kinds of these compounds can also be used.

本発明においては前記で例示したNi及びOuの水可溶
性塩を用いる時は、その溶液に上記オキシ水酸化鉄ある
いは酸化鉄を添加して一定時間攪拌することにより、そ
の水可溶性塩と十分接触させるだけでも効果は認められ
るが、最も効果が得られるのは鉄酸化物を分散径可溶性
塩がアルカリ性ならば塩酸、硫酸、リン酸わるいは硝酸
等の酸で、又、逆に可溶性塩が酸性ならば、力性ソーダ
、力性カリあるいはアンモニア等のアルカリで全中和も
しくは部分中和させ、Ni及びOuの水酸化物もしくけ
酸化物を鉄酸化物に付着、吸着あるいは沈澱させ1表面
コーティングをさせる様に処理する方法である。又、こ
の処理において、上記オキシ水酸化鉄、あるいは酸化鉄
の分散を良くするためにオレイン酸ソーダ、アルギン酸
ソーダ等の界面活性剤を使用することも本発明の効果を
よシ一層向上せしめ得る。
In the present invention, when using the water-soluble salts of Ni and O exemplified above, the above-mentioned iron oxyhydroxide or iron oxide is added to the solution and stirred for a certain period of time to ensure sufficient contact with the water-soluble salts. However, the most effective method is to disperse iron oxide with an acid such as hydrochloric acid, sulfuric acid, phosphoric acid, or nitric acid if the soluble salt is alkaline, or conversely, if the soluble salt is acidic. For example, it is completely or partially neutralized with an alkali such as sodium hydroxide, potassium hydroxide, or ammonia, and hydroxides or silicate oxides of Ni and O are attached, adsorbed, or precipitated to iron oxides to form a surface coating. This is a method of processing in such a way that Further, in this treatment, the effects of the present invention can be further improved by using a surfactant such as sodium oleate or sodium alginate in order to improve the dispersion of the iron oxyhydroxide or iron oxide.

続イて、これらの処理がされたオキシ水酸化鉄あるいは
酸化鉄を600℃を越えない温度、好ましくは500℃
以下の温度で還元性雰囲気中において還元する。還元温
度について下限は実際上ないが、低温においては反応が
非常にゆっくシ進むので実施の観点からは反応時間が長
くなって好ましくないので少なくとも250℃以上の温
度で還元するのが適当である。
Subsequently, the treated iron oxyhydroxide or iron oxide is heated to a temperature not exceeding 600°C, preferably 500°C.
Reduce in a reducing atmosphere at the following temperatures: There is actually no lower limit for the reduction temperature, but since the reaction proceeds very slowly at low temperatures, the reaction time becomes longer, which is undesirable from a practical standpoint, so it is appropriate to carry out the reduction at a temperature of at least 250°C. .

還元後、還元器を冷却して、例えば空気1%及び窒素9
9%の混合ガスを還元器に導入し、徐々に空気含有量を
増し、4〜5時間後に空気だけに切シ替え還元器から磁
性鉄粉末を取り出す。そして、′得られた強磁性金属粉
末を磁気テープ、その他の磁気記録媒体とすることがで
きる0 〔実施例〕 次に実施例によって、更に詳しく本発明を説明するが、
これらの実施例によって本発明の範囲が限定されるもの
ではない。
After reduction, the reducer is cooled and filled with, for example, 1% air and 9% nitrogen.
A 9% mixed gas is introduced into the reducer, the air content is gradually increased, and after 4-5 hours it is switched to only air and the magnetic iron powder is taken out from the reducer. Then, the obtained ferromagnetic metal powder can be used as a magnetic tape or other magnetic recording medium. [Example] Next, the present invention will be explained in more detail with reference to Examples.
The scope of the present invention is not limited by these Examples.

又、本発明の実施に当っては、特開昭52−13482
8号公報に記載される如きアルミニウム化合物及び/又
はケイ素化合物を同時に付着又は吸着文は沈澱させる6
理を組み合せることが好ましい。
Furthermore, in carrying out the present invention, Japanese Patent Application Laid-Open No. 52-13482
Simultaneous adhesion or adsorption of aluminum compounds and/or silicon compounds as described in Publication No. 8 causes precipitation 6
It is preferable to combine the principles.

実施例及び比較例 平均長軸長が1μmであシ且つ平均短軸長が0.04μ
mの針状a −Fe1on 178 tを10!の水に
懸濁し、これに次の第1表に示す量の2M01μ濃度の
Ni(’#2水溶液及びI MOVJ濃度のOu O7
2水溶液を入れNaOHで中和した。続いて100f/
7(Sio2換算)ケイ酸ソーダ水溶液100耐を入れ
、HO7で中和した。その後濾過、洗浄し、150℃を
越えない温度で乾燥した。このようにして得られたex
 −Fe1on 200 fを5 J / minの水
素気流中で第1表に示す温度で7時間かけて還元した0 還元終了後反応器を室温まで冷却し、空気1%及び窒素
99%の混合ガスを反応器に導入し、約30分間隔で混
合ガス中の空気量を段階的に増し、5時間後に空気のみ
に切シ替え磁性粉を反応器から取シ出し試料とし゛、こ
れらの試料について粉体磁気特性を測定した。又これら
の試料を用いて次の様にして磁気テープをつくり、テー
プの磁気特性を測定した。結果を第1表に示す。
Examples and Comparative Examples The average major axis length is 1 μm and the average minor axis length is 0.04 μm.
m needle a -Fe1on 178 t 10! Ni ('#2 aqueous solution and IMOVJ concentration of Ou O7
2 aqueous solution was added and neutralized with NaOH. Then 100f/
7 (Sio2 equivalent) A 100-proof aqueous solution of sodium silicate was added and neutralized with HO7. It was then filtered, washed and dried at a temperature not exceeding 150°C. The ex obtained in this way
-Fe1on 200 f was reduced in a hydrogen flow of 5 J/min at the temperature shown in Table 1 for 7 hours. After the reduction was completed, the reactor was cooled to room temperature, and a mixed gas of 1% air and 99% nitrogen was added. The amount of air in the mixed gas was increased stepwise at intervals of about 30 minutes, and after 5 hours, the mixture was switched to air only. Magnetic powder was taken out of the reactor and used as a sample. The magnetic properties were measured. Furthermore, magnetic tapes were made using these samples in the following manner, and the magnetic properties of the tapes were measured. The results are shown in Table 1.

テープ磁気特性測定方法 下記成分をボールミル中で112時間1分散混練して、
磁性塗料をつくり、この塗料を14μ厚のポリエステル
フィルム上に転線後の厚さが4μになる様に撒布し、乾
燥し、カレンダー処理した後、50℃で96時間熱処理
した。このフィルムを所定の巾に裁断して磁気テープを
得た。
Method for Measuring Tape Magnetic Characteristics The following ingredients were dispersed and kneaded for 112 hours in a ball mill.
A magnetic paint was prepared, and this paint was spread on a polyester film having a thickness of 14 μm so that the thickness after wire transfer was 4 μm, dried, calendered, and then heat treated at 50° C. for 96 hours. This film was cut into a predetermined width to obtain a magnetic tape.

・試料              100 部・vA
eu(m化ビニル−酢酸ビニル 共重合体、米国UOO製品)    10 部・ニラボ
ラン5033       15 部(日本ポリウレタ
ン社製ポリオール) ・コロネートL            5 部(日本
ポリウレタン社製ポリインシアネート)・帯電防止剤 
            3 部−MよりK(メチルイ
ソブチルケトン)1oo 部・トルエン       
     100 部第1表に於て、A1〜8は実施例
であり、ム9〜17は比較例である。
・Sample 100 copies・vA
10 parts of eu (vinyl m-vinyl acetate copolymer, UOO product from the United States), 15 parts of Nilaboran 5033 (polyol manufactured by Nippon Polyurethane Co., Ltd.), 5 parts of Coronate L (polyincyanate manufactured by Nippon Polyurethane Co., Ltd.), antistatic agent
3 parts - 10 parts of K (methyl isobutyl ketone) from M toluene
100 copies In Table 1, A1-8 are examples, and A1-17 are comparative examples.

A1〜8とA9〜13を較べるとOuの入っているA1
〜8の方が消去効果が太きく t Cuの効果が見られ
る。一方A14と15はNiが入っていないためHcが
高く消去も悪い。A16はOuがFeに対して10M%
を越えた駅舎で、Rcが低くなりσr/σB 、 B”
r / Bmも低くなってしまい、好ましくない。A1
7はNiがFeに対して70M%を越えた場合でいずれ
も保磁力が低くなり角形比(σr/ aB 、 Br 
/ Bm )も低くなッテしまい好ましくない結果を示
した。
Comparing A1-8 and A9-13, A1 contains Ou.
8, the erasing effect is stronger and the effect of tCu can be seen. On the other hand, since A14 and A15 do not contain Ni, Hc is high and erasing performance is poor. In A16, O is 10M% of Fe.
At a station building that exceeds σr/σB, Rc becomes lower and B”
r/Bm also becomes low, which is not preferable. A1
7, when Ni exceeds 70M% of Fe, the coercive force decreases and the squareness ratio (σr/aB, Br
/Bm) also became low, showing unfavorable results.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、保磁力例700〜1200Oe
の範囲にあシ、既存のメタル対応以外のオーディオ機器
、ビデオ機器、デジタル用機器等にも使用できる強磁性
金属粉末を容易に得ることができる。
According to the method of the present invention, a coercive force of 700 to 1200 Oe
Within this range, it is possible to easily obtain ferromagnetic metal powder that can be used for audio equipment, video equipment, digital equipment, etc. other than those compatible with existing metals.

Claims (1)

【特許請求の範囲】 1 Ni20〜70モル%及びCu0.5〜10モル%
(いずれもFeに対して)を含み、保磁力(Hc)が7
00〜1200OeであるFeを基とする磁性粉末。 2 オキシ水酸化鉄、酸化鉄又はこれらに鉄以外の金属
を含有したものに、Ni化合物及びCu化合物を付着、
吸着あるいは沈澱させ、乾燥後還元することから成る、
Niを20〜70モル%及びCuを0.5〜10モル%
(いずれもFeに対して)含み、保磁力が700〜12
00Oeである磁性粉末の製造方法。
[Claims] 1 20 to 70 mol% Ni and 0.5 to 10 mol% Cu
(both relative to Fe), and has a coercive force (Hc) of 7
00-1200 Oe-based magnetic powder. 2. Attaching Ni compounds and Cu compounds to iron oxyhydroxide, iron oxide, or those containing metals other than iron,
consisting of adsorption or precipitation, reduction after drying,
20-70 mol% Ni and 0.5-10 mol% Cu
Contains (both relative to Fe) and has a coercive force of 700 to 12
A method for producing magnetic powder having an Oe rating of 00 Oe.
JP59130509A 1984-06-25 1984-06-25 Magnetic powder and its manufacture Granted JPS619553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130509A JPS619553A (en) 1984-06-25 1984-06-25 Magnetic powder and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130509A JPS619553A (en) 1984-06-25 1984-06-25 Magnetic powder and its manufacture

Publications (2)

Publication Number Publication Date
JPS619553A true JPS619553A (en) 1986-01-17
JPH0312125B2 JPH0312125B2 (en) 1991-02-19

Family

ID=15035982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130509A Granted JPS619553A (en) 1984-06-25 1984-06-25 Magnetic powder and its manufacture

Country Status (1)

Country Link
JP (1) JPS619553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457701A (en) * 1987-08-28 1989-03-06 Ishihara Mining & Chemical Co Manufacture of metallic magnetic powder for magnetic recording
US11116275B2 (en) 2013-04-19 2021-09-14 Adidas Ag Shoe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918605A (en) * 1982-07-23 1984-01-31 Mitsui Toatsu Chem Inc Manufacture of corrosion-proof iron powder for magnetic recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918605A (en) * 1982-07-23 1984-01-31 Mitsui Toatsu Chem Inc Manufacture of corrosion-proof iron powder for magnetic recording

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457701A (en) * 1987-08-28 1989-03-06 Ishihara Mining & Chemical Co Manufacture of metallic magnetic powder for magnetic recording
US11116275B2 (en) 2013-04-19 2021-09-14 Adidas Ag Shoe

Also Published As

Publication number Publication date
JPH0312125B2 (en) 1991-02-19

Similar Documents

Publication Publication Date Title
EP0717397B1 (en) Spindle-shaped magnetic ironbased alloy particles containing cobalt and iron as the main ingredients and process for producing the same
JPH0145202B2 (en)
JPS619553A (en) Magnetic powder and its manufacture
US4497654A (en) Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders
JPS62139803A (en) Production of ferromagnetic metallic powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
KR19990077521A (en) Spindle-shaped goethite particles and process for producing the same
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP3135391B2 (en) Metal magnetic powder and method for producing the same
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JPH032321B2 (en)
JPS619505A (en) Manufacture of magnetic metallic powder
JPS64801B2 (en)
JP3011221B2 (en) Method for producing acicular goethite particle powder
JPH08186015A (en) Metal magnetic particle
JP3166780B2 (en) Method for producing spindle-shaped goethite particles
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JP2965606B2 (en) Method for producing metal magnetic powder
JPH01115827A (en) Spindle-shaped goethite particle power and production thereof
JP2743007B2 (en) Spindle-shaped magnetic iron oxide particles and method for producing the same
JPS60262906A (en) Metallic magnetic powder and its manufacture
JP2704544B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JP2767048B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPS63151621A (en) Production of needle-like magnetic iron oxide particle powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term