JPS6195421A - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPS6195421A
JPS6195421A JP21701784A JP21701784A JPS6195421A JP S6195421 A JPS6195421 A JP S6195421A JP 21701784 A JP21701784 A JP 21701784A JP 21701784 A JP21701784 A JP 21701784A JP S6195421 A JPS6195421 A JP S6195421A
Authority
JP
Japan
Prior art keywords
current
transistor
collector
resistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21701784A
Other languages
Japanese (ja)
Other versions
JP2542804B2 (en
Inventor
Masami Kato
政美 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP59217017A priority Critical patent/JP2542804B2/en
Publication of JPS6195421A publication Critical patent/JPS6195421A/en
Application granted granted Critical
Publication of JP2542804B2 publication Critical patent/JP2542804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • G05F3/222Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/227Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the supply voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To keep the constant current characteristic of an output current even at the drop of power supply by dividing the collector current of the 1st transistor (TR) into the collector current of the 3rd TR and a current flowing into a resistor and determining the output current in accordance with the resistance value of the resistor. CONSTITUTION:When a current I1 flows into a reference current generating circuit 7, the collector currents of Trs 10, 11 are I1 respectively. The current I1 of the Tr10 is divided into a Tr12 and a resistor 14 and the current I1 of the Tr11 flows into a Tr13. When the resistance value of the resistor 14 is defined as R3, the collector current I2 of the Tr12 is I1-VBE/R3. Consequently, the collector current of the Tr13 also becomes I2. Therefore, difference current DELTAI=I2-I1=VBE/R3 is formed. The difference current DELTAI is made flow as the collector current of a Tr17 by a current mirror circuit 15. Therefore, the output current I0 of the constant current circuit is expressed by I0=DELTAI=VBE/R3. Since the voltage VBE between the base and emitter of the Tr12 is approximately fixed, the current I0 is fixed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、IC(集積回路)化に適し、低電源電圧でも
安定に炬電流馨発生することか出来る定′市流I!2回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention is a constant commercially available IC which is suitable for IC (integrated circuit) and is capable of stably generating electric current even at a low power supply voltage. Regarding two circuits.

(ロ)従来の技術 ダイオードとトランジスタと7用いる定雷、流回路が、
特開昭54−81760号公報に示さ几る如〈従来公知
である。この定電流回路は、第2図に示されろ如く、電
源(+■cc)とアースとの間に直列接続さ几た第1抵
抗(1)と第1及び第2ダイオード(2)及び(3)と
から成る直列回路と、ベースが前記第1抵抗111と第
1ダイオード(21との接続点に、コレクタが出力端子
(4)に、エミッタが第2抵抗(5)乞介してアースに
接げされたトランジスタ(6)とから成り、前記出力端
子(4)に定電流ケ得ろものである。しかして、第2図
の場合、前記出力端子(4)の出力電流I。は、■。=
VD/R,(ただし、■。
(b) Conventional technology diodes, transistors, and lightning current circuits using
As shown in Japanese Unexamined Patent Publication No. 54-81760, this is conventionally known. As shown in FIG. 2, this constant current circuit consists of a first resistor (1), first and second diodes (2), and ( 3), the base is connected to the connection point between the first resistor 111 and the first diode (21), the collector is connected to the output terminal (4), and the emitter is connected to the ground through the second resistor (5). It consists of a transistor (6) connected to the output terminal (4), and has a constant current at the output terminal (4).In the case of FIG. 2, the output current I of the output terminal (4) is .=
VD/R, (However, ■.

はダイオードの順方向電圧降下、R3は第2抵抗(5)
の抵抗値)と表わ丁ことが出来ろが、電源電圧が所定値
以上訴ろ間は、前記ダイオードの順方向電圧降下■。が
略一定となる為、前記出力を流■。
is the forward voltage drop of the diode, R3 is the second resistor (5)
However, as long as the power supply voltage exceeds a predetermined value, the forward voltage drop of the diode will occur. is approximately constant, so the above output is used.

が定電流になる。しかしながら、雷源′藏圧か所定値以
下に低下し、第1及び第2ダイオード(2)及び(3)
に流へる電流が減少すると、前記第1及び第2ダイオー
ド+21及び(3+の順方向電圧降下も減少し、前記出
力′iM流■。が減少1−る。実際には、電源電圧が約
1.5v程度に低下すると前記出力電流が定電流性?失
なって(ろ。
becomes a constant current. However, the pressure of the lightning source drops below a predetermined value, and the first and second diodes (2) and (3)
When the current flowing through the first and second diodes +21 and (3+) decreases, the forward voltage drop across the first and second diodes (+21 and (3+) also decreases, causing the output 'iM current (1-) to decrease.In reality, the power supply voltage is approximately When the voltage drops to about 1.5V, the output current loses its constant current property.

し→ 発明が解決しようとする問題点 上述の如く、第2図に示す如ぎ回路構成でを工、出力′
な流が電源電圧に依存し、′電源電圧の低下に応じて減
少τろので、特に1.5vの乾電池を電源として使用す
る機器(0,9V迄補償)に用いることが出来ないとい
う問題があった。
→ Problems to be Solved by the Invention As mentioned above, the circuit configuration shown in FIG.
Since the current depends on the power supply voltage and decreases as the power supply voltage decreases, there is a problem that it cannot be used in equipment that uses 1.5V dry batteries as a power supply (compensation up to 0.9V). there were.

四 問題点を解決でるだめの手段 本発明は、上述の点に鑑み成されたもので、電源電圧が
極度に低下した場合にも安定釦定電流を得ろことが出来
る定電流回路を提供する為、ベース及びエミッタが共通
接続された第1及び第2トランジスタと、コレクタが前
記第1トランジスタJ)コレクタに接続されたダイオー
ド接続型の第3トランジスタと、該第3トランジスタと
ミラー関係に接続さ几ろとともに、コレクタが前記第2
トランジスタのコレクタに接続さ几た第4トランジスタ
と、前記第3トランジスタのコレクタ・エミッタ間に並
列接続された抵抗と、前記第2及び第4トランジスタの
コレクタ電流の差電流乞取り出す電流ミラー回路と7備
える点Z特徴とする。
4. Means to Solve the Problems The present invention has been made in view of the above points, and aims to provide a constant current circuit that can obtain a stable constant current even when the power supply voltage is extremely low. , first and second transistors whose bases and emitters are commonly connected; a diode-connected third transistor whose collector is connected to the collector of the first transistor; and a third transistor connected in a mirror relationship with the third transistor. and the collector is connected to the second
a fourth transistor connected to the collector of the transistor, a resistor connected in parallel between the collector and emitter of the third transistor, and a current mirror circuit for extracting the difference current between the collector currents of the second and fourth transistors; The provided point Z is a feature.

+;I′4  作用 本発明に依れば、第1トランジスタのコレクタ電流が第
3トランジスタのコレクタ電流と抵抗に流れる電流とに
分流され、電流反転回路の出力端に得られる出力定電流
が前記抵抗の値に応じて定まるので、宮源雷、圧の低下
時にも前記出力炬′肛流の定電流性が保たれろ。
+;I'4 Effect According to the present invention, the collector current of the first transistor is divided into the collector current of the third transistor and the current flowing through the resistor, and the output constant current obtained at the output end of the current inverting circuit is as described above. Since it is determined according to the value of the resistance, the constant current property of the output current should be maintained even when the pressure decreases.

(へ)実施例 第1因は、本発明の一実施例を示−f回路間で、(7)
はダイオード接続型のトランジスタ(8)と抵抗(9)
とから成る基準電流発生回路、00はベース及びエミッ
タが前記ダイオード接続型のトランジスタ(8)と共通
接続されたPNP型の第1トランジスタ、(l II 
41ベース及びエミッタが前記第1トランジスタ+11
1と共通接続されたPNP型の第2トランジスタ、(i
21はコレクタが前記第1トランジスタOijのコレク
タに接続されるとともに、ベース・コレクタが短絡され
てダイオード接続型と成されたNPN型の第3トランジ
スタ、0暗エコレクタが前記第2トランジスタ(Ill
のコレクタに接続さnるとともに、ベース及びエミッタ
が前記第3トランジスタα2のベース及びエミッタとそ
れぞれ共通接続されたNPN型の第4トランジスタ、u
4)は前記第3トランジスタ0zのコレクタ・エミッタ
間に並列接続された抵抗、及びUはNPN型の第5及び
第6トランジスタ161及びαηから成り、前記第2ト
ランジスタα1)のコレクタ電流と前記第4トランジス
タ(131のコレクタ電流との差電流7反転して出力端
子いに導出する電流ミラー回路である。
(f) Example The first factor shows an example of the present invention. Between the −f circuit, (7)
are a diode-connected transistor (8) and a resistor (9)
00 is a PNP-type first transistor whose base and emitter are commonly connected to the diode-connected transistor (8), (l II
41 base and emitter of the first transistor +11
1 and a PNP type second transistor (i
Reference numeral 21 denotes a third NPN type transistor whose collector is connected to the collector of the first transistor Oij and whose base and collector are short-circuited to form a diode-connected type;
a fourth NPN transistor, u, whose base and emitter are commonly connected to the base and emitter of the third transistor α2, respectively;
4) is a resistor connected in parallel between the collector and emitter of the third transistor 0z, and U is NPN type fifth and sixth transistors 161 and αη, and the collector current of the second transistor α1) and the This is a current mirror circuit that inverts the difference current from the collector current of four transistors (131) and outputs it to the output terminal.

次に動作を説明する。いま、′rIL源電圧(+Vcc
)が所建値以上に高(、基準電流発生回路網1の抵抗(
9)に所定の電流工、が流れているとてれば、前記基準
電流発生回路(2)のトランジスタ(81と第1及び第
2トラ:/ジスタG(J及び(Illとが電流ミラー接
続さ几ており、そのエミツタ面積比が1:1に設定され
ている為に、前記第1及び第2トランジスタσI及び0
υのコレクタ電流もそれぞれ工、となる。そして、前記
基準電流発生回路σ)の抵抗(9)の値’t R2とて
れば、前記電流■1は、 となる。しかして、前記第1トランジスタ0Iのコレク
タ電流11は、第3トランジスタO2と抵抗(14)と
に分流し、前記第2トランジスタ旧)のコレクタ電流I
、は、第4トランジスタα3に流入する。その時、前記
抵抗0滲の値をR3と丁れば、前記第3トラ/ジスタ(
12のコレクター「1流I2は、■ I、 = I、−イV     ・・・・・・・・・・
・・(21となる。前記第3トランジスタrizと前記
第4トランジスタ(13iとは、電流ミラー関係に接続
されており、そのエミツタ面積比が1:1に設定さ几て
いるので、前記1fJ3トランジスタUに工、のコレク
タ電流が流れると、前記第4トランジスタ(131のコ
レクタ電流もI、になろ。その為、前記第2トランジス
タ旧lのコレクタ竜流工、と前記第4トランジスタ(1
31のコレクタ電流I2 との差電流△Ik工、ΔI 
= I、 −I、 =鳥 ・・・・・・・・・・・・・
・・(3)R1 となる。前記差電流Δ工は、電流ミラー回路f151を
y1反する第5トランジスタ06)のコレクタに流入で
る。そして、前記電流ミラー回路りを構成する第5及び
第6トランジスター161及びaηのエミツタ面積比を
1:1とすれば、前記電流ミラー回路時を構成する前記
第6トランジスタC1nのコレクタ電流モΔIになる。
Next, the operation will be explained. Now, 'rIL source voltage (+Vcc
) is higher than the stated value (, the resistance of the reference current generation circuit network 1 (
9), the transistor (81) of the reference current generating circuit (2) and the first and second transistors G (J and (Ill) are connected in a current mirror connection. Since the emitter area ratio is set to 1:1, the first and second transistors σI and 0
The collector current of υ is also . If the value 'tR2 of the resistor (9) of the reference current generating circuit σ) is taken, the current 1 becomes as follows. Therefore, the collector current 11 of the first transistor 0I is divided into the third transistor O2 and the resistor (14), and the collector current 11 of the second transistor 0I is divided into the third transistor O2 and the resistor (14).
, flows into the fourth transistor α3. At that time, if the value of the resistance 0 is equal to R3, then the third transistor/distor (
12 collectors ``1st class I2 is ■ I, = I, -iV ・・・・・・・・・・・・
(21) The third transistor riz and the fourth transistor (13i) are connected in a current mirror relationship, and their emitter area ratio is set to 1:1, so the 1fJ3 transistor When the collector current of the fourth transistor (131) flows through U, the collector current of the fourth transistor (131) also becomes I. Therefore, the collector current of the second transistor (131) and the fourth transistor (131)
31 collector current I2 and the difference current △Ik, ΔI
= I, -I, = bird ・・・・・・・・・・・・
...(3) R1. The difference current ΔΔ flows into the collector of the fifth transistor 06 which is opposite to y1 through the current mirror circuit f151. If the emitter area ratio of the fifth and sixth transistors 161 and aη constituting the current mirror circuit is 1:1, the collector current modulus ΔI of the sixth transistor C1n constituting the current mirror circuit is Become.

従って、第1図の定電流回路の出方富、流工。は、 ■ 1、=△I=、11      町・川・・・山・(4
)となる。
Therefore, the output of the constant current circuit in Figure 1 is complicated. ■ 1, = △I =, 11 Town/river/mountain/(4
).

第1図の定電流回路の場合、第(4)式から明らかな如
く、出力電流I。は抵抗(141の値R3と第3トラン
ジスタa2のベース・エミッタ間電圧■、□と忙よって
決まる。また、電源とアースとの間には、前記第3トラ
ンジスタ任zのペースφエミッタ路及び第2トランジス
タGOのコレクタ・エミツタ路が直列接続されろ構成で
ある為、電源電圧< + vce )が(V、、 +V
。、〕(ただし、■、ヨは第3トランジスタ112!の
ベースーエばツタ間雷圧% VClmは第2トランジス
タ03のコレクターエミッタ間飽和電圧)ニ低下する迄
前記第3トランジスタ任2のベース・エミッタ間電圧■
、が略一定値7保っ。通常v*t= 0.6 L Vc
、、 = 0.2 V ”C−するカラ、■、十vc、
8=o、svとなり、1.5Vg源の補償下151(0
,9V)迄前記第3トランジスタu21のベース・エミ
ッタ間電圧■、は一定となり、その結果、出力電流f0
も一定となる。
In the case of the constant current circuit shown in FIG. 1, as is clear from equation (4), the output current I. is determined by the value R3 of the resistor (141) and the base-emitter voltages ■, □ of the third transistor a2. Also, between the power supply and the ground, there is a Since the collector-emitter paths of the two transistors GO are connected in series, the power supply voltage < + vce ) is (V,, +V
. , ] (where ■, y is the base-emitter lightning voltage % of the third transistor 112!, and VClm is the collector-emitter saturation voltage of the second transistor 03). Voltage■
, maintains an approximately constant value of 7. Normal v*t= 0.6 L Vc
,, = 0.2 V "C-surukara, ■, 10vc,
8=o, sv, and under compensation of 1.5Vg source 151(0
, 9V), the base-emitter voltage ■, of the third transistor u21 remains constant, and as a result, the output current f0
is also constant.

第3図は、第1図及び第2図の電源筒、圧(Vゆ)対出
力を流(Io)の関係を示τもので、実線は第1図の特
性、一点鎖線は第2図の特性である。第2図の従来回路
の場合、電源電圧が約1.5V迄低下すると、出力1:
流I。の定電流性が保てなくなるが、第1図の実施例の
場合は、電源電圧が約0゜8VK低下″′fる迄定電流
性を保つことが出来る。
Figure 3 shows the relationship between pressure (V) versus output and current (Io) for the power supply tubes in Figures 1 and 2, where the solid line shows the characteristics in Figure 1, and the dashed line shows the characteristics in Figure 2. It is a characteristic of In the case of the conventional circuit shown in Figure 2, when the power supply voltage drops to approximately 1.5V, the output 1:
Style I. However, in the case of the embodiment shown in FIG. 1, the constant current property can be maintained until the power supply voltage drops by about 0°8 VK'''f.

第41図は、本発明の別の実施例を示すもので、電源(
−トV、c)と第1及び第2トランジスタロl及び(1
1)の共通ベースとの間に第1及び第2シヨツトキーダ
イオード<1+3及びん乞接続するとともに、前記第1
及び第2トランジスタ0伊及び(11)のエミッタと電
源との間f抵抗CI!IIを挿入した点乞特徴と丁−ろ
FIG. 41 shows another embodiment of the present invention, in which the power supply (
- V, c) and the first and second transistors L and (1
1), the first and second shot key diodes are connected to the common base as shown in FIG.
and a resistor CI! between the emitters of the second transistors 0 and (11) and the power supply. A special feature with II inserted.

尚、第4図において、第1図と同一の回路素子忙は同一
の図番欠付し、説明を省略でろ。
In FIG. 4, the same circuit elements as those in FIG. 1 have the same numbers omitted and their explanations will be omitted.

第1図の場合、定電流胞路の出力電流I。は、電源電圧
の変動に関わらす略−足に保たれる。しかしながら、入
力(1111電流11は、電源電圧の変動に応じて大き
く変化する。その為、第1図の定電流回路は、低電源電
圧時の動作については問題ないが、電源電圧が上昇した
とき無効電流が増大し、低消費電流化が計れなくなり、
特に乾電池を電源とする場合には問題が生じろ。それに
対し、第4図の定電流回路は、第1及び第2シヨツトキ
ーダイオード(1!J及び(イ)を用いているので、入
力側電流I、の減少を計ることが出来、低消費電流化を
計ることが出来る。第4図の場合、第1及び第2シヨツ
トギーダイオードU及び翰の順方向電圧降下をVDl、
抵抗i2Dの値をR3と丁れば、第1トランジスタ(+
01のコレクタ電流工、は、I、=主31]五   ・
・・・・・・・・・・・・・・(5)R4 トナ7)。L 711’ L、 テ、V、、 = 0.
4 V、 V、、 =0.6 Vと丁れば、前記第(5
)式は、 ■・=10R4・・・・・・・・・・・・・・・+61
となり、抵抗(211の値R4を適切に設定丁nば、前
記コレクタ電流■、を電源電圧と関係しない所定値に定
めろことが出来る。従って、第1図の定電流回路に比べ
、第4図の定電流回路は、低消費電流化が計n 2)。
In the case of FIG. 1, the output current I of the constant current cell channel. is kept at approximately -200 volts regardless of fluctuations in the power supply voltage. However, the input (1111 current 11) changes greatly depending on fluctuations in the power supply voltage.Therefore, the constant current circuit shown in Figure 1 has no problem with operation at low power supply voltages, but when the power supply voltage increases Reactive current increases, making it impossible to reduce current consumption,
This is particularly problematic when using batteries as a power source. On the other hand, the constant current circuit shown in Fig. 4 uses the first and second shot key diodes (1! In the case of Fig. 4, the forward voltage drop of the first and second shotgun diodes U and the wire is VDl,
If the value of the resistor i2D is equal to R3, then the first transistor (+
01 collector electrician, I, = main 31] 5 ・
・・・・・・・・・・・・・・・(5) R4 Tona 7). L 711' L, Te, V,, = 0.
4 V, V,, =0.6 V, the above (5th
) formula is: ■・=10R4・・・・・・・・・・・・・・・+61
By appropriately setting the value R4 of the resistor (211), the collector current can be set to a predetermined value that is independent of the power supply voltage. Therefore, compared to the constant current circuit of FIG. The constant current circuit shown in the figure has a total of low current consumption (n2).

尚、当然のことながら、第4図の定を光回路は、出力電
流I。が低′、W@富圧迄一定であるという第1図の特
徴を有する。
It should be noted that, as a matter of course, the constant in FIG. 4 is the output current I of the optical circuit. It has the characteristic shown in Fig. 1 that W is constant up to low' and W@rich pressures.

(ト)発明の効果 以上述べた如く、本発明に依れば、出力1■流が低重、
源電圧時においても一定となる定電流回路を提供出来、
土の結果、1.5vの乾電池で安定に動作する定電流回
路乞提供出来ろ。
(g) Effects of the invention As mentioned above, according to the present invention, the output 1
It is possible to provide a constant current circuit that remains constant even at the source voltage,
As a result, please provide a constant current circuit that operates stably with a 1.5v dry battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す回路図、第2図は従
来の定′a流回路を水子回路図、第3図は本発明の説明
九供する為の特性図、及び第4図は本発明の別の実施例
を示す回路図である。 主な図番の説明 Q13 (団、02、Q31・・・第1、第2、第3、
第4トランジスタ、 041・・・抵抗、 (151・
・・電流ミラー回路。 出願人 三洋電機株式会社 外1名 代哩人 弁塀士  佐 野 静 夫 第1図         第2 r’、’1第3図 電纜@凡(Vcc)
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a water-conductor circuit diagram of a conventional constant a current circuit, and FIG. 3 is a characteristic diagram for explaining the present invention. FIG. 4 is a circuit diagram showing another embodiment of the present invention. Explanation of main drawing numbers Q13 (Group, 02, Q31...1st, 2nd, 3rd,
4th transistor, 041...resistor, (151...
...Current mirror circuit. Applicant: Sanyo Electric Co., Ltd. Representative: Shizuo Sano Figure 1 Figure 2 r', '1 Figure 3 Power line @ Fan (Vcc)

Claims (1)

【特許請求の範囲】[Claims] (1)ベース及びエミッタが共通接続された第1及び第
2トランジスタと、コレクタが前記第1トランジスタの
コレクタに接続されたダイオード接続型の第3トランジ
スタと、該第3トランジスタとミラー関係に接続される
とともに、コレクタが前記第2トランジスタのコレクタ
に接続された第4トランジスタと、前記第3トランジス
タのコレクタ・エミッタ間に並列接続された抵抗と、前
記第2及び第4トランジスタのコレクタ電流の差電流を
取り出す電流ミラー回路とから成り、該電流ミラー回路
の出力端に電源電圧に依存しない定電流を発生する様に
した定電流回路。
(1) first and second transistors whose bases and emitters are commonly connected; a diode-connected third transistor whose collector is connected to the collector of the first transistor; and a third transistor which is connected in a mirror relationship to the third transistor. and a fourth transistor whose collector is connected to the collector of the second transistor, a resistor connected in parallel between the collector and emitter of the third transistor, and a difference current between the collector currents of the second and fourth transistors. A constant current circuit is constructed of a current mirror circuit that takes out the current, and is configured to generate a constant current independent of the power supply voltage at the output terminal of the current mirror circuit.
JP59217017A 1984-10-16 1984-10-16 Constant current circuit Expired - Lifetime JP2542804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217017A JP2542804B2 (en) 1984-10-16 1984-10-16 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217017A JP2542804B2 (en) 1984-10-16 1984-10-16 Constant current circuit

Publications (2)

Publication Number Publication Date
JPS6195421A true JPS6195421A (en) 1986-05-14
JP2542804B2 JP2542804B2 (en) 1996-10-09

Family

ID=16697519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217017A Expired - Lifetime JP2542804B2 (en) 1984-10-16 1984-10-16 Constant current circuit

Country Status (1)

Country Link
JP (1) JP2542804B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680888A1 (en) * 1991-08-28 1993-03-05 Matra Communication Reference current generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436286A (en) * 1977-08-25 1979-03-16 Nippon Kayaku Co Ltd Novel cephalosporanic acid derivative, its optically active isomer, and its preparation
JPS5436287A (en) * 1977-08-25 1979-03-16 Shionogi & Co Ltd Thiadiazolylthiooxacephalosporin
JPS59135519A (en) * 1983-01-21 1984-08-03 Toshiba Corp Current source circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436286A (en) * 1977-08-25 1979-03-16 Nippon Kayaku Co Ltd Novel cephalosporanic acid derivative, its optically active isomer, and its preparation
JPS5436287A (en) * 1977-08-25 1979-03-16 Shionogi & Co Ltd Thiadiazolylthiooxacephalosporin
JPS59135519A (en) * 1983-01-21 1984-08-03 Toshiba Corp Current source circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680888A1 (en) * 1991-08-28 1993-03-05 Matra Communication Reference current generator

Also Published As

Publication number Publication date
JP2542804B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
CN108037791B (en) A kind of band-gap reference circuit of no amplifier
JPS6365166B2 (en)
JPH0152783B2 (en)
JPS635923B2 (en)
CN114578891A (en) Circuit capable of reducing temperature influence
JPS6195421A (en) Constant current circuit
JPH0225561B2 (en)
JPH08185236A (en) Reference voltage generating circuit
CN116896138B (en) Low-voltage self-starting circuit structure
KR20000009310A (en) Bias current circuit for operating in low voltage
JPH07146727A (en) Low-voltage reference voltage generation circuit
JPH0413692Y2 (en)
JPH07202598A (en) Voltage control amplifier
CN118331374A (en) Band gap reference source circuit
JP3526484B2 (en) High input impedance circuit
JPS6346845B2 (en)
JPS60124107A (en) Amplifier circuit
JPH0477329B2 (en)
JPS5831422A (en) Transistor circuit
JP2733843B2 (en) Constant current source circuit
JPS60132408A (en) Variable gain circuit
JPH0666044B2 (en) Integrated power supply
JPH022545B2 (en)
JPS63173107A (en) Constant current circuit
JPS5876918A (en) Constant-voltage circuit