JPS619521A - Manufacture of grain oriented silicon steel sheet superior in surface property and having high magnetic flux density, low iron loss - Google Patents

Manufacture of grain oriented silicon steel sheet superior in surface property and having high magnetic flux density, low iron loss

Info

Publication number
JPS619521A
JPS619521A JP12914084A JP12914084A JPS619521A JP S619521 A JPS619521 A JP S619521A JP 12914084 A JP12914084 A JP 12914084A JP 12914084 A JP12914084 A JP 12914084A JP S619521 A JPS619521 A JP S619521A
Authority
JP
Japan
Prior art keywords
silicon steel
annealing
slab
hot
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12914084A
Other languages
Japanese (ja)
Other versions
JPS6242969B2 (en
Inventor
Masao Iguchi
征夫 井口
Shigeko Sujita
筋田 成子
Tomoo Tanaka
田中 智夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12914084A priority Critical patent/JPS619521A/en
Publication of JPS619521A publication Critical patent/JPS619521A/en
Publication of JPS6242969B2 publication Critical patent/JPS6242969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain extremely stably the titled grain oriented silicon steel by condensing Mo (compound) to a silicon steel slab surface layer having a specified component compsn., then heating, hot rolling, cold rolling, next applying primary recrystallization treatment and final finishing annealing to said material. CONSTITUTION:A silicon steel slab contg. by weight 0.01-0.06% C, 3.2-4.5% Si, 0.050-0.2% Mn, 0.008-0.1% Se, 0.003-0.1% Mo and 0.005-0.1% Sb is manufactured. Next, inorganic compound (e.g. CuMoO3, H2MoO3, etc.) contg. Mo is coated uniformly on the surface of the slab, said body is heated, then hot rolled to obtain the hot rolled plate having usually about 2-5mm. thickness. Next the hot rolled plate is homogenizing annealed then cold rolled >=2 times interposing intermediate annealing at 850-1,000 deg.C to the final product thickness (usually 0.3mm. thickness), then subjected to primary recrystallization annealing applied also as decarbonization, further subjected to the final finishing annealing. As the result, the grain oriented silicon steel sheet in which secondary recrystallized grain having {110}<001> orientation is developed is obtained.

Description

【発明の詳細な説明】 (技術分野) 高磁束密度、低鉄損の一方向性けい素鋼板の製造に関連
してこの明細書で述べる技術内容は、上記性能に加えと
くに表面性状の改善についての開発成果を提案するとこ
ろにある。
[Detailed Description of the Invention] (Technical Field) The technical contents described in this specification related to the production of unidirectional silicon steel sheets with high magnetic flux density and low core loss are related to the improvement of surface properties in addition to the above performance. The aim is to propose development results.

(技術的背景) 一方向性けい素鋼板は主として変圧器、その他の電気機
器鉄芯として利用され、その磁化特性が優れていること
、すなわち鉄損(W1?/soで代表される)の低いこ
とが要求されている。
(Technical background) Unidirectional silicon steel sheets are mainly used as iron cores in transformers and other electrical equipment, and have excellent magnetization characteristics, that is, low iron loss (represented by W1?/so). That is required.

このためには、第一に鋼板中の2次再結晶粒のぐ001
>方位粒を圧延方向に高度に揃えることが必要であり、
第二には、最終製品の鋼中に存在する不純物や析出物を
できるだけ減少させる必要がある。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet must be
>It is necessary to highly align the oriented grains in the rolling direction,
Secondly, it is necessary to reduce as much as possible the impurities and precipitates present in the final steel product.

これらの点の綿密な留意の下で製造される一方向性けい
素鋼板は今日まで多くの改善努力によってその鉄損値も
年を追って改善され、最近では板厚0−80+siの製
品でW”/soの値が1.05Vkg程度に低い鉄損値
のものが製造されている。
Unidirectional silicon steel sheets manufactured under careful consideration of these points have been improved over the years through many improvement efforts, and recently products with a thickness of 0-80+si have achieved W" Products with a low core loss value of /so of about 1.05 Vkg are manufactured.

しかし数年前のエネルギー危機を境にして電力摘失のよ
り少ない電気機器を求める傾向が一段と強まり、それら
の鉄芯材料としてさらに鉄損の低い一方向性けい素鋼板
の製造が要請されるようになっている。
However, after the energy crisis a few years ago, the trend for electrical equipment with less power loss became even stronger, and there was a demand for the production of unidirectional silicon steel sheets with even lower iron loss as the iron core material for these devices. It has become.

(従来技術とその問題点) ところで一方向性けい素鋼板の鉄損を下げるには、 ・Si含有量を高める、 ・製品板厚を薄くする、 ・2次再結晶を細かくする、 ・不純物含有量を低減する、 ・(110}<001>方位の2次再結晶粒をより高度
に揃える など、主に冶金学的な手法が一般に知られているが、こ
れらの手法は、現行の生産手段での限界値に達し、もは
やそれ以上の改善は極めて難しく、たとえ多少の改善が
認められてもその努力の割には鉄損改善の実効は僅かと
なるような状況になって来ている。
(Prior art and its problems) By the way, in order to reduce the core loss of unidirectional silicon steel sheets, there are several ways to: - Increase the Si content. - Reduce the thickness of the product. - Make secondary recrystallization finer. - Contain impurities. Mainly metallurgical methods are generally known, such as reducing the amount and aligning the secondary recrystallized grains in the (110}<001> orientation to a higher degree, but these methods are not compatible with current production methods. The iron loss has reached its limit value, and it is extremely difficult to improve it any further, and even if some improvement is recognized, the situation has reached such a point that the effective improvement in iron loss will be small compared to the efforts made.

これらの方法とは別に特公昭54−28647号公報に
開示されているように鋼板表面に2次回゛ 結晶阻止領
域を形成させることにより、2次再結晶粒を細粒化させ
ることが提案されている。しかしこの技術は2次再結晶
粒径の制御が安定していないため、実用的とは言いがた
い。
Apart from these methods, as disclosed in Japanese Patent Publication No. 54-28647, it has been proposed to make secondary recrystallized grains finer by forming a secondary crystal blocking region on the surface of a steel sheet. There is. However, this technique cannot be said to be practical because control of the secondary recrystallized grain size is not stable.

一方、特公昭58−5968号公報には2次再結晶後の
鋼板の表面にボールペン状小球によって微小歪を導入す
ることにより磁区の幅を微細化し、鉄損を低減する技術
、さらに特公昭52−2252号公報には最終製品板表
面に圧延方向とほぼ直角にレーザービームを微陽間隔に
照射し、鋼板表面に高転位密度領域を導入することによ
り磁区の幅を微細化し、この鉄損を低減する技術も続い
て提案されている。そしてまた特開昭57−18881
0号公報では放電加工により鋼板表面に微小歪を導入し
て磁区幅を微細化し、鉄損な低減する同様な技術が提案
されている。
On the other hand, Japanese Patent Publication No. 58-5968 discloses a technique for reducing iron loss by introducing micro-strain into the surface of a steel plate after secondary recrystallization using ballpoint pen-shaped balls to reduce iron loss. 52-2252, the iron loss is reduced by irradiating the surface of the final product sheet with a laser beam at slight intervals almost perpendicular to the rolling direction to introduce high dislocation density regions on the steel sheet surface to refine the width of the magnetic domain. Techniques to reduce this have also been subsequently proposed. And also Japanese Patent Publication No. 57-18881
No. 0 proposes a similar technique in which minute strain is introduced into the surface of a steel plate by electrical discharge machining to refine the magnetic domain width and reduce iron loss.

これら8種類の方法はいずれも2次再結晶後の鋼板の地
鉄表面に微小な塑性ひずみを導入することにより、磁区
幅を微細化して鉄損の低減を図るものであって、均しく
実用的であり、かつ鉄損低減効果も優れているが、鋼板
の打抜き加工、剪断加工や巻き加工後の歪取り焼鈍やそ
の他コーティングの焼付は処理の如き熱処理によって塑
性ひずみ導入による効果が減殺される欠点を伴う。なお
コーティング処理後に微小な塑性ひずみを導入する場合
は、絶縁性を維持するために絶縁コーティングを再塗装
せねばならず、ひずみ付与工程、再塗装工程と、工程の
大幅増加になりコストアップをもたらす。
All of these eight methods aim to reduce iron loss by refining the magnetic domain width by introducing minute plastic strain to the surface of the base steel of the steel sheet after secondary recrystallization, and are uniformly practical. However, the effect of introducing plastic strain is reduced by heat treatment such as strain relief annealing after punching, shearing, and winding of steel sheets, and baking of other coatings. With drawbacks. In addition, when introducing minute plastic strain after the coating process, the insulating coating must be repainted to maintain insulation properties, which significantly increases the number of processes such as the strain applying process and the repainting process, resulting in an increase in costs. .

以上一般的な、そして最近の低鉄損一方向性けい素鋼板
の一連の開発動向について略述したように、実用上問題
なしとしない。
As outlined above, there are no practical problems with the series of development trends of general and recent low core loss unidirectional silicon steel sheets.

とくに最近では省エネの観点から通常の製品板厚で′あ
る0、80.0.85 m厚の製品に加えて、さきに触
れたような製品板厚の薄い0.28fL1N厚、又はQ
、2Qsm厚の製品がさかんに使用されるようになって
きているが、このような状況下において低鉄損一方向性
けい素鋼板をさらに有効に製造するための開発研究は、
素材成分から最終の被膜処理工程に至るまでの諸工程の
すべてにつき根本的な再検討が必要となってきたのであ
る。
In particular, recently, from the perspective of energy saving, in addition to products with a normal product board thickness of 0.80.
, 2Qsm thick products are increasingly being used, but under these circumstances, development research to more effectively manufacture low iron loss unidirectional silicon steel sheets is required.
It has become necessary to fundamentally reexamine all processes, from material composition to the final coating treatment process.

以前から発明者らは低鉄損を有する一方向性けい素鋼板
を製造するためには、現行8.Owt%(以下単に%で
示す)のSi量をさらに増加させて電気抵抗を高めて鉄
損を低くする方法を採用している。しかしながら通常S
i含有量が8.2%以上においては、熱間ぜい化が顕著
となり、スラブ加熱あるいは熱間圧延途中で熱間割れを
生じ、この表面割れが熱延以後の2回の冷間圧延と4回
に及ぶ焼鈍処理後までも残存して、製品の表面性状が著
しく劣化するという重大な間N(井ロ、伊藤:日本金属
学会会報、Vozz8.(19s4)、P。276参照
)について検討を進めた。
In order to manufacture a grain-oriented silicon steel sheet with low core loss, the inventors have long been working on the current 8. A method is adopted in which the amount of Si in Owt% (hereinafter simply expressed as %) is further increased to increase electrical resistance and lower iron loss. However, usually S
When the i content is 8.2% or more, hot embrittlement becomes noticeable and hot cracking occurs during slab heating or hot rolling, and this surface cracking occurs during the two cold rollings after hot rolling. A study was conducted on the serious problem of N, which remains even after four annealing treatments and significantly deteriorates the surface properties of the product (Iro, Ito: Bulletin of the Japan Institute of Metals, Vozz 8. (19s4), p. 276). advanced.

この問題を解決するため発明者らは、さきに特・顆間5
8−90040号明細書において8.1〜4.5%の高
けい素鋼中に0.005〜゛0,1%のMoを添加し、
さらにこのけい素鋼スラブの加熱炉への装入を800℃
以上の高温にすることにより、表面性状および磁気特性
の優れた一方向性けい素鋼板の製造方法を提案した。こ
の手法の採用により高けい素鋼中の表面性状は大幅に改
善されたが、まだスラブ加熱温度が高い場合又はけい素
鋼中のSe又はsb含有量が高い場合において依然とし
て製品の表面性状の劣化がしばしば起り、まだ大きな問
題として残されている。
In order to solve this problem, the inventors first developed a special
In the specification of No. 8-90040, 0.005 to 0.1% Mo is added to 8.1 to 4.5% high silicon steel,
Furthermore, this silicon steel slab was charged into a heating furnace at 800°C.
We proposed a method for manufacturing unidirectional silicon steel sheets with excellent surface properties and magnetic properties by increasing the temperature to the above temperature. Although the surface quality of high-silicon steel has been significantly improved by adopting this method, the surface quality of the product still deteriorates when the slab heating temperature is high or when the Se or sb content in silicon steel is high. occurs frequently and remains a major problem.

(発明の動機) このような状況下において発明者らは、8.2%以上の
高けい素鋼中で製品の表面性状が良好な状況をいかに安
定して作り出すことができるかについて数多くの試行実
験を実施したところその結果00.01〜0.06%、
st 8.2〜4.5%、li[n 0.050%を含
みかつ、Se 0.008〜0.1%、Moo、008
〜0.1%およびSb0.005〜0.1%を含有する
けい素鋼スラブの表面層にMoあるいはMo化合物を濃
化させることにより表面性状が良好で、而も高磁束密度
で低鉄損を有する一方向性けい素鋼板が製造できること
を見出し、この発明を完成するに至った。
(Motivation for the invention) Under these circumstances, the inventors conducted numerous trials to find out how to stably create a situation in which the surface quality of the product is good in high-silicon steel of 8.2% or more. When the experiment was conducted, the results were 00.01-0.06%,
st 8.2-4.5%, li[n 0.050% and Se 0.008-0.1%, Moo, 008
By enriching Mo or Mo compounds in the surface layer of silicon steel slab containing ~0.1% and Sb0.005~0.1%, it has good surface quality, high magnetic flux density and low core loss. The inventors have discovered that it is possible to produce a unidirectional silicon steel sheet having the following properties, and have completed this invention.

(発明の構成) この発明は、00.01〜0.06%。(Structure of the invention) This invention is 00.01 to 0.06%.

si 8.2〜4.5%。si 8.2-4.5%.

In 0.050〜0.2%、を含みかつ、Se 0.
008〜0.1%。
Contains In 0.050-0.2% and Se 0.050-0.2%.
008-0.1%.

Moo、008〜0.1%および Sb0.005〜0.1% を含有するけい素鋼スラブを加熱した後熱間圧延を施し
て熱延板となし、次いでこの熱延板を均一化焼鈍と中間
焼鈍を挾む2回以上の冷延を施して最終製品厚の冷延板
となしその後、脱炭を兼ねた1次再結晶焼鈍を施し、さ
らに最終仕上焼鈍を施して(110}<001>方位の
2次再結晶粒を発達させる一方向性けい5till板の
製造方法において、前記スラブの表面層にMoあるいは
Mo化合物を濃化させることを特徴とする表面性状の優
れた高磁束密度、低鉄損一方向性けい素鋼板の製造方法
である。
A silicon steel slab containing Moo, 008-0.1% and Sb 0.005-0.1% is heated and then hot-rolled to obtain a hot-rolled sheet, and then this hot-rolled sheet is subjected to homogenization annealing. Cold rolling is performed two or more times with intermediate annealing in between to obtain a cold rolled sheet with the final product thickness.After that, primary recrystallization annealing is performed which also serves as decarburization, and final finish annealing is performed (110}<001 A method for producing a unidirectional Si5till plate that develops secondary recrystallized grains in the > orientation, characterized by enriching Mo or a Mo compound in the surface layer of the slab, with high magnetic flux density and excellent surface properties; This is a method for producing a low iron loss unidirectional silicon steel sheet.

以下この発明を由来するに至った実験結果に基づいて具
体的に説明する。
Hereinafter, this invention will be specifically explained based on the experimental results that led to its origin.

C0,041%、Si8.00%、 Mn 0.065
% 、 Be0.018%およびSb0.025%を含
有する鋼塊(A)。
C0,041%, Si8.00%, Mn 0.065
%, steel ingot (A) containing 0.018% Be and 0.025% Sb.

co、o4o%1sj−8,00%+ In o、o 
6 B %を含みSe0.018%、 No o、Oi
a%および3b0.025%を含有する鋼塊(B)。
co, o4o%1sj-8,00%+ In o, o
6 B%, Se0.018%, No o, Oi
Steel ingot (B) containing a% and 0.025% of 3b.

00.048%、si、8.42%、Mn0.072%
を含みかつSe0.019%、 Sb 0.028%を
含有する鋼塊(0)ならびは C0,044%、 Si 8.48%を含みSe0.0
19%。
00.048%, si, 8.42%, Mn0.072%
Steel ingot (0) containing 0.019% of Se and 0.028% of Sb, and 0.044% of C, 8.48% of Si and 0.0
19%.

Moo、014%およびSbQ、o2a%を含有する鋼
塊(D) の4種類(すべて100に9wi塊)を50間厚のスラ
ブとした。そのスラブの表面に研磨を施しスケール全除
去シタ後(3aMo0.17)希薄水溶液(0−1mo
l/l )をスラブ両面に59/+2の割合で塗布した
。また比較のために塗布しないままの各スラブも用意し
たにれらのスラブはArガス中で1850℃、1時間加
熱後熱間圧延を施して2.7鴫厚とした。
Four types of steel ingots (D) containing Moo, 014% and SbQ, 02a% (all 100 to 9wi ingots) were made into slabs with a thickness of 50 mm. After polishing the surface of the slab and removing all the scale (3aMo0.17), dilute aqueous solution (0-1mo
l/l) was applied to both sides of the slab in a ratio of 59/+2. For comparison, uncoated slabs were also prepared. These slabs were heated in Ar gas at 1850° C. for 1 hour and then hot rolled to a thickness of 2.7 mm.

その後900°Cで3分間の均−化焼鈍後、950°C
で8分間の中間焼鈍をはさんで2回の冷間圧延を施して
Q、30 tm厚の最終冷延板とした。
Then, after equalization annealing at 900°C for 3 minutes, 950°C
Cold rolling was performed twice with intermediate annealing for 8 minutes in between to obtain a final cold rolled sheet with a thickness of Q, 30 tm.

ついで湿水素中820°Cで5分間の脱炭・1次再結晶
焼鈍を施した後、鋼板表面にMgOを主成分とする焼鈍
分離剤を塗布してから、Arガス中850°Cで50時
間の2次再結晶焼鈍および乾H2中1180°Cで5時
間の鈍化焼鈍を施した。
After decarburization and primary recrystallization annealing at 820°C for 5 minutes in wet hydrogen, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and then annealing at 850°C in Ar gas for 50 minutes. A secondary recrystallization annealing for 1 hour and a blunting annealing at 1180° C. for 5 hours in dry H2 were performed.

そのときの製品の磁気特性および表面性状を表1にまと
めて示す。
The magnetic properties and surface properties of the products at that time are summarized in Table 1.

表1から供試スラブ(A)と(B)による通常Si量の
製品の磁気特性B10は1.92〜1.98T、鉄損W
 1 ?/li Oが1.10〜1.14 W/Ic9
であって鋼中にMoを微量添加した供試スラブ(B)に
よるものの方がB10yW1?/6゜共に若干良く、一
方製品の表面性状は表面塗布しない(A)の試料におい
て若干悪いが、鋼中にMoを微量添加した(B)の試料
では表面塗布有無にかかわらず製品の表面性状が良好で
あった。
From Table 1, the magnetic properties B10 of the test slabs (A) and (B) with normal Si content are 1.92 to 1.98T, and the iron loss W
1? /li O is 1.10~1.14 W/Ic9
However, the test slab (B) with a small amount of Mo added to the steel is B10yW1? /6゜ both were slightly better.On the other hand, the surface quality of the product was slightly worse in the sample (A) without surface coating, but in the sample (B) in which a small amount of Mo was added to the steel, the surface quality of the product was good regardless of whether or not surface coating was applied. was good.

これに対して表1中の供試スラブ(0)と(D)のよう
にSi量を増加させたとき製品の磁気特性は、B1.が
1.92〜1.98Tで(A)又は(B)の試料と同程
度であるが、W 17150の値は0.98〜1 、0
2 W/に9で(A)又は(B)の両試料にくらべてよ
り良好であることが注目される。
On the other hand, when the amount of Si is increased as shown in test slabs (0) and (D) in Table 1, the magnetic properties of the products become B1. is 1.92-1.98T, which is comparable to that of sample (A) or (B), but the value of W17150 is 0.98-1,0
It is noted that at 2 W/9 it is better than both samples (A) or (B).

なお(0)と(D)の試料比較では鋼中にMot−微量
添加した(D)の試料のW17/I、0がより良好であ
る0 さらに製品の表面性状は、実験条件から顕著に異なるこ
とが注目される。すなわち(0)の試料で製品の表面性
状は表面にMo化合物を塗布すると若干改善されるが、
塗布しない場合゛には表面性状が劣悪である。
In addition, in the comparison of samples (0) and (D), the W17/I of sample (D) with a small amount of Mot added to the steel, 0 is better.0 Furthermore, the surface texture of the product is significantly different from the experimental conditions. This is noteworthy. In other words, the surface quality of the product in sample (0) is slightly improved when Mo compound is applied to the surface, but
If it is not coated, the surface quality is poor.

これに対してスラブ(D)の鋼中に微量のMoを添加し
たときの製品の表面性状は表面にMo化合物を塗布する
ときわめて良好であるが、塗布しない場合には表面性状
が若干悪い。
On the other hand, when a small amount of Mo is added to the steel of the slab (D), the surface quality of the product is extremely good when a Mo compound is applied to the surface, but the surface quality is slightly poor when no Mo compound is applied.

第1図(a) 、 (b)は表1中の(D)の試料のス
ラブ表面にc aM OO4の希薄水溶液を塗布後13
5゜°Cで1時間加熱したときの表面のエレクトロン・
プローブ・マイクロアナライザーによるFe 、 In
 。
Figures 1 (a) and (b) show the surface of the slab of sample (D) in Table 1 after applying a dilute aqueous solution of caM OO4.
Electrons on the surface when heated at 5°C for 1 hour
Fe, In by probe microanalyzer
.

5ilo t S 、se、sb、 P tMo、ca
オヨびMg各元素の線分析を行なった結果の代表的な1
例を示す。
5irot S, se, sb, P tMo, ca
Typical results of line analysis of each element of Mg
Give an example.

第1図(a) 、 (b)かられかるようにMoが検出
される位置においてPそしてs 、 Beおよびsbが
高く、逆にOt Fe * Si 、 Oaが低くなっ
ているのが注目される。
As can be seen from Fig. 1(a) and (b), it is noteworthy that P, s, Be, and sb are high at the position where Mo is detected, and conversely, OtFe*Si, Oa is low. .

このエレクトロン・プローグ※・マイクロアナライザー
による線分析の結果からスラブ表面にM0化合物を塗布
した後スラブ加熱するとMoが熱間ぜい化元素であるP
lそしてS 、 38 、およびsbを濃化させて表面
近傍の結晶粒界を強化する作用があるためにスラブ加熱
あるいは熱間圧延途中の粒界ワレを有効に防止すること
が可能であり、けい素鋼中のSi[を増加させても製品
の表面性状の改善が可能であることが確認された。
The results of line analysis using this electron probe* microanalyzer show that when the slab is heated after coating the M0 compound on the slab surface, Mo becomes a hot embrittling element.
Since S, 38, and sb have the effect of concentrating and strengthening the grain boundaries near the surface, it is possible to effectively prevent grain boundary cracking during slab heating or hot rolling. It was confirmed that it is possible to improve the surface properties of products even by increasing the amount of Si in the raw steel.

これにより先に発明者らは、特公昭5B−82215号
公報において微細なMnSあるいは5o1utesをイ
ンヒビターとする0、05%以下の低Inを含有した一
方向性けい素鋼においてスラブ表面あるいは熱延板表面
上にMo含有量を濃化させる方法を既に開示している。
As a result, the inventors previously reported in Japanese Patent Publication No. 5B-82215 that a unidirectional silicon steel containing low In of 0.05% or less using fine MnS or 5o1utes as an inhibitor can be used for slab surfaces or hot rolled sheets. A method of enriching Mo content on a surface has already been disclosed.

この製造方法は低)4n状態で微細なMnSあるいは5
oluteSを鋼中に微細分散させてインヒビターの増
強を図ることにより磁束密度の高い製品を作ることを図
ったもので、その際表面割れやきす等の表面欠陥を多発
させる原因となる硫化鉄(Fed)が数多く形成される
ようになるが、少量のMoにより、鋼板表面あるいは表
面近傍で硫化No (おそら< Mo、88)化合物の
微細析出物を優先析出させることにより、表面欠陥の防
止゛を狙ったものである。
This manufacturing method uses fine MnS or 5
The aim is to create products with high magnetic flux density by finely dispersing oluteS into steel to strengthen the inhibitor. ), but a small amount of Mo can prevent surface defects by preferentially precipitating fine precipitates of sulfurized No (probably <Mo, 88) compounds on or near the surface of the steel sheet. That's what I was aiming for.

これに対してこの発明では鉄損を低減させるためにSi
量を増加させた場合において、0.051〜0.2%の
通常In含有量でかつ、インヒビターとしてBe 0.
008〜0.1%、No o、o O8〜0.1%およ
びSb0.005〜0.1%をともに複合添加しインヒ
ビター作用を増強した素材を用いたスラブ表面上に、M
o化合物を塗布することにより表面性状の改善を図った
ものである。
On the other hand, in this invention, Si is used to reduce iron loss.
In the case of increasing amounts, with a typical In content of 0.051-0.2% and Be 0.0% as an inhibitor.
M
The surface quality was improved by applying an o compound.

したがってこの発明を特公昭58−32215号公報と
比較したとき、製品の磁気特性はBIGが1.98 T
程度で同程度であるが、Wlv/6oが0.10〜0.
12W/に9とこの発明の方が1.5グレ一ド程度も極
端に向上していることが注目される。
Therefore, when this invention is compared with Japanese Patent Publication No. 58-32215, the magnetic properties of the product are as follows: BIG is 1.98 T.
Although the degree is the same, Wlv/6o is 0.10 to 0.
It is noteworthy that the present invention has an extreme improvement of about 1.5 grades at 12W/9.

このような低鉄損の高級製品を製造するための手段とし
てこの発明は、スラブ表面上にMo化合物の塗布により
、同時に表面性状の改善を図ることに成功したものであ
り、当時の磁気特性レベルから判断してこのような低鉄
損を有する高級製品の製造が可能であることは予想でき
なかったものである。
As a means to manufacture such high-quality products with low iron loss, this invention succeeded in simultaneously improving the surface properties by coating the surface of the slab with Mo compounds, and achieved the level of magnetic properties at the time. Judging from this, it was unexpected that it would be possible to manufacture high-grade products with such low core loss.

次にこの発明においてけい素鋼中の成分組成を限定する
理由を説明する。
Next, the reason for limiting the composition of silicon steel in this invention will be explained.

Cは0.01%未満では熱延中の粗大粒の細粒化が困難
であり、また0、06%をこえると脱炭工程において脱
炭に時間がかかり経済的でないので、0.01〜0.0
6%の範囲にする必要がある。
If C is less than 0.01%, it is difficult to refine coarse grains during hot rolling, and if it exceeds 0.06%, decarburization takes time in the decarburization process and is not economical. 0.0
It needs to be within the range of 6%.

Siはこの発明では低鉄損の製品を得るために81含有
量を8.2%以上にする必要がある。一方4.5%より
多いと冷延の際に脆性割れを生じやすいため、Siは8
.′2〜4.5%の範囲にする必要があるO Kn &′1MnSeのインヒビターを微細分散させる
ための重要な元素であり、通常の製造工程においてはK
nがo、oso%未満では表面欠陥の原因となるFeS
e又は5olute Sの量が多くなるので工業的に安
定して使用できない。またInが0.2%をこえると、
MnSeの析出物を解離・固溶させるため・に高温スラ
ブ加熱を必要とし経済的でなくなるので、Mnは0.0
5〜0.2%以内にする必要がある。
In this invention, the Si content must be 8.2% or more in order to obtain a product with low iron loss. On the other hand, if it exceeds 4.5%, brittle cracking is likely to occur during cold rolling, so Si
.. It is an important element for finely dispersing the inhibitor of O Kn &'1MnSe, which needs to be in the range of 2 to 4.5%.
FeS causes surface defects when n is less than o or oso%.
Since the amount of e or 5olute S increases, it cannot be stably used industrially. Also, when In exceeds 0.2%,
Mn is 0.0 because high-temperature slab heating is required to dissociate and dissolve MnSe precipitates, making it uneconomical.
It is necessary to keep it within 5-0.2%.

Seは0゜008%未満ではMnS eのインヒビター
抑制効果が弱く、一方0.1%より多いと熱間および冷
間加工性が著しく劣化するのでSeはo、o o s〜
0.1%の範囲内にする必要がある。
If Se is less than 0.008%, the effect of suppressing the inhibitor of MnSe is weak, while if it is more than 0.1%, hot and cold workability will be significantly deteriorated, so Se is o, o o s~
It is necessary to keep it within the range of 0.1%.

Moはo、o o a%より少ないと1次再結晶粒の成
長抑制効果が明らかでなく、一方0.1%より多いと熱
間および冷間加工性が低下し、また脱炭工程まで脱炭に
時間がかかり経済的でないので、Moはo、ooa%〜
0.1%の範囲内にする必要がある。
If Mo is less than o or o o a%, the effect of suppressing the growth of primary recrystallized grains is not obvious, while if it is more than 0.1%, hot and cold workability will be reduced, and the decarburization process will be delayed. Since charcoal takes time and is not economical, Mo is o, ooa% ~
It is necessary to keep it within the range of 0.1%.

sbはo、o o s%より少ないとインヒビター抑制
効果が弱く、また0、1%より多いと熱間および冷間加
工性が著しく劣化するのでsbは0.006〜0.1%
の範囲内にする必要がある。
If sb is less than o, o o s%, the inhibitor suppressing effect will be weak, and if it is more than 0,1%, hot and cold workability will be significantly deteriorated, so sb is 0.006 to 0.1%.
Must be within the range.

この発明によれば、上述の如くけい素鋼中に制限された
c 、 81 、 Mn 、 Se 、 No 、 S
bを制御する必要があるが、その他に通常けい素鋼中に
添加される公知のインヒビターAI 、 Bの何れか1
種または2種以上を合計量で0.08%以下を追加させ
てもこの発明の効果を妨害するものではない。
According to this invention, c, 81, Mn, Se, No, and S, which are limited to silicon steel as described above, are
It is necessary to control b, but in addition, any one of the known inhibitors AI and B, which are usually added to silicon steel.
Even if one or more species are added in a total amount of 0.08% or less, the effects of the present invention will not be impaired.

その他一般的にOr 、 Ti 、 V 、 Zr 、
 Nb 、 Ta 。
Others generally include Or, Ti, V, Zr,
Nb, Ta.

Ou # NIT Sn * P s ASさらにはS
など、不可避元素が微量含有されることも妨げない。
Ou # NIT Sn * P s AS and even S
There is no hindrance to the inclusion of trace amounts of unavoidable elements such as.

次にこの発明による一連の製造工程について説明する。Next, a series of manufacturing steps according to the present invention will be explained.

この発明の素材を溶製するにはLD転炉、電気炉、平炉
、その他公知の製鋼方法を用いて行い得ることは勿論、
真空処理、真空溶解を併用することができる。また造塊
手段も通常の鋳型に注入する手段のほかに連続鋳造も好
適に行うことができる。
Of course, the material of this invention can be melted using an LD converter, an electric furnace, an open hearth, or other known steelmaking methods.
Vacuum treatment and vacuum melting can be used together. Further, as for the ingot-forming means, in addition to the usual means of pouring into a mold, continuous casting can also be suitably performed.

次に加熱前のスラブは表面にMoを含む無機化合物(例
えばOuMo0.l Woo8. H8Mo08等)を
均一に塗布すればよい。
Next, an inorganic compound containing Mo (for example, OuMo0.l Woo8. H8Mo08, etc.) may be uniformly applied to the surface of the slab before heating.

またスラブ表面に塗布するMo化合物の水溶液の濃度は
0.005m0ノ/!以上で、塗布量は0.5〜269
/fax塗布すれば良く、この塗布方法は従来公知のい
ずれもの方法を用いてよい。このような表面塗布後スラ
ブは1250℃以上で加熱され、鋼中のMnSeを解離
・固溶した後熱間圧延が施され、通常2〜5簡厚程度の
熱延板上される。
Also, the concentration of the Mo compound aqueous solution applied to the slab surface is 0.005m0/! Above, the coating amount is 0.5 to 269
/fax, and any conventionally known method may be used for this coating method. After such surface coating, the slab is heated at 1250° C. or higher to dissociate and dissolve MnSe in the steel, and then hot rolled, and is usually formed into a hot rolled sheet having a thickness of about 2 to 5 mm.

次に熱延板は均一化焼鈍後に冷延される。冷延は850
〜1000℃の中間焼鈍をはさんで2回の冷間圧延を施
して0.18〜Q、35111111厚の最終冷延板と
するが、通常は0.8鴎厚である。
The hot rolled sheet is then uniformly annealed and then cold rolled. Cold rolling is 850
Cold rolling is performed twice with intermediate annealing at ~1000° C. to obtain a final cold-rolled sheet with a thickness of 0.18 to 35111111, but the thickness is usually 0.8 mm.

最終冷延を終り、製品板厚となった鋼板は次の脱炭焼鈍
に付される。この焼鈍は冷延組織を1次再結晶篤すると
同時に最終焼鈍で(i 1 o}<o o 1>方位の
2次再結晶粒を発達させる場合に有害なCを除去するの
が目的で、例えば750°Cから850°Cで8分〜1
5分程度の湿水素中での焼鈍のように既に公知になって
いるどのような方法をも用いることができる。
After the final cold rolling, the steel plate that has reached the product thickness is subjected to the next decarburization annealing. The purpose of this annealing is to improve the primary recrystallization of the cold-rolled structure and at the same time to remove harmful C when developing secondary recrystallized grains with the (i 1 o}<o o 1> orientation in the final annealing. For example, from 750°C to 850°C for 8 minutes to 1
Any known method can be used, such as annealing in wet hydrogen for about 5 minutes.

最終焼鈍は(110}<001>方位の2次再結晶粒を
充分発達させるために施されるもので、通常箱焼鈍によ
って直ちに1000°C以上に昇温し、その温度に保持
することによって行なわれる。この最終焼鈍は通常マグ
ネシア等の焼鈍分離剤を塗布し、箱焼鈍によって施され
るが、この発明において(110}<001>方位に極
度に揃った2次再結晶粒を発達させるためには820°
Cから900℃の低温で保定焼鈍する方が有利であるが
、あるいは例えば0.5〜b 鈍でもよい。
Final annealing is performed to sufficiently develop secondary recrystallized grains with (110}<001> orientation, and is usually performed by immediately raising the temperature to 1000°C or higher by box annealing and maintaining it at that temperature. This final annealing is usually performed by applying an annealing separator such as magnesia and box annealing, but in this invention, in order to develop secondary recrystallized grains that are extremely aligned in the (110}<001> orientation, is 820°
It is more advantageous to perform retention annealing at a low temperature of 900° C., but alternatively, it may be annealed at a temperature of 0.5 to 900° C.

次にこの発明を実施例について説明する。Next, the present invention will be described with reference to embodiments.

実施例1 00.044%、si 8.4%、Mn0.72%を含
み、か”)Se0.020%、Moo、020%および
sb o、os5%を含有する連鋳スラブ表面上にOr
Mo0.の水溶液(0,005mol/l )を2 g
 /、2均一に塗布した後1880°Cで1時間加熱後
、熱間圧延を施して2.4喘厚の熱延板とした。
Example 1 Or
Mo0. 2 g of an aqueous solution (0,005 mol/l) of
/, 2 was uniformly coated, heated at 1880°C for 1 hour, and then hot rolled to obtain a hot rolled sheet with a thickness of 2.4.

その後900″Cで8分間の均一化焼鈍950°Cで8
分間の中間焼鈍をはさんで0.8011111厚と0.
28關厚の各最終冷延板とした。
Then homogenized annealing at 900"C for 8 minutes and 950"C for 8 minutes.
The thickness is 0.8011111 with intermediate annealing for 0.8 min.
Each final cold-rolled sheet had a thickness of 28 mm.

その後820℃で8分間の湿水素中での脱炭・1次男結
晶焼鈍後鋼板表面にMgOを主成分とする焼鈍分離剤を
塗布した後、850℃で50時間の2次再結晶焼鈍およ
び乾水素中1200°Cで5時・間の鈍化焼鈍を施した
After that, after decarburization and primary crystal annealing in wet hydrogen at 820°C for 8 minutes, an annealing separator containing MgO as a main component was applied to the steel sheet surface, followed by secondary recrystallization annealing and drying at 850°C for 50 hours. Annealing was performed in hydrogen at 1200°C for 5 hours.

そのときの製品の磁気特性および表面性状は次のようで
あった。
The magnetic properties and surface properties of the product at that time were as follows.

Q、3 Q tpun厚の製品’ Blo =1.9 
ijl T s W17/6゜:0.97 W/権、表
面性状は良好、 o、p、sv、m厚の製品: B  = 1−90 T
 、 W□7/l5o=0.85 W/に9、表面性状
は良好、実施例2 00.046%、si a、eo%、In 0.076
%を含みかツ380.019%、No 0.018%お
よびSb 0.028%を含有する連鋳スラブ表面上に
MoO2の水溶液(0,01mat/i )を597m
”均一に塗布した後1850℃で2時間加熱後、熱間圧
延を施して2.0酩厚の熱延板とした。
Q, 3 Q tpun thick product'Blo = 1.9
ijl T s W17/6゜: 0.97 W/right, good surface quality, o, p, sv, m thickness products: B = 1-90 T
, W□7/l5o=0.85 W/N9, surface quality is good, Example 2 00.046%, sia, eo%, In 0.076
597 m of an aqueous solution of MoO2 (0.01 mat/i) was deposited on the surface of a continuous casting slab containing 380.019% of Sb, 0.018% of No. and 0.028% of Sb.
``After being uniformly coated, it was heated at 1850°C for 2 hours, and then hot-rolled to obtain a hot-rolled sheet with a thickness of 2.0 mm.

その後900°Cで8分間の均一化焼鈍後、950″C
で8分間の中間焼鈍をはさんで0−28鴎厚の最終冷延
板とした。
Then, after homogenization annealing at 900°C for 8 minutes, 950″C
After intermediate annealing for 8 minutes, a final cold-rolled sheet with a thickness of 0-28 was obtained.

その後湿水素中で800°Cで5分間の脱炭焼鈍後、鋼
板表面上にMgOを主成分とする焼鈍分離剤を塗布した
後、850℃で50時間の2次再結晶焼鈍おより  =
1.90T、W    =o、a4W/&9この製品1
0         17/!+0 の表面性状は良好であった。
Then, after decarburization annealing at 800°C for 5 minutes in wet hydrogen, an annealing separator containing MgO as a main component was applied to the surface of the steel plate, and then secondary recrystallization annealing at 850°C for 50 hours.
1.90T, W = o, a4W/&9 This product 1
0 17/! The surface quality of +0 was good.

実施例8 00.051%、si+、2o%、Mn0.082%を
含みかつse0.025%、Moo、040%およびs
b 0.06。
Example 8 Contains 0.051%, si+, 2o%, Mn0.082% and se0.025%, Moo, 040% and s
b 0.06.

%を含有するけい累鋼連鋳スラブ表面上にH,MoOB
の水溶液(o、o 5 mot/l ”)を89/vn
” 均−GCIk 布した後、1880°Cで90分加
熱後、熱間圧延して2.0簡厚の熱延板とした。その後
950°Cで8分間の均一化焼鈍後、960°Cで8分
間の中間焼鈍をはさんでQ、9 Q m厚の最終冷延板
とした。その後湿水素中で820℃で5分間の脱炭焼鈍
後、鋼板表面上にMgOを主成分とする焼鈍分離剤を塗
布した後、850℃で50時間の2次再結晶焼鈍および
乾水素中1200℃で6時間の鈍化焼鈍を施した。その
ときの製品の磁気特性および表面性状は次のようであっ
たO B  = 1.89 T  W、y150 = 0.7
6 W/に9、この製品の表面性状はヘゲ、線ヘゲ等の
欠陥は全くなく良好であった。
H, MoOB on the surface of continuous cast steel slab containing %
An aqueous solution (o, o 5 mot/l") of 89/vn
After applying uniform GCIk cloth, it was heated at 1880°C for 90 minutes, and then hot rolled to obtain a hot rolled sheet with a thickness of 2.0. After that, it was uniformly annealed at 950°C for 8 minutes, and then heated at 960°C. A final cold-rolled sheet with a thickness of Q, 9 Q was obtained by intermediate annealing for 8 minutes at 100° C. After decarburization annealing at 820°C for 5 minutes in wet hydrogen, MgO was the main component on the surface of the steel sheet. After applying the annealing separator, secondary recrystallization annealing was performed at 850°C for 50 hours and blunting annealing at 1200°C for 6 hours in dry hydrogen.The magnetic properties and surface properties of the product were as follows. There was O B = 1.89 T W, y150 = 0.7
6 W/9, the surface quality of this product was good with no defects such as scratches and lines.

(発明の効果) 以上この発明によればBloが1.90 T以上の高磁
束密度で、鉄損がQ、3Qmで1.OOW/に9以下、
Q、23 van厚で0−90W/に9以下およびOe
 20 tan厚でo、s OW/に9以下の低鉄損で
表面性状の優れた一方向性けい素鋼板を極めて安定して
製造することができる。
(Effects of the Invention) As described above, according to the present invention, Blo is a high magnetic flux density of 1.90 T or more, and the iron loss is Q, 3Qm and 1. OOW/ 9 or less,
Q, 23 van thickness 0-90W/9 or less and Oe
A unidirectional silicon steel sheet with a thickness of 20 tan, a low core loss of 9 or less, and excellent surface quality can be produced in an extremely stable manner.

【図面の簡単な説明】 第1図はエレクトロン・プローブマイクロアナライザー
によるけい素鋼スラブ表面近傍のFe。 Mn 、 Si 、 O、S 、 Se 、 Sb 、
 P 、 No 、 OaおよびMg元素の線分析を示
す図である。 第1図 (a)
[Brief Description of the Drawings] Figure 1 shows Fe near the surface of a silicon steel slab using an electron probe microanalyzer. Mn, Si, O, S, Se, Sb,
FIG. 3 is a diagram showing line analysis of P, No, Oa and Mg elements. Figure 1(a)

Claims (1)

【特許請求の範囲】 1、C0.01〜0.06wt%、 Si3.2〜4.5wt%、 Mn0.050〜0.2wt%、を含みかつ、Se0.
008〜0.1wt%、 Mo0.003〜0.1wt%、および Sb0.005〜0.1wt% を含有するけい素鋼スラブを加熱した後熱間圧延を施し
て熱延板となし、次いでこの熱延板を均一化焼鈍と中間
焼鈍を挟む2回以上の冷延を施して最終製品厚の冷延板
となしその後、脱炭を兼ねた1次再結晶焼鈍を施し、さ
らに最終仕上焼鈍を施して{110}<001>方位の
2次再結晶粒を発達させる一方向性けい素鋼板の製造方
法において、 前記スラブの表面層にMoあるいはMo化合物を濃化さ
せることを特徴とする表面性状の優れた高磁束密度、低
鉄損一方向性けい素鋼板の製造方法。
[Scope of Claims] 1. Contains 0.01 to 0.06 wt% of C, 3.2 to 4.5 wt% of Si, 0.050 to 0.2 wt% of Mn, and Se0.
A silicon steel slab containing 0.008 to 0.1 wt%, Mo0.003 to 0.1 wt%, and Sb0.005 to 0.1 wt% is heated and then hot rolled to form a hot rolled sheet. The hot-rolled sheet is cold-rolled two or more times, including uniform annealing and intermediate annealing, to produce a cold-rolled sheet with the final product thickness.Then, the hot-rolled sheet is subjected to primary recrystallization annealing that also serves as decarburization, and then final finish annealing. A method for manufacturing a grain-oriented silicon steel sheet in which secondary recrystallized grains with {110}<001> orientation are developed by applying a surface texture to the surface layer of the slab, comprising enriching Mo or a Mo compound in the surface layer of the slab. A method for manufacturing unidirectional silicon steel sheets with excellent high magnetic flux density and low iron loss.
JP12914084A 1984-06-25 1984-06-25 Manufacture of grain oriented silicon steel sheet superior in surface property and having high magnetic flux density, low iron loss Granted JPS619521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12914084A JPS619521A (en) 1984-06-25 1984-06-25 Manufacture of grain oriented silicon steel sheet superior in surface property and having high magnetic flux density, low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12914084A JPS619521A (en) 1984-06-25 1984-06-25 Manufacture of grain oriented silicon steel sheet superior in surface property and having high magnetic flux density, low iron loss

Publications (2)

Publication Number Publication Date
JPS619521A true JPS619521A (en) 1986-01-17
JPS6242969B2 JPS6242969B2 (en) 1987-09-10

Family

ID=15002106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12914084A Granted JPS619521A (en) 1984-06-25 1984-06-25 Manufacture of grain oriented silicon steel sheet superior in surface property and having high magnetic flux density, low iron loss

Country Status (1)

Country Link
JP (1) JPS619521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140201A (en) * 1986-11-28 1988-06-11 株式会社タクマ Load control method and device for fluidized bed in fluidized-bed heat recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140201A (en) * 1986-11-28 1988-06-11 株式会社タクマ Load control method and device for fluidized bed in fluidized-bed heat recovery device
JPH0418201B2 (en) * 1986-11-28 1992-03-27 Takuma Kk

Also Published As

Publication number Publication date
JPS6242969B2 (en) 1987-09-10

Similar Documents

Publication Publication Date Title
JPS6245285B2 (en)
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2020508391A (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2019506526A (en) Oriented electrical steel sheet and manufacturing method thereof
EP0101321B1 (en) Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
KR930004849B1 (en) Electrcal steel sheet having a good magnetic property and its making process
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JPS602624A (en) Manufacture of grain-oriented silicon steel sheet having superior surface property and magnetic characteristic
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2014208895A (en) Method of producing grain oriented electrical steel
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
KR102099866B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPS619521A (en) Manufacture of grain oriented silicon steel sheet superior in surface property and having high magnetic flux density, low iron loss
JP2001040449A (en) Manufacture of grain-oriented electrical steel sheet superior in magnetic flux density and iron loss, and steel plate before final cold rolling for manufacturing the steel plate
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR102119095B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
KR101318275B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
KR970007161B1 (en) Making method of oriented electrical steel sheet having low iron loss
KR100359751B1 (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating