JPS6194980A - Controller for hydraulic elevator - Google Patents

Controller for hydraulic elevator

Info

Publication number
JPS6194980A
JPS6194980A JP59216754A JP21675484A JPS6194980A JP S6194980 A JPS6194980 A JP S6194980A JP 59216754 A JP59216754 A JP 59216754A JP 21675484 A JP21675484 A JP 21675484A JP S6194980 A JPS6194980 A JP S6194980A
Authority
JP
Japan
Prior art keywords
signal
oil
output
circuit
car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59216754A
Other languages
Japanese (ja)
Other versions
JPH0470229B2 (en
Inventor
山本 友一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59216754A priority Critical patent/JPS6194980A/en
Publication of JPS6194980A publication Critical patent/JPS6194980A/en
Publication of JPH0470229B2 publication Critical patent/JPH0470229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Types And Forms Of Lifts (AREA)
  • Elevator Control (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は油圧ポンプを駆動してかごを走行させる油圧
エレベータを制御する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for controlling a hydraulic elevator that drives a hydraulic pump to cause a car to travel.

〔従来の技術〕[Conventional technology]

油圧エレベータの油圧制御方式の一つに流量制御弁によ
るものがある。これは、上昇時は電動機を一定回転速度
で回転させ、この電動機で油圧ポンプを駆動し、この油
圧ポンプからの定吐出量の油を油タンクへ戻しておいて
、運転指令が出ると油タンクへ戻す量を流量制御弁で調
節することにより、かごの速度を制御し、下降時はかご
を自重で降下させ、これを流量制御弁で調節してかごの
速度を制御するものである。この方式はと昇時余分な油
を循環させることと、下降時は位置エネルギを油の発熱
に消費するので、エネルギ損失が大きく、油温上昇が著
しい。
One of the hydraulic control methods for hydraulic elevators is one using a flow control valve. When ascending, the electric motor is rotated at a constant rotation speed, this electric motor drives the hydraulic pump, and a fixed amount of oil is returned to the oil tank from the hydraulic pump. The speed of the car is controlled by adjusting the amount returned to the car with a flow control valve, and when descending, the car is lowered by its own weight, and this is adjusted with a flow control valve to control the speed of the car. In this method, excess oil is circulated during the ascent, and potential energy is consumed to heat the oil during the descent, resulting in large energy loss and a significant rise in oil temperature.

こt′Lを改良するものとして、例えば特開昭57−9
8477号公報に示されるように、定吐出形油王ポンプ
を駆動する誘導電動機を、半導体で溝成された制御装置
により制御し、電圧・周波数を広範囲にわたって調整し
て、電動機の回転速度を制御するものが提案されている
。すなわち、電動機の回転速度を変えることにより、油
圧ポンプの吐出量を可変制御するものであり、安価であ
り信頼性も高い。
As an improvement on this t'L, for example, Japanese Patent Application Laid-Open No. 57-9
As shown in Japanese Patent No. 8477, an induction motor that drives a constant discharge oil pump is controlled by a control device made of semiconductor, and the voltage and frequency are adjusted over a wide range to control the rotational speed of the motor. It is suggested that something be done. That is, the discharge amount of the hydraulic pump is variably controlled by changing the rotational speed of the electric motor, which is inexpensive and highly reliable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような従来の油圧エレベータの制御装置では、油
圧ポンプの漏れのために、油圧ポンプを回転させても、
かごは直ちに起動しないことがあるう すなわち、第6図に示すように、時刻t。で運転指令が
出されたとすると、油圧ポンプは徐々に加速し、時刻t
1で回転速度n1に達する。しかし、油圧ポンプの漏れ
のため、かごは起動しない5回転速度がnlを越えると
、漏れ量以上の油が油圧ポンプから吐出され、かごは動
き出す。このように、漏れ量以上の多量の油が油圧ポン
プと逆上弁(後出)の間の管路に供給されるので、高め
圧力が発生し、逆止弁を急速に押し開くため、大きな起
動衝撃と振動が生じる。かごは時刻t2で一定速妾に達
し、時刻t3で減速を開始して時刻t4でかごは停止す
る。油圧ポンプは更に回転し続け、時刻t5で停止する
。起動衝撃は主にかご起動時に油圧ポンプ6回転速度の
増加が著しいことに起因するものであるから、第7図に
示すように、回転速度を緩やかに増加させるようにする
と、かごは時刻t11で起動し、以後同様に時刻t1□
l t131 t141 t15で、一定速度速行、減
速、かご停止及び油圧ポンプ停止の経路をたどる。この
ように、回転速度を緩やかに増加させると、衝撃は小さ
くなるが起動遅れが大きくなると共に、運転時間も長く
なり、輸送能率が悪化する。また、下降時は逆上弁を電
磁コイルの付勢°により開かせ、油圧シリンダからの圧
油を油タンクへ戻すようにしているが、この  1とき
逆止弁と油圧ポンプ間の管路には油がなく、また油圧ポ
ンプもこの流量を阻止する力を持たない。そのため、油
圧シリンダからの油が急激に管路を通じて油タンクへ戻
され、これが起動衝撃となり、かごの乗心地を悪くする
等の問題点がある。
In the conventional hydraulic elevator control device as described above, due to leakage of the hydraulic pump, even if the hydraulic pump is rotated,
The car may not start immediately, ie, at time t, as shown in FIG. If an operation command is issued at t, the hydraulic pump will gradually accelerate until time t
1, the rotational speed n1 is reached. However, the car does not start due to leakage from the hydraulic pump.5 When the rotational speed exceeds nl, oil in excess of the amount of leakage is discharged from the hydraulic pump, and the car starts moving. In this way, a large amount of oil that exceeds the amount of leakage is supplied to the pipeline between the hydraulic pump and the check valve (described later), generating high pressure and rapidly pushing the check valve open, causing a large Start-up shock and vibration occur. The car reaches a constant speed at time t2, starts decelerating at time t3, and stops at time t4. The hydraulic pump continues to rotate further and stops at time t5. The starting shock is mainly caused by the significant increase in the rotational speed of the hydraulic pump 6 when the car is started, so if the rotational speed is gradually increased as shown in Fig. 7, the car will start at time t11. Start up, and from then on, time t1□
l t131 t141 At t15, the route of constant speed running, deceleration, car stop, and hydraulic pump stop is followed. In this way, when the rotational speed is gradually increased, the impact becomes smaller, but the start-up delay increases, the operation time becomes longer, and the transportation efficiency deteriorates. In addition, when descending, the reverse valve is opened by the energization of the electromagnetic coil, and the pressure oil from the hydraulic cylinder is returned to the oil tank. There is no oil, and the hydraulic pump has no power to stop this flow. Therefore, the oil from the hydraulic cylinder is suddenly returned to the oil tank through the pipe, which causes a start-up shock, which causes problems such as worsening the riding comfort of the car.

この発明に上記問題点を解決するためになされたもので
、急激な流量及び圧力の変化を抑え、かごを円滑に起動
できるようにした油圧エレベータの制御装置を提供する
ことを目的とする。
This invention has been made to solve the above problems, and an object of the present invention is to provide a control device for a hydraulic elevator that suppresses sudden changes in flow rate and pressure and can smoothly start a car.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る油圧エレベータの制御装置は、かごの重
量が油に与える圧力と、油圧ポンプを通過する油の温度
を検出し、運転指令が発せられてから所定時間後の圧力
信号及び油温信号の内少なくとも圧力信号を保持し、こ
れと油温信号及び油圧ポンプの持つ漏れ係数とから油圧
ポンプの漏れ量を演算し、この漏れ量信号とこれに続く
走行パターン信号をそれぞれパターン信号として電動機
を制御するものである。
A control device for a hydraulic elevator according to the present invention detects the pressure exerted on oil by the weight of a car and the temperature of oil passing through a hydraulic pump, and generates a pressure signal and an oil temperature signal after a predetermined period of time after an operation command is issued. The leakage amount of the hydraulic pump is calculated from this, the oil temperature signal, and the leakage coefficient of the hydraulic pump, and this leakage amount signal and the following running pattern signal are used as pattern signals to control the electric motor. It is something to control.

〔作用〕[Effect]

この発明による油圧エレベータの制御装置においては、
少なくとも圧力信号は、運転指令が発せられでから所定
時間後に保持されて油圧ポンプの漏れ量が演算されるか
ら、かごへの乗降による負−荷変動が安定した状態で漏
れ量演算が行われる。
In the hydraulic elevator control device according to the present invention,
At least the pressure signal is held for a predetermined period of time after the operation command is issued, and the amount of leakage from the hydraulic pump is calculated, so that the amount of leakage is calculated in a state where load fluctuations caused by getting on and off the car are stable.

〔実施例〕〔Example〕

第1図〜第5図はこの発明の一実施例を示す図である。 1 to 5 are diagrams showing an embodiment of the present invention.

図中、(1)はエレベータ昇降路、(2)は昇降路(1
)の底部に埋設された油圧シリンダ、(3)は油圧シリ
ンダ(2)に充てんされた圧油、(4)は圧油(3)に
より昇降するプランジャ、(5)はプランジャ(4)の
頂部に設置されたかご、(6)はかと(5)に装着され
たカム、(7)は昇降路(1)に設置されカム(6)と
係合すると減速指令信号(7a)を発する減速指令スイ
ッチ、(8)は同じく停止指令信号(8a)を発する停
止指令スイッチ、(9)は階床、α0は後出する管路(
11B) K接続されかと(5)の重量が油に与える圧
力(以下かご圧力という)を検出し圧カイp 8′(l
oa)を発する圧力検出器、α力は常時逆止弁として機
能し電磁コイル(ImA)が付勢されると切り換えられ
て逆方向にも月通させる電磁切換弁、(11B”lは電
磁切換弁αυと油圧シリンダ(2)の間に接続され圧油
を送受する管路、(2)は可逆回転し管路(12A)を
介して電磁切換弁αυとの間で圧油を送受する油圧ポン
プ、a3は油圧ポンプ(2)を駆動する三相誘導電動機
、C14)は電動機α3に直結されその回転速窒を検出
して速度信号(14a)を発生する速変検出語、αQは
管路(15A)を介して油圧ポンプ(2)との間で油を
送受する油タンク、0Qは油タンクα鴎内に設けられ油
温を検出して油温信号(16a)を発する油@検出器、
R,S、Tは三相交流電源、Ql)は三相交流を直流に
変換する整流回路、(イ)は整流回路Q1)の直流出力
を平滑する平滑コンデンサ、翰は直流入力をトランジス
タとダイオードからなる回路でパルス幅制御して可変電
圧・可変周波数の三・相交流に変換するインバータ、(
ハ)は交流電源R,S、Tとインバータ翰の直流側の間
に接続され直流回生電力を交流に変換して交流電源R9
S、Tに返還する回生用インバータ、(至)は圧力信号
(loa )、油@信号(16a)、速度信号(14a
) 、減速指令信号(7a)、停止指令信号(8a)及
び後出する運転指令信号(至)を入力してインバータ翰
のトランジスタを制御する制御信’j) (25a)を
発する速度制御装置、(30a)〜(30C)はインバ
ータ翰と電動機α9の間に挿入され起動指令が出てから
停止指令が出るまで閉成する運転用電磁接触器接点、(
至)はかと(5)に運転指令が出ると「H」となりかと
(5)が停止した後「L」となる運転指令信号、C@け
運転指令信号(至)がrHJになると所定時間遅れて(
第3図の時刻1、−12o間)出力を発する遅延回路、
(ト)は遅延回路(至)の出力が入力されると一定時間
遅れて出力を発する遅延回路、(41U)は遅延回路(
7)の出力、減速指令信号(7a)及び停止指令(B 
Ji+(8a)を入力して上昇時の加速、高速一定速、
減速及び低速一定速を指令する上昇走行パターン信号(
41Ua)を余生する上昇走行パターン発生回路、(4
LD)は同じく下降走行パターン信号(4xDa)を発
生する下降走行パターン発生回路、(41UA)は上昇
運転期間中閉成する上昇用リレー接点、(41DA)は
下降運転期間中閉成する下降用リレー接点、(ハ)は圧
力信号   1(loa )と油r!A信号(16a)
を入力し遅延回路翰の出力がrHJになるとそれぞれ圧
力信号(43a)及び油温信号(4sb)として出力し
、遅延回路(至)の出力が「L」になると圧力信号(4
3a)及び油温信号(43b)の保持を解除する保持回
路、(財)は油圧ポンプ(2)の持つ漏れ係数値が記憶
又は設定され漏れ係数値信号(44a )を発する漏れ
係数補正回路、(ハ)は圧力信号(43a)、油@伯号
(43b)及び漏れ係数値信号(44a)を入力し後出
する0式の演算を行い油圧ポンプ@からの漏れ量に相当
する漏れ量的号(45a)を出力する演算回路、■は遅
延回路(至)の出力が「H」になるとそのときの油圧ポ
ンプ@の漏れ量相当分の回転速度で回転させるバイアス
パターン信号(46a)を発するバイアスパターン発生
回路、0′i)は上昇又は下降走行パターン信号(41
Ua)、 (41Da)とバイアスパターン信号(46
a)を加算してパターン信号(47a)を出力するパタ
ーン発生回路で、この実施例では加算器が用いられてい
る5囮は速度信号(14a)をパターン信号と同一電圧
レベルに変換する変換回路、Ginはパターン信号(4
7a)と変換回路(財)の出力の偏差を出力する加3’
l−詣、ωは加算器θつの出力を所定の増幅度で伝達す
る伝達回路、(51)は伝達回路ωの出力と変換回路(
ハ)の出力を加算して周波数指令@号ω。を出力する加
算器、(52)は周波数指令信号ω。に対して、例えば
直線状に変化する電圧指令信号■を宛する関数発生回路
、(53)は周波数指令信号ω。と電圧指令信号vに基
づいて正弦波の三相交流がインバータ翰から出力される
ようにインバータ(ハ)内のトランジスタに与える ・
制御信号(ZSa)を発する基準正弦波余生回路である
In the figure, (1) is the elevator hoistway, and (2) is the hoistway (1
), (3) is the pressure oil filled in the hydraulic cylinder (2), (4) is the plunger that moves up and down with the pressure oil (3), and (5) is the top of the plunger (4). A car installed on the car, (6) a cam attached to the heel (5), and (7) a deceleration command that is installed on the hoistway (1) and issues a deceleration command signal (7a) when engaged with the cam (6). The switch (8) is the stop command switch that also issues the stop command signal (8a), (9) is the floor, and α0 is the pipe (
11B) Detect the pressure exerted on the oil by the weight of the K-connected cage (5) (hereinafter referred to as cage pressure), and calculate the pressure kip 8'(l
oa), the α force always functions as a check valve, and when the electromagnetic coil (ImA) is energized, it is switched to allow the flow to pass in the opposite direction. (11B"l is the electromagnetic switching valve) A pipe line connected between the valve αυ and the hydraulic cylinder (2) to send and receive pressure oil; (2) is a hydraulic line that rotates reversibly and sends and receives pressure oil to and from the electromagnetic switching valve αυ via the pipe line (12A). pump, a3 is a three-phase induction motor that drives the hydraulic pump (2), C14) is a speed change detection word that is directly connected to electric motor α3 and detects its rotational speed and generates a speed signal (14a), αQ is a pipe line An oil tank that sends and receives oil to and from the hydraulic pump (2) via (15A), 0Q is an oil@detector that is installed inside the oil tank α, and detects the oil temperature and issues an oil temperature signal (16a). ,
R, S, and T are three-phase AC power supplies, Ql) is a rectifier circuit that converts three-phase AC to DC, (A) is a smoothing capacitor that smoothes the DC output of rectifier circuit Q1), and Han is a transistor and diode for DC input. An inverter that converts into variable voltage/frequency three-phase alternating current by controlling the pulse width with a circuit consisting of (
C) is connected between the AC power supplies R, S, and T and the DC side of the inverter wire, and converts the DC regenerated power into AC power.
The regenerative inverter returns to S and T, (to) pressure signal (LOA), oil @ signal (16a), speed signal (14a)
), a speed control device that inputs a deceleration command signal (7a), a stop command signal (8a), and a later-output operation command signal (to) and generates a control signal 'j) (25a) for controlling the transistor of the inverter blade; (30a) to (30C) are magnetic contactor contacts for operation that are inserted between the inverter blade and the motor α9 and are closed from when a start command is issued until a stop command is issued;
To) When a driving command is issued to the hakato (5), the driving command signal becomes "H" and becomes "L" after the hakato (5) stops, and when the driving command signal (to) becomes rHJ, there is a predetermined time delay. hand(
A delay circuit that emits an output (between time 1 and -12o in FIG. 3),
(G) is a delay circuit that outputs an output after a certain period of time when the output of the delay circuit (to) is input, and (41U) is a delay circuit (
7) output, deceleration command signal (7a) and stop command (B
Enter Ji+ (8a) to accelerate when climbing, high speed constant speed,
Climb travel pattern signal that commands deceleration and low constant speed (
41Ua), an upward running pattern generation circuit (4
LD) is a descending travel pattern generating circuit that also generates the descending travel pattern signal (4xDa), (41UA) is a rising relay contact that is closed during the ascending operation period, and (41DA) is a descending relay that is closed during the descending operation period. Contact point (c) is pressure signal 1 (loa) and oil r! A signal (16a)
is input, and when the output of the delay circuit becomes rHJ, it is output as a pressure signal (43a) and oil temperature signal (4sb), respectively, and when the output of the delay circuit (to) becomes "L", a pressure signal (4sb) is output.
3a) and a holding circuit that releases the holding of the oil temperature signal (43b); the foundation is a leakage coefficient correction circuit that stores or sets the leakage coefficient value of the hydraulic pump (2) and issues a leakage coefficient value signal (44a); (c) inputs the pressure signal (43a), oil@hakugo (43b), and leakage coefficient value signal (44a), calculates the 0 formula that will be given later, and calculates the leakage amount corresponding to the leakage amount from the hydraulic pump@. When the output of the delay circuit (to) becomes "H", the arithmetic circuit outputs the signal No. (45a), and the circuit (■) emits a bias pattern signal (46a) that causes the hydraulic pump @ to rotate at a rotational speed corresponding to the leakage amount at that time. The bias pattern generation circuit (0'i) generates the rising or falling running pattern signal (41
Ua), (41Da) and bias pattern signal (46
a) and outputs a pattern signal (47a), and in this embodiment, an adder is used.The 5 decoy is a conversion circuit that converts the speed signal (14a) to the same voltage level as the pattern signal. , Gin is the pattern signal (4
7a) and an adder 3' that outputs the deviation of the output of the conversion circuit (goods).
ω is a transmission circuit that transmits the outputs of the adders θ at a predetermined amplification degree, and (51) is the output of the transmission circuit ω and the conversion circuit (
Add the outputs of c) to get the frequency command @number ω. (52) is a frequency command signal ω. On the other hand, a function generating circuit (53) is a function generating circuit to which a voltage command signal (2) that varies linearly, for example, is a frequency command signal (ω). and voltage command signal v to the transistors in the inverter (c) so that a sine wave three-phase alternating current is output from the inverter wire.
This is a reference sine wave residual circuit that generates a control signal (ZSa).

次に、この実施例の動作を説明する。Next, the operation of this embodiment will be explained.

今、かご(5)が停止していて、上昇方向に呼びが生じ
たとする。圧力信’jl−(loa)及び油温信号(1
6a )は常に出力されており、保持回路(ハ)は保持
状態ではないので、上記信号(10a)、(16a)は
そのまま圧力信号(43a)及び油温信号(43b”l
として出力されている。また、漏れ係数補正回路■ばあ
らかじめ記憶又は設定された漏れ係数値信号(44a)
全帛している。したがって、演算回路(ハ)も常時動作
し、漏れ量信号(45a)を出力している。
Suppose now that the car (5) is stopped and a call is made in the upward direction. Pressure signal 'jl- (loa) and oil temperature signal (1
6a) is always output, and the holding circuit (c) is not in the holding state, so the above signals (10a) and (16a) are directly output as the pressure signal (43a) and oil temperature signal (43b"l).
It is output as . In addition, the leakage coefficient correction circuit 1 also receives a leakage coefficient value signal (44a) stored or set in advance.
It's in full force. Therefore, the arithmetic circuit (c) also operates at all times and outputs the leak amount signal (45a).

すなわち、一般に油圧エレベータ用の油圧ポンプ(2)
はIMO形ねじポンプが使用されており、この油圧ポン
プ(2)の漏れ量は、ポンプ吐出圧力、油温及びポンプ
特注により、次式で示される。
That is, generally a hydraulic pump (2) for a hydraulic elevator.
An IMO type screw pump is used, and the leakage amount of this hydraulic pump (2) is expressed by the following formula depending on the pump discharge pressure, oil temperature, and pump customization.

ここに、Q:ポンプからの漏れ量 に:ポンプ製造上のばらつきによる 漏れ係数 P:ポンプ吐出孔圧力 に:油温に対応して変化する油のエ ングラ粘度 演算回路■は上記0式の演算を行うもので、かご(5)
の運転時はポンプ吐出孔圧力Pは圧力信号(loa)に
、粘度Eは油温信’i!r (x6a)に、係数には漏
れ係数値信号(44a) Kそれぞれ相当する。
Here, Q: Leakage amount from the pump: Leakage coefficient due to variations in pump manufacturing P: Pump discharge hole pressure: Engler viscosity of oil that changes in response to oil temperature Calculation circuit ■ calculates the above equation 0. Basket (5)
During operation, the pump discharge hole pressure P is the pressure signal (LOA), and the viscosity E is the oil temperature signal 'i! r (x6a) and the coefficient correspond to the leakage coefficient value signal (44a) K, respectively.

かご(5)の起動時に衝撃が生じるのは、この漏れtQ
を補正していないためである。したがって、かご(5)
が起動する前にあらかじめ起動及び走行時のかご圧力及
び油温を検出すると共に、漏れ係数値を与え、これらか
ら漏れ量を演算し、かご(5)の起動時及び走行中にお
ける漏れ量を補正すれば、油圧ポンプ(2)の吐出圧力
が急激に変化することはないので、起動衝撃は抑えられ
る5例えば、かご(5)が無負荷で呼びに8答しようと
している場合、かご圧力が15Kg/am2、油温が3
5°Cのときの粘度Eが4.9、油圧ポンプ紛の漏れ係
数Kが6とすると、 となり、この状態における起動時及び走行中の漏れ量は
約10.51’である。この漏れ量tuna’:じた漏
れ量信号(45a)が演算回路に)から出力される。
It is this leakage tQ that causes a shock when starting the car (5).
This is because it has not been corrected. Therefore, basket (5)
Detects the car pressure and oil temperature during startup and running before the car (5) starts, gives a leakage coefficient value, calculates the leakage amount from these, and corrects the leakage amount when the car (5) starts up and runs. Then, the discharge pressure of the hydraulic pump (2) will not change suddenly, so the startup shock can be suppressed.5For example, when the car (5) is about to answer 8 calls without any load, the car pressure is 15 kg. /am2, oil temperature is 3
Assuming that the viscosity E at 5°C is 4.9 and the leakage coefficient K of the hydraulic pump powder is 6, the following equation is obtained, and the amount of leakage at startup and during running in this state is approximately 10.51'. This leakage amount tuna': leakage amount signal (45a) is output from the arithmetic circuit.

したがって、かご(5)が戸開して乗客が乗降している
間、圧力信号(loa)は変化するので、漏れ量信号(
45a)も刻々変化している。
Therefore, while the car (5) is open and passengers are getting on and off, the pressure signal (loa) changes, so the leakage signal (
45a) is also constantly changing.

第3図の時刻t8で戸閉が完了近くなると、運転指令信
号(至)が「H」になり、所定時間後の時刻t20で遅
延回路(至)の出力が「H」になると、保持回路(ハ)
  1゛はその時点での圧力信号(loa )及び油温
信号(16a)を保持し、これを圧力信号(43a )
及び油温信号(43b)として出力する。演算回路■は
これらの信号(43a)、(43b)と各れ係数値信号
(44a)を演算し、一定値の漏れ量信号(45a)を
バイアスパターン発生回路■に与える。
When the closing of the door is nearing completion at time t8 in FIG. (c)
1 holds the pressure signal (loa) and oil temperature signal (16a) at that point, and converts it to the pressure signal (43a).
and output as an oil temperature signal (43b). The arithmetic circuit (2) calculates these signals (43a), (43b) and each coefficient value signal (44a), and provides a constant value leakage amount signal (45a) to the bias pattern generation circuit (4).

戸閉完了して起動条件が成立すると起動指令が出て、運
転用電磁接触器接点(30a)〜(30C)は閉成し、
電動機03はインバータ翰に接続される。また、バイア
スパターン発生回路(4eから第3図(b)に示す上記
演算結果に基づいたバイアスパターン信Ji+(46a
、)が発生する。この信号(46a’)は加算器07)
を介してパターン信号(47a )となり、加算器0!
jlで変換回路(財)を介した速度信号(14a)との
偏差が演算され、伝達回路ωを経由して加算器(51)
に入力される。ここで、速度信号(i4a)と加算され
て周波数指令信号ω。となり、また関数余生回路(52
)を介して電圧指令信号vとなる。これらの信号ω。。
When the door is closed and the starting conditions are met, a starting command is issued, and the operating electromagnetic contactor contacts (30a) to (30C) are closed.
The electric motor 03 is connected to the inverter wire. In addition, the bias pattern generation circuit (4e) generates a bias pattern signal Ji+ (46a) based on the above calculation result shown in FIG.
, ) occurs. This signal (46a') is added to adder 07)
becomes a pattern signal (47a) through adder 0!
jl calculates the deviation from the speed signal (14a) via the conversion circuit (goods), and sends it to the adder (51) via the transmission circuit ω.
is input. Here, the frequency command signal ω is added to the speed signal (i4a). and the function remainder circuit (52
) becomes the voltage command signal v. These signals ω. .

■により、基準正弦波発生回路(53)から制御山号(
25a )が発せられ、インバータ(ハ)のトランジス
タがパルス幅制御され、インバータ翰からバイアスパタ
ーン信号(46a )に従った低い電圧及び周波数の三
相交流が侘せられる。これで、電動機α3は油圧ポンプ
(2)の漏れ量相当の低い回転速度で油圧ポンプ(6)
を駆動する。したがって、バイアスパターン信号(46
a)では、かご(5)が上昇することはない。
By ■, the reference sine wave generation circuit (53) is
25a) is emitted, the transistor of the inverter (c) is controlled in pulse width, and a three-phase alternating current of low voltage and frequency according to the bias pattern signal (46a) is passed from the inverter wire. Now, the electric motor α3 is connected to the hydraulic pump (6) at a low rotational speed equivalent to the leakage amount of the hydraulic pump (2).
to drive. Therefore, the bias pattern signal (46
In a), the car (5) does not rise.

時刻t21になると、遅延回路帥の出力が「H」となり
、上昇走行パターン発生回路(41U)から第3図(a
)に示す上昇走行パターン信号(41Ua)が定せられ
る。このとき、上昇用リレー接点(4xcrA)け。
At time t21, the output of the delay circuit becomes "H", and the upward running pattern generating circuit (41U) outputs the signal shown in FIG. 3(a).
) is determined as the upward running pattern signal (41Ua). At this time, connect the rising relay contact (4xcrA).

閉成しているので、加算器θηからは第3図(C)に示
すパターン信号(47a)が出力され、上述のようにし
てこのパターン信号(47a)に従って電動機α]の回
転速度は制御される。すなわち、時刻t2□以後は油圧
ポンプ(2)はその漏れ量以上の圧油を送出する。油は
油タンクαQ−管路(15A)−油圧ポンプ叩−臂路(
12A)−電磁切換弁a〃−管路(lIE)−油圧シリ
ンダ(2)の経路で、油圧シリンダ(2)に送られ、こ
の油層に見合った分だけかと(5)は上昇される。
Since the adder θη is closed, the pattern signal (47a) shown in FIG. Ru. That is, after time t2□, the hydraulic pump (2) sends out more pressure oil than its leakage amount. The oil is transferred from the oil tank αQ to the pipe (15A) to the hydraulic pump to the arm passage (
12A) - Electromagnetic switching valve a - Pipeline (lIE) - Hydraulic cylinder (2) The oil is sent to the hydraulic cylinder (2) through the route, and the oil (5) is raised by an amount corresponding to this oil layer.

油圧ポンプ(12は加速され、やがて一定速度に達する
。時刻t2□において、かご(5)が呼びのある階の手
前所定距離の点に達すると、カム(6)が減速指令スイ
ッチ(7)と係合し、減速指令@号(7a)が発せられ
る。これで、上昇走行パターン信号(41[7a)は漸
減し、やがて一定値を出力するようになる。かご(5)
はこれに従って低速度で上昇を続け、時刻t23でカム
(6)が停止指令スイッチ(8)と係合して停止指令信
号(8a)が光せられると、上昇走行パターン信号(4
1σa)は更に減少し、時刻t24で零となる。一方、
バイアスパターン信号(46&)も時刻t23テ減少し
始め、時刻t25で零となる。このため、パターン信J
i!r(47a)は時刻t23から時刻t24の間では
急激に減少する。そして、かご(5)は油圧ポンプ(2
)の油が・が漏れ量相当分よりも少なくなる時刻t26
で停止する。
The hydraulic pump (12) is accelerated and eventually reaches a constant speed. At time t2□, when the car (5) reaches a point a predetermined distance before the called floor, the cam (6) activates the deceleration command switch (7). The car is engaged, and a deceleration command @ number (7a) is issued.The ascending travel pattern signal (41 [7a)] gradually decreases and eventually comes to output a constant value.Car (5)
continues to rise at a low speed in accordance with this, and at time t23, the cam (6) engages with the stop command switch (8) and the stop command signal (8a) is illuminated, and the upward travel pattern signal (4
1σa) further decreases and becomes zero at time t24. on the other hand,
The bias pattern signal (46 &) also begins to decrease at time t23 and becomes zero at time t25. For this reason, the pattern belief J
i! r(47a) rapidly decreases between time t23 and time t24. The cage (5) is connected to a hydraulic pump (2).
) becomes less than the amount equivalent to the leakage amount t26
Stop at.

この間、演算回路に)からの漏れ故信号(451L3は
、戸閉完了時に保持した値となっており、バイアスパタ
ーン発生回路(ト)もバイアスパターン信号(46a)
を発している。しかし、かご(5)が停止して戸が開き
、運転指令信号(至)がrLJになると、保持回路的の
信号保持状態は解除され、漏れ量偏号(45a)は刻々
変化するが、遅延回路(至)の出力は「L」になってい
るので、バイアスパターン信号(46a)は発生されな
い。
During this time, the leakage fault signal (451L3) from the arithmetic circuit () is the value held when the door is closed, and the bias pattern generation circuit (g) also outputs the bias pattern signal (46a).
is emitting. However, when the car (5) stops and the door opens and the operation command signal (to) becomes rLJ, the signal holding state of the holding circuit is released and the leakage amount deviation (45a) changes every moment, but there is a delay. Since the output of the circuit (to) is "L", the bias pattern signal (46a) is not generated.

次に、下降運転について説明する。Next, the descending operation will be explained.

今、かご(5)が停止していて下降方向に呼びがあると
、上昇時と同様運転指令信号(至)が第4図の時刻t1
で「H」になると、所定時間後の時刻t30で遅延回路
(至)の出力はrHJとなり、そのときの圧力信号(X
Oa)及び油温信号(X6a)が保持回路的で保持され
、演算回路(ハ)はバイアスパターン発生回路−へ一定
値を与える。起動条件が成立すると、上昇時同様、バイ
アスパターン信号(46a)が定せられ、これにより電
動機α]の回転速蜜が制御され、油圧ポンプ(2)は駆
動されて、漏れ量を補正すると共に管路(15A )に
油を供給する。また、電磁切換弁αυの電磁コイル(1
1A)も付勢されるが、動作遅れがあるため、徐々に管
路(12A)と管路(llB)’ri連通して行く。
Now, when the car (5) is stopped and there is a call in the descending direction, the operation command signal (to) is sent at time t1 in Fig. 4, as in the case of ascending.
When it becomes "H", the output of the delay circuit (to) becomes rHJ at time t30 after a predetermined time, and the pressure signal (X
Oa) and the oil temperature signal (X6a) are held in a holding circuit, and the arithmetic circuit (c) gives a constant value to the bias pattern generation circuit. When the starting conditions are met, the bias pattern signal (46a) is determined as in the case of rising, thereby controlling the rotation speed of the electric motor α, and driving the hydraulic pump (2) to correct the leakage amount and Oil is supplied to the pipe (15A). In addition, the electromagnetic coil (1
1A) is also energized, but since there is a delay in operation, the pipe (12A) and pipe (llB)'ri are gradually brought into communication.

時刻t で遅延回路θ0から出力が発せられ、下   
(3] 降走行パターン発生回路(41D)から第4図(a)に
示す下降走行パターン信号(41Da )が定せられる
。このため、加算器0ηからは第4図(C)に示すパタ
ーン信号(47a )が出力される。電動機03はパタ
ーン信号(47a)によって制御されて、時刻t31か
ら徐々に減速し始める。この減速に伴うで油は油圧シリ
ンダ(2)から油タンクαυへ流入すZ0電動機a3は
時刻z1で停止した後逆転し、時刻t3□で減速指令信
号(7a)が出力されると減速を開始し、時刻z2で停
止する5時刻z1から時刻22間では、電動機α3は油
圧ポンプ@によって駆動されるので、誘導発電機として
作用し、回生電力を回生用インバータ(ハ)を介して交
流電源R,S、Tへ返還する。時刻z2以降は電動機(
至)は再び正回転をする。時刻t33で停止指令信号(
8a)が発せられると、電磁切換弁αnl7)’を磁コ
イル(IIA)は消勢され、電磁切換弁α→は復帰して
油圧シリンダ(2)からの圧油の流出は阻止され、かご
(5)は停止する。
At time t, an output is generated from the delay circuit θ0, and the lower
(3) A descending traveling pattern signal (41Da) shown in FIG. 4(a) is determined from the descending traveling pattern generating circuit (41D). Therefore, the pattern signal shown in FIG. 4(C) is generated from the adder 0η (47a) is output. The electric motor 03 is controlled by the pattern signal (47a) and starts to gradually decelerate from time t31. Along with this deceleration, oil flows from the hydraulic cylinder (2) into the oil tank αυ Z0. Electric motor a3 reverses after stopping at time z1, starts decelerating when the deceleration command signal (7a) is output at time t3□, and stops at time z2.5 Between time z1 and time 22, electric motor α3 is under hydraulic pressure. Since it is driven by the pump@, it acts as an induction generator and returns the regenerated power to the AC power supplies R, S, and T via the regenerative inverter (c).After time z2, the electric motor (
) rotates forward again. At time t33, the stop command signal (
When 8a) is issued, the magnetic coil (IIA) that controls the electromagnetic switching valve αnl7)' is deenergized, the electromagnetic switching valve α→ returns to its original state, and the outflow of pressure oil from the hydraulic cylinder (2) is prevented, and the car ( 5) is stopped.

一方、下降走行パターン信号(41Da )も時刻t3
3で減少し始め、時刻t34で零となる。また、バイア
スパターン信号(46a)も同様に時刻t33で減少し
始め、時刻t35で零となる。走行パターン信号(47
a)は時刻t33以後しばらく一定値となり、時刻t3
4から減少q始め、時刻t35で零となる。電動機α1
はこのパターン信号(47a)によって制御されて、油
圧ポンプ(2)を駆動する。
On the other hand, the downward running pattern signal (41Da) also occurs at time t3.
It starts to decrease at 3 and becomes zero at time t34. Similarly, the bias pattern signal (46a) begins to decrease at time t33 and becomes zero at time t35. Travel pattern signal (47
a) becomes a constant value for a while after time t33, and at time t3
The decrease q starts from 4 and becomes zero at time t35. Electric motor α1
is controlled by this pattern signal (47a) to drive the hydraulic pump (2).

このようにして、かご(5)の起動に先立ってかご圧力
及び油温を検出し、また油圧ポンプ(ハ)の持つ漏れ係
数をあらかじめ記憶又は設定し、これらから漏れ量を演
算しかつこれを保持させ、この値によりバイアスパター
ン信号(46a)を発生させ、電動機α1を低速度で運
転し、油圧ポンプ(2)の持つ漏fitを補っておいて
からバイアスパターン信号(46a)に走行パターン信
号(41Ua)、(41Da)を加算して、電動機α3
を起動させるようにしている。したがって、上昇時は油
圧ポンプ(2)から急激に多装の油が吐出されることを
阻止し、下降時は油の急激な流れを抑えるので、振動を
発生することなく、かご(5)を円滑に起動させること
ができる。
In this way, the car pressure and oil temperature are detected prior to starting the car (5), and the leakage coefficient of the hydraulic pump (c) is stored or set in advance, and the leakage amount is calculated from these and calculated. This value is used to generate a bias pattern signal (46a), and the electric motor α1 is operated at a low speed to compensate for the leakage fit of the hydraulic pump (2). By adding (41Ua) and (41Da), motor α3
I am trying to start it. Therefore, when ascending, the hydraulic pump (2) is prevented from suddenly discharging a large amount of oil, and when descending, the rapid flow of oil is suppressed, so the car (5) can be moved without vibration. It can be started smoothly.

ここで、第5図により圧力信号(loa)及び油1@信
号(16a)の保持の時期について説明する。
Here, the timing of holding the pressure signal (LOA) and the oil 1 signal (16a) will be explained with reference to FIG.

起動時に発せられる漏れ量信号(45a)は、戸閉完了
近くの時刻tIlで発せられる運転指令信号(至)より
も所定時間遅れた時刻t20で保持された圧力信号(1
0a )及び油温信号(16a)に灯心する値となる(
第5図(b))。これは、例えばかと(5)が停止し、
戸を開き始めた時刻t0から戸閉完了近くまでには、乗
客又は荷物の乗降があり、負荷圧力が変動するのを防止
するためである。すなわち、負荷圧力が大きく変化する
と、これにより負荷圧力は主として系の固有周期T。で
振動する。そのため、戸閉完了付近での圧力信号(1o
a)を入力すると、場合によっては第5図(a)のよう
に、誤差の大きい圧力信ji)(10a)を@り込むこ
とになる。これに対し、遅延時間(時刻t、−t2o間
)を系の固有周期T。
The leakage amount signal (45a) issued at the time of startup is the pressure signal (1
0a) and the oil temperature signal (16a).
Figure 5(b)). This means, for example, that Kato (5) stops and
This is to prevent the load pressure from fluctuating due to passengers or luggage getting on and off from the time t0 when the door begins to open until the time when the door closes. That is, when the load pressure changes significantly, the load pressure mainly changes due to the natural period T of the system. It vibrates. Therefore, the pressure signal (1o
If a) is input, in some cases, as shown in FIG. 5(a), a pressure signal ji) (10a) with a large error will be input. On the other hand, the delay time (between time t and -t2o) is the natural period T of the system.

の1/2程度にすると、上記振動はかなり減衰するので
、誤差を十分少なくすることができ、いっそう正確に漏
れ号を補正できる。
If the value is about 1/2, the vibration is considerably damped, so the error can be sufficiently reduced, and the leakage signal can be corrected more accurately.

また、遅延回路(至)へ入力される運転指令信号(ハ)
は戸閉完了信号でもよく、乗客又は荷物が乗降できない
程度戸が閉じた時点以後の戸閉機械の戸位置信号を、戸
閉完了@号として用いればよい。
In addition, the operation command signal (c) input to the delay circuit (to)
may be a door closing completion signal, and the door position signal of the door closing machine after the time when the door is closed to the extent that passengers or luggage cannot get on or off the vehicle may be used as the door closing completion @ sign.

また、圧力信号(43a)及び油温信号(43b)をか
ご(5)の走行停止後戸開するまで保持するようにした
ので、走行中油圧ポンプ(イ)からの漏れ量が補正でき
、かご(5)の速変を一定に保つことが可能となり、低
速走行時間の短縮又は省略及び着床精変の向上を図るこ
とができる。また、漏れ量補正は、漏れ骨相当量である
ことが望ましいが、走行パターン信号(4ura)、(
41Da) 発生までの遅延時間を短  ′〈すれば、
若干補正量が多くても衝撃は少なくて済む。
In addition, since the pressure signal (43a) and oil temperature signal (43b) are held until the door is opened after the car (5) stops running, the amount of leakage from the hydraulic pump (a) can be corrected while the car is running. It becomes possible to maintain the speed change in (5) constant, and it is possible to shorten or omit low-speed running time and improve landing precision. In addition, it is desirable that the amount of leakage is corrected by the amount equivalent to the bone leakage, but the running pattern signal (4ura), (
41Da) If the delay time until occurrence is shortened,
Even if the amount of correction is a little large, the impact will be small.

なお、保持回路啜への入力は圧力信号(loa)及び油
温信号(16a)としたが、実状に芯じていずれか一方
とし、他方を演算回路(ハ)へ入力して漏れ量を演算し
ても十分実用に供し得る。
Note that the inputs to the holding circuit were the pressure signal (LOA) and the oil temperature signal (16a), but based on the actual situation, either one was used and the other was input to the calculation circuit (c) to calculate the leakage amount. However, it can be put to practical use.

また、漏れ係数値18号(44a)は演算回路(ハ)に
入力されているが、保持回路−を介して入力しても、漏
れ量演算に支障はない。
Furthermore, although the leakage coefficient value No. 18 (44a) is input to the arithmetic circuit (c), there is no problem in calculating the amount of leakage even if it is inputted via the holding circuit.

実施例では、起動に先立つバイアスパターン信  1号
(46a)と、走行パターン信号(41Ua)、(41
Da)を加算するようにしたが、他のパターン信号に切
り換えるようにしてもよい。
In the embodiment, bias pattern signal No. 1 (46a) and running pattern signals (41Ua) and (41Ua) are used prior to activation.
Da) is added, but it is also possible to switch to another pattern signal.

なお、油圧ポンプ(6)を駆動する電動機α]は誘導電
動機に限ることなく、パターン信号によって可変制御さ
れる電動機であれば、十分所期の目的を達成することが
できる。
Note that the electric motor [alpha] that drives the hydraulic pump (6) is not limited to an induction motor, and any electric motor that is variably controlled by a pattern signal can sufficiently achieve the intended purpose.

〔発明の効果〕〔Effect of the invention〕

以上述べたとおりこの発明では、油圧エレベータのかご
の重量カ油に与える圧力と、油圧ポンプを通過する油の
@度を検出し、運転指令が発せられてから所定時間後の
圧力信号及び油温信号の内少なくとも圧力信号を保持し
、これと油温信号及び油圧ポンプの持つ@れ係数とから
油圧ポンプの漏7″L量を演算し、この漏れ量信号とこ
れに続く走行パターン信号をそれぞれパターン信号とし
て電動機を制御するようにしたものである。これにより
、かごへの乗降による負荷変動が安定した状態で漏れ量
演算が行われ、急激な流量及び圧力変化を抑え、かごを
円滑に起動させることができる。
As described above, the present invention detects the weight of the car of a hydraulic elevator, the pressure applied to the oil, and the temperature of the oil passing through the hydraulic pump. Among the signals, at least the pressure signal is held, and the leakage amount of the hydraulic pump is calculated from this, the oil temperature signal, and the leakage coefficient of the hydraulic pump, and this leakage amount signal and the following driving pattern signal are respectively calculated. The electric motor is controlled as a pattern signal.This allows the leakage amount to be calculated while the load fluctuations caused by getting on and off the car are stabilized, suppressing sudden changes in flow rate and pressure, and starting the car smoothly. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はこの発明による油圧エレベータの制御
装置の一実施例を示す図で、第1図は第2図の速変制御
装置のブロック回路図、第2図は全体構成図、第3図は
上昇運転の動作説明図、第4図は下降運転の動作説明図
、第5図は第1図の遅延回路(至)の動作説明図、第6
図及び第7図は従来の油圧エレベータの制御装置の動作
説明図である。 図中、(2)は油圧シリンダ、(5)はかご、00け圧
力検出器、(ハ)は油圧ポンプ、α]は三相誘導電動機
、0Qは油温検出語、(至)は運転指令信号、(至)は
遅延回路、(41U)は上昇走行パターン発生回路、(
41D)は下降走行パターン発生回路、■は保持回路、
09は演算回路、(ハ)はバイアスパターン発生回路、
(4ηはパターン発生回路(加算器)である。 なお、図中同一符号は同一部分を示す。
1 to 5 are diagrams showing one embodiment of a hydraulic elevator control device according to the present invention, in which FIG. 1 is a block circuit diagram of the speed change control device shown in FIG. 2, and FIG. 2 is an overall configuration diagram; Fig. 3 is an explanatory diagram of the operation of the upward operation, Fig. 4 is an explanatory diagram of the operation of the downward operation, Fig. 5 is an explanatory diagram of the operation of the delay circuit (to) of Fig. 1, and Fig. 6 is an explanatory diagram of the operation of the delay circuit (to) of Fig. 1.
7 and 7 are explanatory views of the operation of a conventional hydraulic elevator control device. In the figure, (2) is the hydraulic cylinder, (5) is the cage, 00 pressure detector, (c) is the hydraulic pump, α] is the three-phase induction motor, 0Q is the oil temperature detection word, and (to) is the operation command. signal, (to) is the delay circuit, (41U) is the upward running pattern generation circuit, (
41D) is a downward running pattern generation circuit, ■ is a holding circuit,
09 is an arithmetic circuit, (c) is a bias pattern generation circuit,
(4η is a pattern generation circuit (adder). Note that the same reference numerals in the figures indicate the same parts.

Claims (1)

【特許請求の範囲】[Claims] (1)パターン信号に従つて電動機を制御し、運転指令
信号が発せられると上記電動機によつて油圧ポンプを駆
動してかごを走行させるようにしたものにおいて、走行
パターン信号を発する走行パターン発生回路、上記かご
の重量が油に与える圧力を検出する圧力検出器、上記油
圧ポンプを通過する油の温度を検出する油温検出器、上
記運転指令信号を所定時間遅らせて出力する遅延回路、
上記圧力検出器の出力及び上記油温検出器の出力の内少
なくとも上記圧力検出器の出力を上記遅延回路の出力に
より保持する保持回路、この保持回路の出力又はこれと
上記油温検出器の出力を演算して上記油圧ポンプの漏れ
量に対応する漏れ量信号を発する演算回路、並びに上記
漏れ量信号を上記パターン信号として発した後上記走行
パターン信号を上記パターン信号として発するパターン
発生生回路を備えたことを特徴とする油圧エレベータの
制御装置。
(1) A running pattern generation circuit that generates a running pattern signal in a motor that controls an electric motor according to a pattern signal, and when a driving command signal is issued, a hydraulic pump is driven by the electric motor to cause the car to run. , a pressure detector that detects the pressure exerted on the oil by the weight of the car, an oil temperature detector that detects the temperature of the oil passing through the hydraulic pump, a delay circuit that delays the operation command signal by a predetermined time and outputs it;
A holding circuit that holds at least the output of the pressure detector out of the output of the pressure detector and the output of the oil temperature sensor using the output of the delay circuit; the output of this holding circuit or the output of this holding circuit and the output of the oil temperature sensor; and a pattern generation circuit that generates the travel pattern signal as the pattern signal after generating the leak rate signal as the pattern signal. A hydraulic elevator control device characterized by:
JP59216754A 1984-10-16 1984-10-16 Controller for hydraulic elevator Granted JPS6194980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216754A JPS6194980A (en) 1984-10-16 1984-10-16 Controller for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216754A JPS6194980A (en) 1984-10-16 1984-10-16 Controller for hydraulic elevator

Publications (2)

Publication Number Publication Date
JPS6194980A true JPS6194980A (en) 1986-05-13
JPH0470229B2 JPH0470229B2 (en) 1992-11-10

Family

ID=16693395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216754A Granted JPS6194980A (en) 1984-10-16 1984-10-16 Controller for hydraulic elevator

Country Status (1)

Country Link
JP (1) JPS6194980A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137678A (en) * 1984-07-30 1986-02-22 三菱電機株式会社 Controller for hydraulic elevator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137678A (en) * 1984-07-30 1986-02-22 三菱電機株式会社 Controller for hydraulic elevator

Also Published As

Publication number Publication date
JPH0470229B2 (en) 1992-11-10

Similar Documents

Publication Publication Date Title
US4593792A (en) Apparatus for controlling a hydraulic elevator
JPS5842573A (en) Controller for elevator
JPS6194980A (en) Controller for hydraulic elevator
JPS6137678A (en) Controller for hydraulic elevator
JPS631683A (en) Fluid pressure elevator
JPS6194981A (en) Controller for hydraulic elevator
JPS64311B2 (en)
JPH0664853A (en) Level control device for elevator
JPH0367877A (en) Control device of hydraulic elevator
JPH0680326A (en) Elevator control device
JPS6155075A (en) Controller for hydraulic elevator
JPH0379572A (en) Controller for hydraulic elevator
JPS64312B2 (en)
JPH0151434B2 (en)
JPH0383777A (en) Control device for hydraulic elevator
JPH04125270A (en) Hydraulic elevator
JPH0515635B2 (en)
JP5204436B2 (en) Hoisting machine operation control device and operation control method
JPH0367875A (en) Control device of hydraulic elevator
JPH0227263B2 (en)
JPH04266376A (en) Hydraulic elevator control device
JPH04217569A (en) Controller for hydraulic elevator
JPH0464994B2 (en)
JPH0367876A (en) Control device of hydraulic elevator
JPH0780643B2 (en) Hydraulic elevator controller