JPH0151434B2 - - Google Patents

Info

Publication number
JPH0151434B2
JPH0151434B2 JP58242368A JP24236883A JPH0151434B2 JP H0151434 B2 JPH0151434 B2 JP H0151434B2 JP 58242368 A JP58242368 A JP 58242368A JP 24236883 A JP24236883 A JP 24236883A JP H0151434 B2 JPH0151434 B2 JP H0151434B2
Authority
JP
Japan
Prior art keywords
car
pattern
time
bias
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58242368A
Other languages
Japanese (ja)
Other versions
JPS60157471A (en
Inventor
Tomoichiro Yamamoto
Hideo Yoshiie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58242368A priority Critical patent/JPS60157471A/en
Publication of JPS60157471A publication Critical patent/JPS60157471A/en
Publication of JPH0151434B2 publication Critical patent/JPH0151434B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、パターン信号に従い流量を制御し
てかごを走行させる油圧エレベータの制御装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a hydraulic elevator that controls a flow rate according to a pattern signal to run a car.

〔従来技術〕[Prior art]

第1図〜第5図は従来の油圧エレベータの制御
装置を示し、図中、1は昇降路、2はこの昇降路
1のピツトに埋設されたシリンダ、9はこのシリ
ンダに充満された圧油、4はこの圧油に支持され
たプランジヤ、5はこのプランジヤ4の頂部に載
置されたかご、5aはかを床、6はこのかご床5
aの下に取り付けられた負荷検出装置、7は乗場
床、8はかご5に取り付けられたカム、9は移動
中のかご5を減速させるための減速指令スイツ
チ、10はかご5を停止させるための停止指令ス
イツチ、11は常時、逆止弁として機能し、電磁
コイル11bが付勢されることにより、切り換え
られて逆方向も導通させる電磁切換弁、11aは
シリンダ2と電磁切換弁11の間に接続され、圧
油を送受する管、12は可逆回転し、管12aを
介して電磁切換弁11との間で圧油を送受する油
圧ポンプ、13はこの油圧ポンプ12を駆動する
三相誘導電動機、14はこの三相誘導電動機13
の回転数を検出する速度発電機、15は管15a
を介して油圧ポンプ12へ圧油を送受する油タン
ク。16はこの油タンク15の油温を検出する油
温検出装置、R,S,Tは三相交流電源、21は
三相交流を直流に変換する整流回路、22はこの
直流を平滑するコンデンサ、23は直流をパルス
幅制御して可変電圧可変周波数の三相交流を発生
させるインバータ、24は直流を三相交流電源
R,S,Tに返還する回生用インバータ、25は
負荷検出装置6の負荷信号6aと、速度発電機1
4の速度信号14aと、油温検出装置16の油圧
信号16aと、減速指令信号9aと、起動指令が
出てから、停止指令ができるまで閉成される常開
接点30Tcによつて発生する運転指令信号及び
運転接触器の常開接点30dよつて発生する信号
30daがそれぞれ入力される速度制御装置で、
信号25aを出力してインバータ23を制御する
ものである。30a〜30cは第3図に示す運転
接触器30の常開接点で三相誘導電動機13をイ
ンバータ23に接続するものである。
Figures 1 to 5 show a conventional hydraulic elevator control system. In the figures, 1 is a hoistway, 2 is a cylinder buried in a pit in the hoistway 1, and 9 is pressure oil filled in this cylinder. , 4 is a plunger supported by this pressure oil, 5 is a cage placed on the top of this plunger 4, 5a is a floor, and 6 is a floor 5 of this cage.
A load detection device is installed under a, 7 is a landing floor, 8 is a cam attached to the car 5, 9 is a deceleration command switch for decelerating the moving car 5, and 10 is for stopping the car 5. The stop command switch 11 always functions as a check valve, and when the electromagnetic coil 11b is energized, it is switched and conducts in the opposite direction.The electromagnetic switching valve 11a is a switch between the cylinder 2 and the electromagnetic switching valve 11. 12 is a hydraulic pump that rotates reversibly and sends and receives pressure oil to and from the electromagnetic switching valve 11 via the pipe 12a, and 13 is a three-phase induction that drives this hydraulic pump 12. The electric motor 14 is this three-phase induction motor 13
15 is a tube 15a that detects the rotation speed of the speed generator.
An oil tank that sends and receives pressure oil to and from the hydraulic pump 12 via. 16 is an oil temperature detection device that detects the oil temperature in the oil tank 15; R, S, and T are three-phase AC power supplies; 21 is a rectifier circuit that converts three-phase AC into DC; 22 is a capacitor that smoothes this DC; 23 is an inverter that controls the pulse width of DC to generate three-phase AC with variable voltage and variable frequency; 24 is a regenerative inverter that returns the DC to three-phase AC power supplies R, S, and T; 25 is the load of the load detection device 6 Signal 6a and speed generator 1
4, the oil pressure signal 16a of the oil temperature detection device 16, the deceleration command signal 9a, and the normally open contact 30Tc, which is closed from when a start command is issued until a stop command is issued. A speed control device to which a command signal and a signal 30da generated by a normally open contact 30d of an operating contactor are respectively input,
The inverter 23 is controlled by outputting a signal 25a. 30a to 30c are normally open contacts of the operating contactor 30 shown in FIG. 3, which connect the three-phase induction motor 13 to the inverter 23.

第2図は、第1図に示す速度制御装置25の詳
細を示し、40は常開接点30Tcが閉成してか
ら所定時間遅れて出力を発する遅延回路、41U
は上昇走行パターン発生回路で、遅延回路40の
出力によつて第4図bに示すとおり時刻t1から立
上り、時刻t3で減速指令信号9aが発生せられる
と減少して一旦一定低速となり、時刻t6で零とな
るものである。41Dは下降走行パターン発生回
路で、第4図b′に示す走行パターン信号を出力す
るものである。41Uaは上方向運転の期間中閉
成し続ける上方向接点41Da,41Dbは下方向
運転の期間中閉成し続ける下方向接点、42はあ
らかじめポンプのもれ量のばらつき、負荷、油温
によるもれ量の初期設定を行うもので、無負荷で
所定温度において油圧ポンプ12におけるもれ量
相当分の回転で油圧ポンプ12を回転するように
指令を出す設定バイアスパターン回路、43は演
算器で、油温信号16a及び負荷信号6aによつ
て作動し、設定バイアスパターン回路42の出力
を加算器44を介して加算補正するものである。
45は常開接点30Tcが閉成すると、その時の
油圧ポンプ12のもれ量相当分の回転数で回転す
るよう指令を出すバイアスパターン発生回路で停
止指令信号30dが発せられると零となるもので
ある。46は走行パターン発生回路41U又は4
1Dの出力とバイアスパターン発生回路45の出
力とを加算して第4図c,c′のパターン信号を出
力する加算器。47は速度信号14aをパターン
信号と同一電圧レベルにレベル変換する変換回
路、48は加算器46の出力と変換回路47の出
力との差をとる減算器、49はこの減算器48の
出力を所定の増幅度で伝達する伝達回路、50は
この伝達回路49の出力と変換回路47の出力と
を加算して周波数指令信号ω0を出力する加算器、
51はこの加算器50の周波数指令信号ω0に対
して直線状の電圧指令信号Vを発する関数発生回
路、52は周波数指令信号ω0と電圧指令信号V
に基づいて正弦波の三相交流がインバータ23か
ら出力されるように信号25aを出力する基準正
弦波発生回路である。
FIG. 2 shows details of the speed control device 25 shown in FIG. 1, and 40 is a delay circuit 41U that outputs an output after a predetermined time delay after the normally open contact 30Tc closes.
is an upward running pattern generation circuit, which starts at time t1 as shown in FIG. It becomes zero at time t6 . Reference numeral 41D is a downward running pattern generating circuit which outputs a running pattern signal shown in FIG. 4b'. 41Ua is an upper contact that remains closed during upward operation; 41Da and 41Db are lower contacts that remain closed during downward operation; and 42 is a contact that remains closed during upward operation. A setting bias pattern circuit that initializes the amount of leakage and issues a command to rotate the hydraulic pump 12 at a rotation rate equivalent to the amount of leakage in the hydraulic pump 12 at a predetermined temperature with no load; 43 is a computing unit; It operates based on the oil temperature signal 16a and the load signal 6a, and adds and corrects the output of the setting bias pattern circuit 42 via the adder 44.
45 is a bias pattern generating circuit that issues a command to rotate at a rotation speed corresponding to the amount of leakage of the hydraulic pump 12 at that time when the normally open contact 30Tc is closed, and becomes zero when the stop command signal 30d is issued. be. 46 is a running pattern generation circuit 41U or 4
An adder which adds the output of 1D and the output of the bias pattern generation circuit 45 and outputs the pattern signals shown in FIG. 4c and c'. 47 is a conversion circuit that converts the speed signal 14a to the same voltage level as the pattern signal; 48 is a subtracter that takes the difference between the output of the adder 46 and the output of the conversion circuit 47; and 49 is a predetermined value for the output of this subtracter 48. 50 is an adder that adds the output of the transmission circuit 49 and the output of the conversion circuit 47 to output a frequency command signal ω 0 ;
51 is a function generating circuit that generates a linear voltage command signal V in response to the frequency command signal ω 0 of this adder 50, and 52 is a frequency command signal ω 0 and a voltage command signal V
This is a reference sine wave generation circuit that outputs a signal 25a so that a three-phase sine wave AC is output from the inverter 23 based on the sine wave.

第3図は制御回路接続図を示し、(+)、(−)
は制御電源、8は呼び信号及び戸閉検出信号等に
よつて閉成する起動指令回路、30Tは一端が起
動指令回路28を介して制御電源(+)に、他端
が制御電源(−)に接続された運転指令時限継電
器、30Taはこの時限継電器30Tの常開接点
で、一端が停止指令スイツチ10の常閉接点10
cを介して制御電源(+)に、他端が時限継電器
30Tの一端に接続されている。30Tbは時限
継電器30Tの限時復帰の常開接点、30Tc,
30Tdは同じく時限継電器30Tの常開接点、
30は常開接点30Tbに制御される運転接触器
で、第1図〜第3図に示す常開接点30a,30
b,30c,30d,30fを開放、閉成させる
ものである。
Figure 3 shows the control circuit connection diagram, (+), (-)
8 is a control power supply, 8 is a start command circuit that is closed by a call signal, a door closed detection signal, etc., 30T is a control power supply (+) at one end via the start command circuit 28, and a control power supply (-) at the other end. The operation command time relay 30Ta connected to is the normally open contact of this time relay 30T, and one end is the normally closed contact 10 of the stop command switch 10.
The other end is connected to one end of the time relay 30T via c to the control power source (+). 30Tb is the normally open contact of the timed relay 30T, 30Tc,
30Td is the normally open contact of the time relay 30T,
Reference numeral 30 denotes an operating contactor controlled by a normally open contact 30Tb, which includes normally open contacts 30a and 30 shown in FIGS. 1 to 3.
b, 30c, 30d, and 30f are opened and closed.

次に動作について説明する。かごが停止してい
て上昇方向に呼びがあると、かご5は戸閉完了後
に起動指令が出され、時限継電器30Tが励磁さ
れる。この時限継電器30Tはかご5が動き出し
て停止点を外れると自己保持する。
Next, the operation will be explained. When the car is stopped and there is a call in the upward direction, a start command is issued to the car 5 after the door has been closed, and the time relay 30T is energized. This time relay 30T maintains itself when the car 5 starts moving and leaves the stopping point.

時限継電器30Tにより運転接触器30が励磁
され、常開接点30a〜30cで電動機13に給
電されると共に、常開接点30Tcによりバイア
スパターン発生回路45から信号が出されると、
バイアスパターンはそのときの値を保持し時刻t0
でバイアスパターンが発生する。このバイアスパ
ターンによりインバータ23からは低い電圧及び
周波数の三相交流が発せられ、電動機13はあら
かじめ演算された油圧ポンプ12のもれ分相当の
低い回転でポンプ12を駆動する。従つてかご5
は上昇することはない。
When the operating contactor 30 is excited by the time relay 30T, power is supplied to the motor 13 through the normally open contacts 30a to 30c, and a signal is output from the bias pattern generation circuit 45 through the normally open contact 30Tc.
The bias pattern retains its value at time t 0
A bias pattern occurs. With this bias pattern, the inverter 23 emits a three-phase alternating current of low voltage and frequency, and the electric motor 13 drives the pump 12 at a low rotation rate corresponding to the leakage of the hydraulic pump 12 calculated in advance. Therefore basket 5
will never rise.

時限継電器30T励磁後一定時間後、時刻t1
遅延回路40から出力が発せられ、上昇走行パタ
ーン発生回路40Uより走行パターンが出力さ
れ、バイアスパターンと走行パターンは第4図c
の如く加算され、ポンプ12からは圧油が徐々に
供給量を増し逆止弁11を押し動かし、第5図の
如くかご5は走行を始め、やがて時刻t2で一定速
となる。かご5が目的階の手前所定位置にくる
と、カム8が減速指令スイツチ9を作動させる。
そして時刻t3で上昇走行パターン発生回路41U
は漸減して減速となり、やがて一定低速となりか
ご5は上昇を続ける。時刻t5でカム8が停止指令
スイツチ10を作動させると、起動指令回路28
は減速指令スイツチ9の作動によつて開放されて
おり常閉接点10bの開放につて時限継電器30
Tは消勢され上昇走行パターン発生回路41Uは
出力零に落ちているので、走行パターンは更に減
少し、シリンダ2への吐出量が減るので逆止弁1
1は徐々に閉じ、時刻t6でかご5はほぼ停止状態
になる。時限継電器30Tは消勢するが、限時接
点30Tbは一定時間閉成状態を保つので、時限
継電器30は励磁状態であり、バイアスパターン
信号により電動機13は回転を続ける。限時接点
30Tbが時限後開放されると、時限継電器30
の消勢により、時刻t7で常開接点30a〜30c
で電動機13への給電を断つと共に、常開接点3
0dによりバイアスパターン発生回路45も断た
れ、時刻t8で電動機13は停止しかご5も停止す
る。
After a certain period of time after the time relay 30T is excited, an output is issued from the delay circuit 40 at time t 1 , a running pattern is output from the upward running pattern generation circuit 40U, and the bias pattern and running pattern are as shown in Fig. 4c.
The amount of pressure oil supplied from the pump 12 gradually increases to push the check valve 11, and the car 5 starts running as shown in FIG. 5, and eventually reaches a constant speed at time t2 . When the car 5 comes to a predetermined position in front of the destination floor, the cam 8 activates the deceleration command switch 9.
Then, at time t3 , the upward running pattern generation circuit 41U
gradually decreases and decelerates, and eventually reaches a constant low speed and car 5 continues to rise. When the cam 8 operates the stop command switch 10 at time t5 , the start command circuit 28
is opened by the operation of the deceleration command switch 9, and when the normally closed contact 10b is opened, the time relay 30
Since T is deenergized and the output of the ascending travel pattern generation circuit 41U has fallen to zero, the travel pattern further decreases and the discharge amount to the cylinder 2 decreases, so the check valve 1
Car 1 gradually closes, and at time t6 , car 5 almost comes to a halt. Although the time relay 30T is deenergized, the time limit contact 30Tb remains closed for a certain period of time, so the time relay 30 is in an energized state and the motor 13 continues to rotate due to the bias pattern signal. When the time limit contact 30Tb is opened after the time limit, the time limit relay 30
Due to the deenergization of the normally open contacts 30a to 30c at time t7
The power supply to the electric motor 13 is cut off at the normally open contact 3.
0d, the bias pattern generation circuit 45 is also cut off, and at time t8 , the electric motor 13 and the car 5 are stopped.

次に下降呼のあるとき、戸閉完了後に起動指令
が出されると、時限継電器30Tが励磁されて接
点30Tbが閉成し、時限継電器30が励磁され、
接点30a〜30cの閉成により電動機13に給
電されるとともに、バイアスパターンが発生し、
時刻t0′で上昇時と同様ポンプ12から油を吐出
する方向に低回転する。これによりもれ分は補正
される。又、接点30f,30Tbにより電磁弁
コイル11bが励磁され弁11が開く。
Next, when there is a down call, when a start command is issued after the door is closed, the time relay 30T is energized, the contact 30Tb is closed, and the time relay 30 is energized.
By closing the contacts 30a to 30c, power is supplied to the motor 13, and a bias pattern is generated.
At time t 0 ', the pump 12 rotates at a low speed in the direction of discharging oil from the pump 12, as in the case of rising. This corrects the leakage. Further, the solenoid valve coil 11b is energized by the contacts 30f and 30Tb, and the valve 11 is opened.

一定時間後、遅延回路40から出力が発せら
れ、時刻t′1で下降走行パターン発生回路41D
より走行パターンが出力され、第4図cの如く、
バイアスパターンと走行パターンは加算され、従
つて電動機13は徐々に回転を下げ、零回転より
逆転方向へと回転し、第5図に示す如くかご5は
下降方向に走行し、やがて時刻t′2で一定速とな
る。カム8が減速指令スイツチ9を作動さると、
上昇時と同様時刻t′3で減速し、後一定低速とな
り下降を続ける。停止指令スイツチ10が動作す
ると、走行パターンは更に減少し、以後バイアス
パターン分の回転で廻ることになり、ポンプ12
はほぼもれ分のみしか供給しないので、かご5は
時刻t′6でほぼ停止する。
After a certain period of time, an output is issued from the delay circuit 40, and at time t' 1 , the downward running pattern generation circuit 41D
The running pattern is output as shown in Figure 4c.
The bias pattern and the running pattern are added, and therefore the motor 13 gradually lowers its rotation and rotates from zero rotation to the reverse direction, and the car 5 runs in the downward direction as shown in FIG. 5, and eventually reaches time t' 2 The speed becomes constant. When the cam 8 operates the deceleration command switch 9,
As with the ascent, it decelerates at time t′ 3 , then reaches a constant low speed and continues descending. When the stop command switch 10 is operated, the running pattern is further reduced and the pump 12 is rotated by the bias pattern.
Since only the leakage amount is supplied, the car 5 almost stops at time t'6 .

また、停止指令スイツチ10の動作により時限
継電器30Tが消磁され接点30Tdが開放とな
るので、電磁弁コイル11bが消磁し弁11は
徐々に閉じ、シリンダ2からの油を止めるのでか
ご5は停止状態を保つ。以後は上昇時と同様、一
定時限後時刻t′8で電動機13への給電及びバイ
アスパターンが断たれ、ポンプ12が止まる。
Furthermore, the operation of the stop command switch 10 demagnetizes the time relay 30T and opens the contact 30Td, so the solenoid valve coil 11b is demagnetized, the valve 11 gradually closes, and the oil from the cylinder 2 is stopped, so the car 5 is in a stopped state. keep it. Thereafter, as in the case of rising, the power supply to the electric motor 13 and the bias pattern are cut off at time t'8 after a certain period of time, and the pump 12 is stopped.

ここで走行パターン終了後において、バイアス
パターンにより若干廻しているとき、かごはほぼ
停止状態にあるが上昇、下降共若干上昇方向へ動
く。
Here, after the running pattern is completed, when the car is rotating slightly due to the bias pattern, the car is almost at a standstill, but both upward and downward movements move slightly in the upward direction.

これは、もれ分を補正する為のバイアスパター
ン値は起動時のシヨツク防止を目的として演算し
ている為起動時シリンダのパッキン抵抗、かごの
昇降路抵抗等静摩擦抵抗分を加味して与えてい
る。
This is because the bias pattern value for correcting leakage is calculated for the purpose of preventing shock at startup, so it is calculated by taking into account static frictional resistance such as cylinder packing resistance and car hoistway resistance at startup. There is.

しかし、かごが動き出した後は、上記抵抗分は
摩擦抵抗値となり、一般に静摩擦より小さくな
る。従てかご起動後において同一バイアスパター
ンを与えると起動後はかご速は上昇時はやや高
目、下降時はやや低目となるが実使用時問題では
ない。しかし、着床時においては上記抵抗差によ
り目標停止位置にきてもかごは若干上昇しこれが
着床誤差を大きくしてしまう。
However, after the car starts moving, the above resistance becomes a frictional resistance value, which is generally smaller than static friction. Therefore, if the same bias pattern is applied after the car is started, the car speed will be slightly higher when rising and slightly lower when falling after starting, but this is not a problem in actual use. However, when landing on the floor, the above-mentioned resistance difference causes the car to rise slightly even when it reaches the target stop position, which increases the landing error.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を解消するためになされ
たもので、かご起動後はバイアスパターン値を若
干小さくし、もつて着床誤差を少なくすることが
きる油圧エレベータの制御装置を提案するもので
ある。
The present invention has been made to eliminate such drawbacks, and proposes a control device for a hydraulic elevator that can slightly reduce the bias pattern value after the car is started, thereby reducing landing errors.

〔発明の実施例〕[Embodiments of the invention]

第6図〜第8図はこの発明の一実施例を示すも
のであり、図中第1図〜第5図と同一符号は同一
または相当部分を示す。54は減算器、55は補
正パターンで、静摩擦抵抗と動摩擦抵抗との差を
シヨツクを和らげるため徐々に増やして最終的そ
の値になるようにしてある。
6 to 8 show an embodiment of the present invention, and the same reference numerals as in FIGS. 1 to 5 indicate the same or corresponding parts. 54 is a subtracter, and 55 is a correction pattern, which gradually increases the difference between the static frictional resistance and the dynamic frictional resistance to the final value in order to soften the shock.

次に作用について説明する。 Next, the effect will be explained.

第7図および第8図において、時刻t0〜t3、t′0
〜t′3までは従来のものと同一である。
In FIG. 7 and FIG. 8, time t 0 to t 3 , t′ 0
~ t'3 is the same as the conventional one.

時刻t3又はt3′で減速指令が出ると走行パターン
は徐々に零になつてゆくと共に、補正パターン5
5が減算器54で減算されバイアスパターンを上
記差で補うよう減らしてゆき、時刻t30、t30′まで
にバイアスを下げてゆき補正を行う。これにより
上記差分は補正されるので、走行パターンが零に
なつた後バイアスパターンのみの時かごが走行す
ることはなく正確な低速、着床となるので、かご
の着床精度は向上する。
When a deceleration command is issued at time t 3 or t 3 ′, the running pattern gradually becomes zero, and the correction pattern 5
5 is subtracted by the subtracter 54, and the bias pattern is reduced to compensate for the above difference, and the bias is lowered and corrected by time t30 and t30 '. As a result, the above-mentioned difference is corrected, so that after the running pattern becomes zero, the car does not run when only the bias pattern is used, and the car lands accurately at a low speed, thereby improving the landing accuracy of the car.

尚、この実施例では減速開始より静から動への
抵抗差分を補正するようにしたが、かご起動後は
いつでもよい。
In this embodiment, the resistance difference from static to dynamic is corrected from the start of deceleration, but it may be corrected at any time after starting the car.

又、補正パターンは漸増させたが、多少のシヨ
ツクを許すならステツプ状に変えてもよい。
Further, although the correction pattern is increased gradually, it may be changed in a stepwise manner if some shock is allowed.

〔発明の効果〕〔Effect of the invention〕

以上述べたとおり、この発明はパターン信号に
従つて流量を制御し、かごを走行させるものにお
いて、低吐出量を与えるバイアスパターン信号を
かご起動前に対して起動後は信号値を若干下げ、
静から動への摩擦抵抗の差分を補正するようにし
たものである。
As described above, the present invention controls the flow rate according to a pattern signal to run a car, and the bias pattern signal that gives a low discharge amount is slightly lowered in signal value after the car is started compared to before the car is started.
This is to correct the difference in frictional resistance from static to dynamic.

これによつて着床誤差が少くできる。 This can reduce landing errors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の油圧エレベータの制御置を示す
系統図、第2図は第1図に示す速度制御装置の詳
細図、第3図は制御回路接続図、第4図はバイア
スパターン、走行パターン、および電動機パター
ンの経時変化を示す図、第5図は電動機パターン
とかご速度との関係を示す図、第6図はこの発明
に係る速度制御装置の詳細を示す第2図相当図、
第7図はバイアスパターン、走行パターン、およ
び電動機パターンの経時変化を示す第4図相当
図、第8図は電動機パターンとかご速度との関係
を示す第5図相当図である。 2……シリンダ、5……かご、12……油圧ポ
ンプ、13……三相誘導電動機、25……速度制
御装置、41U,41D……走行パターン発生回
路、42……設定バイアスパターン回路、45…
…バイアスパターン発生回路、46,50……加
算器、47……変換器、48,54……減算器、
52……基準正弦波発生回路、55……補正パタ
ーン、なお各図中、同一符号は同一又は相当部分
を示すものとする。
Fig. 1 is a system diagram showing a conventional hydraulic elevator control system, Fig. 2 is a detailed diagram of the speed control device shown in Fig. 1, Fig. 3 is a control circuit connection diagram, and Fig. 4 is a bias pattern and running pattern. , FIG. 5 is a diagram showing the relationship between the motor pattern and car speed, and FIG. 6 is a diagram corresponding to FIG. 2 showing details of the speed control device according to the present invention.
FIG. 7 is a diagram corresponding to FIG. 4 showing changes over time in the bias pattern, running pattern, and motor pattern, and FIG. 8 is a diagram corresponding to FIG. 5 showing the relationship between the motor pattern and car speed. 2... Cylinder, 5... Car, 12... Hydraulic pump, 13... Three-phase induction motor, 25... Speed control device, 41U, 41D... Running pattern generation circuit, 42... Setting bias pattern circuit, 45 …
... Bias pattern generation circuit, 46, 50 ... Adder, 47 ... Converter, 48, 54 ... Subtractor,
52...Reference sine wave generation circuit, 55...Correction pattern. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 バイアスパターン信号を発してポンプより低
吐出量を与えるバイアスパターン発生回路と、こ
れを保持する回路と、走行パターン信号を発して
かごを走行させる走行パターン発生回路とを備
え、上記バイアスパターン信号と走行パターン信
号を切換えるか又は加算器で重畳し、このパター
ン信号に従い流量を制御してかごを走行させるも
のにおいて、かご起動後の上記バイアスパターン
信号をかご起動前よりも若干低い値にすることを
特徴とする油圧エレベータの制御装置。
1. A bias pattern generating circuit that generates a bias pattern signal to cause the pump to discharge a lower discharge amount, a circuit that holds the bias pattern signal, and a running pattern generating circuit that generates a running pattern signal and causes the car to run, In a car that runs a car by switching the running pattern signal or superimposing it with an adder and controlling the flow rate according to this pattern signal, it is recommended to set the bias pattern signal after starting the car to a slightly lower value than before starting the car. A hydraulic elevator control device featuring features.
JP58242368A 1983-12-22 1983-12-22 Controller for hydraulic elevator Granted JPS60157471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242368A JPS60157471A (en) 1983-12-22 1983-12-22 Controller for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242368A JPS60157471A (en) 1983-12-22 1983-12-22 Controller for hydraulic elevator

Publications (2)

Publication Number Publication Date
JPS60157471A JPS60157471A (en) 1985-08-17
JPH0151434B2 true JPH0151434B2 (en) 1989-11-02

Family

ID=17088137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242368A Granted JPS60157471A (en) 1983-12-22 1983-12-22 Controller for hydraulic elevator

Country Status (1)

Country Link
JP (1) JPS60157471A (en)

Also Published As

Publication number Publication date
JPS60157471A (en) 1985-08-17

Similar Documents

Publication Publication Date Title
US4593792A (en) Apparatus for controlling a hydraulic elevator
JPH0780644B2 (en) Hydraulic elevator
JPH0151434B2 (en)
JPH0218053Y2 (en)
JPS64311B2 (en)
JPH0515635B2 (en)
JPH0227263B2 (en)
JPH04125270A (en) Hydraulic elevator
JPH0367875A (en) Control device of hydraulic elevator
JPH0383777A (en) Control device for hydraulic elevator
JPS64312B2 (en)
JPH0367877A (en) Control device of hydraulic elevator
JPH0335228B2 (en)
JPH0373773A (en) Controller for hydraulic elevator
JPH07100576B2 (en) Hydraulic elevator controller
JP2560587B2 (en) Oil temperature rise operating device for hydraulic elevator
JPH0575673B2 (en)
JPH0151437B2 (en)
JPH0367876A (en) Control device of hydraulic elevator
JPH0470229B2 (en)
JPH0464994B2 (en)
JPS60112573A (en) Controller for hydraulic elevator
JPH0485272A (en) Method and device for operating hydraulic elevator using inverter driving system
JPH075238B2 (en) Control device for hydraulic elevator
JPH0780643B2 (en) Hydraulic elevator controller