JPH0367877A - Control device of hydraulic elevator - Google Patents

Control device of hydraulic elevator

Info

Publication number
JPH0367877A
JPH0367877A JP1201435A JP20143589A JPH0367877A JP H0367877 A JPH0367877 A JP H0367877A JP 1201435 A JP1201435 A JP 1201435A JP 20143589 A JP20143589 A JP 20143589A JP H0367877 A JPH0367877 A JP H0367877A
Authority
JP
Japan
Prior art keywords
speed
car
cage
signal
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1201435A
Other languages
Japanese (ja)
Inventor
Tomoichiro Yamamoto
山本 友一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1201435A priority Critical patent/JPH0367877A/en
Publication of JPH0367877A publication Critical patent/JPH0367877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Elevator Control (AREA)

Abstract

PURPOSE:To hold a cage in a predetermined stop position by energizing an electromagnetic selector valve with a floor-mating speed signal to open a hydraulic pipe line and performing a feedback of a speed or a position of the cage, when it is sunk from a regulated position during stopping of the cage. CONSTITUTION:In a speed control device 25, when a cage 5, during its stopping by closing a normally-open contact 30d, is detected for sinking from a regulated position, a floor-mating speed signal is output from a floor-mating pattern generating circuit, while a hydraulic circuit 11a to a jack 3 is opened by selecting an electromagnetic selector valve 11. While a feedback of a cage speed signal 8a from a cage speed detecting device 8 or a cage position is performed, a speed of an electric motor 13, that is, speed of an oil hydraulic pump 12 is controlled through an inverter 23 to perform floor-mating corresponding to the displacement of the cage 5. In this way, delay of action and generation of a shock at the time of starting can be prevented while being possible to hold the cage in a predetermined stop position.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、油圧エレベータの制御装置に係り、さらに
詳しくは、停止時のかご位置の降下によって生じる起動
時における起動遅れや起動ショックを未然に防止するよ
うにした油圧エレベータの制御装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control device for a hydraulic elevator, and more specifically, to a control device for a hydraulic elevator, and more specifically, to prevent a start delay or start shock at the time of start, which is caused by a drop in the car position at the time of stop. The present invention relates to a control device for a hydraulic elevator that prevents such problems.

[従来の技術] 従来の油圧エレベータの油圧制御方式には、流量制御弁
による方式、ポンプ制御方式、電動機回転数制御方式が
ある。流量制御弁方式は、上昇時は電動機を定回転で駆
動し、油圧ポンプからの定吐出量の油をタンクへ戻して
おいて、起動指令が出るとタンクへ戻す量を流量制御弁
で調節することによりかごの速度を制御し、又、下降時
は自重によるかごの降下を流量制御弁で調節し、かごの
速度を制御するものである。この方式は上昇時に余分な
浦を循環させることが必要であり、また、下降時には位
置エネルギを油の発熱に消費するのでエネルギロスが大
きく、曲温上昇が著しい。
[Prior Art] Conventional hydraulic control methods for hydraulic elevators include a flow control valve method, a pump control method, and an electric motor rotation speed control method. The flow control valve method drives the electric motor at a constant rotation during lift, returns a fixed amount of oil from the hydraulic pump to the tank, and uses the flow control valve to adjust the amount returned to the tank when a start command is issued. In this way, the speed of the car is controlled by controlling the speed of the car, and when descending, the lowering of the car due to its own weight is adjusted by a flow control valve, thereby controlling the speed of the car. In this method, it is necessary to circulate extra oil when ascending, and when descending, potential energy is consumed to heat the oil, resulting in large energy loss and a significant rise in bending temperature.

この欠点を補うものとして、上昇時は必要な油量のみを
送り、下降時は電動機を回生制動させる方式として、ポ
ンプ制御方式と電動機回転数制御方式がある。ポンプ制
御方式は可変容量形ポンプを用いポンプ自身の吐出量を
制御装置により可変とするものであり、制御装置及びポ
ンプの構造が複雑で、かつ高価になる。
To compensate for this drawback, there are a pump control method and a motor rotation speed control method, which send only the necessary amount of oil when ascending and regeneratively brake the electric motor when descending. The pump control method uses a variable displacement pump and makes the discharge amount of the pump itself variable by a control device, which makes the structure of the control device and pump complicated and expensive.

これに対し、近年半導体の技術進歩に伴い、例えば、特
開昭57−98477号公報で開示されているように、
電圧、周波数を変化させて誘導電動機を広い範囲にわた
って回転数を制御する方式が考えられており、これを用
いたのが電動機回転数制御方式で、定吐出形ポンプを用
い、ポンプの吐出量を電動機の回転数を変えることによ
って可変制御するもので、安価でかつ高い信頼性を有す
る。
On the other hand, with the technological progress of semiconductors in recent years, for example, as disclosed in Japanese Patent Application Laid-Open No. 57-98477,
A method of controlling the rotation speed of an induction motor over a wide range by changing the voltage and frequency has been considered.The motor rotation speed control method uses this method, and uses a constant discharge pump to control the pump's discharge volume. Variable control is performed by changing the rotation speed of the electric motor, and it is inexpensive and highly reliable.

[発明が解決しようとする課題] ところで、油圧ポンプには必ず漏れかあり、この漏れの
ために、油圧ポンプを回転させてもかごが起動しない範
囲がある。すなわち、第4図に示すように、時刻t。で
起動指令が出されたとすると、油圧ポンプは徐々に加速
して時刻tlで回転数n に達し、この回転数01を上
回ると漏れ量以上の油が油圧ポンプから吐出され、かご
が動き出す。
[Problems to be Solved by the Invention] By the way, hydraulic pumps always have leakage, and due to this leakage, there is a range in which the car does not start even if the hydraulic pump is rotated. That is, as shown in FIG. 4, at time t. If a start command is issued at , the hydraulic pump gradually accelerates and reaches the rotational speed n at time tl, and when the rotational speed exceeds 01, oil in excess of the leakage amount is discharged from the hydraulic pump and the car starts moving.

このように、回転数を急激に増加させると、漏れ全以上
の多量の油が油圧ポンプと逆止弁との間の管路に供給さ
れて高い圧力を発生し、逆止弁を急速に押し開くために
起動遅れや大きな起動ショックと振動が発生する。かご
は時刻t2て一定速度に達し、時刻t で減速を開始し
て時刻t4で停止する。油圧ポンプはさらに回転し続け
て時刻t5て停止する。
In this way, when the rotational speed increases rapidly, a large amount of oil, more than the total leakage, is supplied to the pipeline between the hydraulic pump and the check valve, generating high pressure and rapidly pushing the check valve. Opening causes a startup delay and large startup shock and vibration. The car reaches a constant speed at time t2, starts decelerating at time t, and stops at time t4. The hydraulic pump continues to rotate further and stops at time t5.

起動ショックは主として油圧ポンプの回転数の増加が著
しいことに起因するものであるから、第5図に示すよう
に、回転数をゆるやかに増加させると、かごは時刻t 
で動きはじめ、時刻tl2て1 一定速度に達し、時刻tl3で減速を開始して時刻t1
4で停止する。その後に、油圧ポンプは時刻tl、で停
止する。このように、油圧ポンプの回転数をゆるやかに
増加させると、起動時のショックは小さくなるが、起動
遅れが大きくなる。
The starting shock is mainly caused by a significant increase in the rotational speed of the hydraulic pump, so if the rotational speed is gradually increased as shown in FIG.
It starts moving at time tl2 and reaches a constant speed of 1, starts decelerating at time tl3, and reaches time t1.
Stop at 4. Thereafter, the hydraulic pump stops at time tl. In this way, when the rotational speed of the hydraulic pump is gradually increased, the shock at startup becomes smaller, but the startup delay increases.

以上のように、従来の油圧エレベータの油圧制御方式に
は種々の問題がある。
As described above, the conventional hydraulic control system for hydraulic elevators has various problems.

この発明は上記のような従来の油圧エレベータで発生す
る課題を解消するためになされたもので、かごの停止時
にはスムーズな動作で所定位置に停止でき、また油圧ポ
ンプの漏れ等に起因してこの停止位置がずれても、直ち
にこのずれを修正することによって、起動時のかごの動
作遅れや起動ショックを生じない油圧エレベータの制御
装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems that occur with conventional hydraulic elevators. When the car stops, it can be stopped at a predetermined position with smooth movement, and it also solves the problems caused by hydraulic pump leaks, etc. To provide a control device for a hydraulic elevator that does not cause a delay in the operation of a car at startup or a startup shock by immediately correcting the shift even if the stop position shifts.

[課題を解決するための手段] この発明に係る油圧エレベータの制御装置は、エレベー
タ昇降時に所定のパターンに従った速度信号を出力して
電動機の回転数制御を行うパターン発生手段と、電動機
の回転に連結して駆動される油圧ポンプとジヤツキとの
間の管路に設けた常閉電磁弁と、停止位置近傍のかごの
昇降速度の検出値に基づいた速度信号を出力して電動機
の回転数制御を行う床合せ指令手段とを備え、上記の常
閉電磁弁は上記各速度信号が出力時に励磁されて、弁を
開放状態にするように構成したものである。
[Means for Solving the Problems] A control device for a hydraulic elevator according to the present invention includes a pattern generating means for controlling the rotation speed of an electric motor by outputting a speed signal according to a predetermined pattern when the elevator goes up and down; A normally closed solenoid valve installed in the pipe between the hydraulic pump and the jack, which is connected to and driven by the jack, outputs a speed signal based on the detected value of the elevator car's lifting speed near the stop position, and adjusts the rotational speed of the motor. The normally-closed solenoid valve is configured to be energized when each of the speed signals is output, and to open the valve.

[作 用] この発明における床合せ指令手段は、停止しているかご
が所定の乗場床位置より沈下すると、かごの速度検出手
段がこの移動を検出し、この検出に基づいて移動指令を
修正するように速度信号を出力して電動機の回転数制御
を行う。
[Function] In the floor alignment command means of the present invention, when a stopped car sinks below a predetermined landing floor position, the car speed detection means detects this movement and corrects the movement command based on this detection. It outputs a speed signal to control the rotational speed of the motor.

また、速度信号の出力時には常閉電磁弁は励磁されるの
で弁は開放し、油圧ポンプよりの油がジヤツキへ圧送さ
れ、かごを規定の位置に戻して床合せする。
Furthermore, when the speed signal is output, the normally closed solenoid valve is energized, so the valve opens, and oil from the hydraulic pump is forced into the jack, returning the car to the specified position and aligning it with the floor.

[実施例コ 第1図はこの発明の一実施例による油圧エレベータの制
御装置の構成図である。図において、(1)はかごの昇
降路、(2)はこの昇降路(1)のピットに埋設された
シリンダ、(3)はシリンダ(2)に充満された圧油、
(4)はこの圧油(3〉によって伸縮位置を制御される
プランジャ、(5)はプランジャ(4)の頂部に取付け
られたかご、(5a)はかご床、(6)はかご床(5a
)の下に取り付けられた負荷検出装置、(7)は乗場床
、(8〉はかご(5〉と連結したロープ(8b)を介し
て昇降路(1)に設けられたかご速度検出装置、(8a
)はかご速度信号である。
[Embodiment] FIG. 1 is a block diagram of a control device for a hydraulic elevator according to an embodiment of the present invention. In the figure, (1) is the car hoistway, (2) is the cylinder buried in the pit of this hoistway (1), (3) is the pressure oil filled in the cylinder (2),
(4) is a plunger whose expansion and contraction position is controlled by this pressure oil (3), (5) is a cage attached to the top of plunger (4), (5a) is a car floor, and (6) is a car floor (5a).
), (7) is the landing floor, (8> is the car speed detection device installed in the hoistway (1) via the rope (8b) connected to the car (5>), (8a
) is the car speed signal.

〈11)は常時逆止弁として機能し、電磁コイル(Il
b)が付勢されることによって切り換えられ、逆方向を
も導通させる電磁切換弁、(1−1a)はシリンダ(2
)と電磁切換弁(11)との間に接続されて圧面を送給
する送油管である。(12)は可逆回転し、管(12a
)を介して電磁切換弁〈11)との間て圧油を送受する
油圧ポンプ、(13)は油圧ポンプ(12)を駆動する
三相誘導電動機、(I4)は三相誘導電動機(I3)の
回転数を検出する速度発電機、(15)は管(15a)
を介して油圧ポンプ(12)へ圧油を送受する浦タンク
、(16)はmljタンク(15)の曲部を検出する薄
部検出装置である。R,S、Tは三相交流電源、(21
)は三相交流を直流に変換する整流回路、(22)はこ
の直流を平滑するコンデンサ、(23)は直流をパルス
幅制御して可変電圧、可変周波数の三相交流を発生させ
るインバータ、(24)は直流を三相交流電源R,S、
Tに変還する回生用インバータ、(25)は速度発電機
(14)の速度信号(14a)と、油温検出装置(16
〉の油温信号(] (ia)と、かご速度信号(8a)
と、起動指令が出てから停止指令がでるまで閉成される
常開接点(30d)によって発生する運転信号(30d
a)とがそれぞれ人力する速度制御装置で、信号(25
a)を出力してインバータ(23)を制御する。
<11) always functions as a check valve, and the electromagnetic coil (Il
(1-1a) is an electromagnetic switching valve that is switched when the cylinder (b) is energized and conducts in the opposite direction;
) and the electromagnetic switching valve (11) to supply a pressure surface. (12) is reversibly rotated, and the tube (12a
), (13) is a three-phase induction motor that drives the hydraulic pump (12), and (I4) is a three-phase induction motor (I3). A speed generator that detects the rotation speed of the tube (15a), (15)
The ura tank (16) is a thin section detection device that detects curved sections of the mlj tank (15). R, S, T are three-phase AC power supplies, (21
) is a rectifier circuit that converts three-phase alternating current into direct current, (22) is a capacitor that smoothes this direct current, (23) is an inverter that controls the pulse width of direct current to generate variable voltage, variable frequency three-phase alternating current, ( 24) converts DC into three-phase AC power supplies R, S,
The regenerative inverter (25) that returns to T is the speed signal (14a) of the speed generator (14) and the oil temperature detection device (16).
> oil temperature signal (] (ia) and car speed signal (8a)
The operation signal (30d) generated by the normally open contact (30d) is closed from when a start command is issued until a stop command is issued.
a) and are manually operated speed control devices, respectively, and the signal (25
a) to control the inverter (23).

(31)はリレーで、後述(第2図)する電動機パター
ン信号(55a)が出力すると励磁され、常開接点(3
1,a) 〜(31,c)を閉威し、電動機(13〉を
インバータ(23〉に接続する。
(31) is a relay, which is energized when the motor pattern signal (55a) described later (Fig. 2) is output, and the normally open contact (3
1, a) to (31, c) are closed, and the electric motor (13>) is connected to the inverter (23>).

第2図は第1図における速度制御装置(25)の構成を
示すブロック図である。図において、(40)は位置に
対応した床合せ方向及び速度信号を出力する床合せ指令
回路、(41U)は上昇走行パターン発生回路で、常開
接点(30d)の閉成による速度指令信号(30da)
によって上昇走行パターンとなり、減速指令信号(9a
)が人力すると減少して一旦一定低速となり、停止指令
信号(1,Oa)が人力するとパターンは零となり、か
ご(5)は停止する。また、(4,1D>は下降走行パ
ターン発生回路で、上記の上昇走行パターン発生回路(
41U)と昇降パターンが対称的な動作を行う。
FIG. 2 is a block diagram showing the configuration of the speed control device (25) in FIG. 1. In the figure, (40) is a floor alignment command circuit that outputs a floor alignment direction and speed signal corresponding to the position, (41U) is an upward travel pattern generation circuit, and a speed command signal ( 30da)
This results in an upward traveling pattern, and the deceleration command signal (9a
) decreases manually and becomes a constant low speed, and when the stop command signal (1, Oa) is manually applied, the pattern becomes zero and the car (5) stops. In addition, (4, 1D> is a downward running pattern generation circuit, and the above mentioned upward running pattern generation circuit (
41U) and the lifting and lowering patterns perform symmetrical movements.

(41Ua)は上方向運転の期間中閉成し続ける上方向
接点、(4]、Da)は下方向運転の期間中閉成し続け
る下方向接点、(41,IJb)、 (41Db)は上
記と同様に床合せ指令中閉成する上方向接点及び下方向
接点、(43) 、 (44)はNOTゲート、(45
0) 、 (45D)はそれぞれ上昇時及び下降時の床
合せ指令パターン発生回路、(46)は走行パターン発
生回路(41U)又は(41D)の出力と、床合せパタ
ーン発生回路(45U)又は(45D)よりのパターン
信号(45a)とを加算してパターン信号を出力する加
算器である。
(41Ua) is an upward contact that remains closed during upward operation, (4], Da) is a downward contact that remains closed during downward operation, (41, IJb), (41Db) are the above Similarly, the upper and lower contacts are closed during the floor alignment command, (43) and (44) are NOT gates, (45
0) and (45D) are respectively the floor alignment command pattern generation circuits during ascending and descending, and (46) are the outputs of the traveling pattern generation circuit (41U) or (41D) and the floor alignment pattern generation circuit (45U) or ( This is an adder that adds the pattern signal (45a) from 45D) and outputs the pattern signal.

(47)は速度信号(14a)をパターン信号(4[i
a)と同一電圧レベルにレベルに変換する変換回路、(
48)は加算器(46)の出力と変換回路(47)の出
力との差をとる減算器、〈49)は減算器(48)の出
力を所定の増幅度で伝達する伝送回路、(50)は伝送
回路(49)の出力と変換回路(47)の出力とを加算
して周波数指令信号ω。を出力する加算器、(51)は
加算器(50)の周波数指令信号ω。に対して直線状の
電圧指令信号Vを出力する関数発生回路、(52)は周
波数指令信号ω。と電圧指令信号Vとに基づいて、正弦
波の三相交流がインバータ(23)から出力されるよう
に信号(25a)を速度制御装置(25)へ出力する基
準正弦波発生回路である。
(47) converts the speed signal (14a) into the pattern signal (4[i
A conversion circuit that converts the level to the same voltage level as a), (
48) is a subtracter that takes the difference between the output of the adder (46) and the output of the conversion circuit (47), <49) is a transmission circuit that transmits the output of the subtracter (48) at a predetermined amplification degree, and (50) ) is the frequency command signal ω by adding the output of the transmission circuit (49) and the output of the conversion circuit (47). (51) is the frequency command signal ω of the adder (50). A function generating circuit (52) outputs a linear voltage command signal V for a frequency command signal ω. This is a reference sine wave generation circuit that outputs a signal (25a) to the speed control device (25) based on the voltage command signal V and the voltage command signal V so that a sine wave three-phase alternating current is output from the inverter (23).

(53)はかご速度信号(8a〉をパターン信号レベル
に整合させる変換回路、(54)は速度パターンと変換
回路(53)の出力信号(53a)とをつき合せて差を
とる減算器、(55)は加算器、(56)は積分器で、
入力するかご速度信号(8a)を位置点として検知し、
所定の位置で停止指令信号(9a〉及び減速指令信号(
ioa)を出力する。また、(56a)は正規の停止位
置よりのずれに応じた位置ずれ対応信号である。
(53) is a conversion circuit that matches the car speed signal (8a) with the pattern signal level; (54) is a subtractor that compares the speed pattern and the output signal (53a) of the conversion circuit (53) and calculates the difference; 55) is an adder, (56) is an integrator,
Detects the input car speed signal (8a) as a position point,
A stop command signal (9a) and a deceleration command signal (
ioa). Further, (56a) is a positional deviation corresponding signal corresponding to the deviation from the normal stop position.

上記のような構成のこの発明による油圧エレベータの制
御装置において、例えば、かご(5)が停止していて上
昇方向に呼びがあるとすると、かご(5)の戸閉完了後
に起動指令が出され、上昇走行パターン発生回路(41
0)から走行パターン信号が出力し、油は油タンク(1
5)、管(15a) 、油圧ポンプ(12)、管(12
a) 、電磁切換弁(11)及び管(lla)を経てシ
リンダ(2〉内に圧送され、この油量に応じた分だけか
ご(5)は上昇し、かご速度信号(8a)により速度が
帰還されるので、かご(5〉は走行パターンに従って走
行する。油圧ポンプ(12〉は加速され、やがて一定速
度に達する。
In the hydraulic elevator control device according to the present invention having the above configuration, for example, if the car (5) is stopped and there is a call in the ascending direction, a start command is issued after the door of the car (5) is closed. , upward running pattern generation circuit (41
The driving pattern signal is output from the oil tank (1), and the oil is output from the oil tank (1
5), pipe (15a), hydraulic pump (12), pipe (12
a) The oil is forced into the cylinder (2) via the electromagnetic switching valve (11) and the pipe (lla), and the car (5) rises by an amount corresponding to the amount of oil, and the speed is increased by the car speed signal (8a). Since the car is returned, the car (5>) runs according to the running pattern. The hydraulic pump (12>) is accelerated and eventually reaches a constant speed.

かご(5)が目的階の手前の所定位置に達すると、減速
指令信号(9a〉が出力し、上昇走行パターン発生回路
(41U)のパターン信号は漸減し、やがて−定値を出
力するようになり、かご(5)は微速度で上昇し続け、
停止指令信号(10a)が出力して停止する。
When the car (5) reaches a predetermined position in front of the destination floor, a deceleration command signal (9a) is output, and the pattern signal of the upward traveling pattern generation circuit (41U) gradually decreases until it finally outputs a - constant value. , the car (5) continues to rise at a slow speed,
A stop command signal (10a) is output and the machine stops.

また、かご(5)の下降運転は、かご速度パターンが上
述の上昇時と対称になるので、電動機(13)は逆転し
て制御しながらかご(5〉の下降動作を制御することに
なり、停止中のかご(5)に下降方向に呼びがあると起
動指令が出力し、各種の信号によって下降走行パターン
発生回路(41D)から走行パターン信号が出力してか
ご(5)が下降し、目的階で停止するまでの基本的な動
作は上昇時と同様に行なわれる。
Furthermore, in the descending operation of the car (5), the car speed pattern is symmetrical to the above-mentioned ascending operation, so the electric motor (13) is controlled in reverse while controlling the descending operation of the car (5>. When the stopped car (5) receives a call in the downward direction, a start command is output, and in response to various signals, a running pattern signal is output from the downward running pattern generation circuit (41D), the car (5) descends, and the goal is reached. The basic movements until stopping at the floor are performed in the same way as when ascending.

停止指令信号(10a)によってかご(5〉が停止し、
走行パターン発生回路(41U) 、 (41o)より
のパターン信号(46a)がなくなると、電磁切換弁(
11)の励磁が開放されて逆止弁が閉成し、またリレー
(31)の励磁も開放されるので、インバータ(23〉
と電動機(13)との接続が断たれる。
The car (5) is stopped by the stop command signal (10a),
When the pattern signal (46a) from the running pattern generation circuit (41U) and (41o) disappears, the electromagnetic switching valve (
11) is released, the check valve is closed, and the relay (31) is also released, so the inverter (23)
and the electric motor (13) are disconnected.

かご(5)の停止中に、例えばかご(5)の自重等によ
って油圧ポンプ(12)側の圧力がジャ・ソキ(3)側
の圧力よりも低くなると、かご(5)は徐々に降下する
。この降下によってかご速度検出装置(8)よりかご速
度信号(8a)が出力し、これが変換回路(53)を経
て信号(53a)を出力し、減算器(54〉に入力して
かご(5)の速度を零に保持する指令となり、これと同
時にかご(5)の降下による減速指令信号(10a)が
“L”となって、変換回路(53〉を経たかご速度信号
〈8a〉に基づく信号(53a)が積分器(56)に人
力し、ここよりかご位置信号(56a)が出力して、床
合せ指令回路(40)の信号によりかご位置に応じた床
合せのパターン信号(45a)を床合せパターン発生回
路(450)より出力する。これにより加算器(46)
と減算器(48)との間にパターン信号(46a)が生
じてリレー(31)及び電磁切換弁(11)とを再び励
磁し、電動機(i3)を低速で回転させながらかご(5
〉を正規の位置に戻す。
While the car (5) is stopped, if the pressure on the hydraulic pump (12) side becomes lower than the pressure on the Ja Soki (3) side due to the weight of the car (5), for example, the car (5) gradually lowers. . Due to this descent, a car speed signal (8a) is output from the car speed detection device (8), which passes through a conversion circuit (53) and outputs a signal (53a), which is input to a subtractor (54>) and then output from the car (5). At the same time, the deceleration command signal (10a) due to the descent of the car (5) becomes "L", and a signal based on the car speed signal <8a> via the conversion circuit (53>) is issued. (53a) is inputted to the integrator (56), from which a car position signal (56a) is output, and a floor alignment pattern signal (45a) according to the car position is generated by the signal from the floor alignment command circuit (40). It is output from the floor matching pattern generation circuit (450).This causes the adder (46)
A pattern signal (46a) is generated between the subtractor (48) and the relay (31) and the electromagnetic switching valve (11) are energized again, and the car (5) is activated while rotating the electric motor (i3) at a low speed.
〉 back to its normal position.

1 第3図はこの発明による他の実施例の速度制御装置を示
すブロック図であり、減算器(54〉と加算器(55〉
との間に設けた常開接点(30e)以外の部分は、第2
図における同符号の部分と全く同じ部分である。
1 FIG. 3 is a block diagram showing a speed control device according to another embodiment of the present invention, which includes a subtracter (54) and an adder (55).
The parts other than the normally open contact (30e) provided between the
These are exactly the same parts as the parts with the same symbols in the figure.

常開接点(30e)は第1図の実施例の常開接点UOd
)と同様に、呼び走行での起動指令が発せられると閉成
する接点であり、呼び走行時以外のときはこの常開接点
(30d)は開放しているので、変換回路(53〉より
の帰還が行なわれずに、かご(5)の位置に対応した床
合せ速度信号を発生するようになっている。す゛なわち
、かご(5〉が停止してから、ポンプ吐出圧力が、かご
負荷側圧力よりも低くなってかご(5)が正規位置より
沈下すると、減速指令信号が“L”となり、積分器(5
6)よりかご位置信号(5ea)が出力するので、床合
せ指令バタン回路(450)よりかご位置に応じた速度
のパターン信号か出力して電動機(13)を回転させる
。この回転によってポンプ吐出量が増加し、かご(5)
が上昇してゆくと、上昇するかご位置に応じて床 2 合せ指令パターン回路(45U)よりのパターン信号(
45a)が徐々に変化し、電動機(13〉を制御しなが
らかご(5〉を移動するので、よりスムーズな床合せ動
作を行うことができる。
The normally open contact (30e) is the normally open contact UOd of the embodiment shown in FIG.
), this is a contact that closes when a start command is issued during the call run, and this normally open contact (30d) is open when not during the call run, so the conversion circuit (53) The system generates a floor alignment speed signal corresponding to the position of the car (5) without performing feedback.In other words, after the car (5) stops, the pump discharge pressure changes to the car load side. When the car (5) sinks from its normal position due to the pressure becoming lower than the pressure, the deceleration command signal becomes “L” and the integrator (5)
6) outputs a car position signal (5ea), so the floor alignment command button circuit (450) outputs a speed pattern signal corresponding to the car position to rotate the electric motor (13). This rotation increases the pump discharge amount, and the cage (5)
As the car rises, a pattern signal (
45a) changes gradually and moves the car (5>) while controlling the electric motor (13>), so smoother floor alignment operation can be performed.

[発明の効果] 以上のように、この発明によれば、かごが停止中に規定
位置より沈下すると、床合せ速度信号の出力により電磁
切換弁が励磁されて油圧管路を開放し、かごの速度又は
位置の帰還を行うことにより、正規位置よりのかごのず
れ量に対応して床合せ信号を電動機に指令するように構
成したので、スムーズな床合せ動作によってかごを所定
の停止位置に保持できるとともに、起動時におけるかご
の動作遅れや起動ショックがない油圧エレベータを得る
ことができる。
[Effects of the Invention] As described above, according to the present invention, when the car sinks from the specified position while the car is stopped, the solenoid switching valve is energized by the output of the bed alignment speed signal, opens the hydraulic pipe, and the car is moved. By performing speed or position feedback, the car is configured to issue a floor alignment signal to the electric motor in response to the amount of deviation of the car from its normal position, so the car can be maintained at a predetermined stop position through smooth floor alignment operations. At the same time, it is possible to obtain a hydraulic elevator that is free from delay in car operation and no start-up shock at the time of start-up.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の全体構成図、第2図は第
1図の速度制御装置の構成例を示すブロック図、第3図
は速度制御装置の他の構成例を示すブロック図、第4図
及び第5図は従来の油圧工レベータにおける起動時及び
停止時の動作を説明するための線図である。 図において、(3)はジヤツキ、(5)はかこ゛、(8
)ばかご速度検出装置、(8a)はかご速度信号、(1
1)は電磁切換弁(常閉電磁弁) 、(Ila)、(1
2a)は管、(12)は油圧ポンプ、(13)は電動機
、(40)は床合せ指令回路、(410)は上昇走行パ
ターン発生回路、(41,D)は下降走行パターン発生
回路、(45U) 、 (45D)は床合せパターン発
生回路、(4,5a)。 (48a)はパターン信号(速度信号) 、(53)は
変換回路、(56)は積分器である。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIG. 2 is a block diagram showing an example of the configuration of the speed control device shown in FIG. 1, and FIG. 3 is a block diagram showing another example of the configuration of the speed control device. , FIG. 4, and FIG. 5 are diagrams for explaining the operation of a conventional hydraulic elevator at the time of starting and stopping. In the figure, (3) is jack, (5) is kako, (8 is
) Car speed detection device, (8a) Car speed signal, (1
1) is a solenoid switching valve (normally closed solenoid valve), (Ila), (1
2a) is a pipe, (12) is a hydraulic pump, (13) is an electric motor, (40) is a floor alignment command circuit, (410) is an upward traveling pattern generating circuit, (41, D) is a downward traveling pattern generating circuit, ( 45U), (45D) is a floor alignment pattern generation circuit, (4, 5a). (48a) is a pattern signal (velocity signal), (53) is a conversion circuit, and (56) is an integrator.

Claims (1)

【特許請求の範囲】[Claims] エレベータ昇降時に所定のパターンに従った速度信号を
出力して電動機の回転数制御を行うパターン発生手段と
、上記電動機の回転に連結して駆動される油圧ポンプと
、停止位置近傍のかごの昇降速度を検出する速度検出手
段と、この速度検出手段の出力信号に基づいた速度信号
を出力して上記電動機の回転数制御を行う床合せ指令手
段と、上記油圧ポンプとジャッキとの間の管路に設けら
れ、上記各速度信号の出力時に励磁される常閉電磁弁と
を備えたことを特徴とする油圧エレベータの制御装置。
A pattern generating means for outputting a speed signal according to a predetermined pattern when the elevator goes up and down to control the rotational speed of the electric motor, a hydraulic pump that is driven in connection with the rotation of the electric motor, and the elevator speed of the car in the vicinity of the stop position. a speed detection means for detecting the speed, a floor alignment command means for controlling the rotation speed of the electric motor by outputting a speed signal based on the output signal of the speed detection means, and a conduit between the hydraulic pump and the jack. A control device for a hydraulic elevator, comprising: a normally closed solenoid valve which is energized when each of the speed signals is output.
JP1201435A 1989-08-04 1989-08-04 Control device of hydraulic elevator Pending JPH0367877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201435A JPH0367877A (en) 1989-08-04 1989-08-04 Control device of hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201435A JPH0367877A (en) 1989-08-04 1989-08-04 Control device of hydraulic elevator

Publications (1)

Publication Number Publication Date
JPH0367877A true JPH0367877A (en) 1991-03-22

Family

ID=16441042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201435A Pending JPH0367877A (en) 1989-08-04 1989-08-04 Control device of hydraulic elevator

Country Status (1)

Country Link
JP (1) JPH0367877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243154A (en) * 1990-10-16 1993-09-07 Mitsubishi Denki Kabushiki Kaisha Apparatus for controlling a hydraulic elevator
US5419411A (en) * 1990-04-25 1995-05-30 Kaisei Kogyo K.K. Energy conservation type hydraulic elevator and speed control method of hydraulic elevator
US5649422A (en) * 1994-01-29 1997-07-22 Jungheinrich Aktiengesellschaft Hydraulic lift apparatus for a battery driven lift truck

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419411A (en) * 1990-04-25 1995-05-30 Kaisei Kogyo K.K. Energy conservation type hydraulic elevator and speed control method of hydraulic elevator
US5243154A (en) * 1990-10-16 1993-09-07 Mitsubishi Denki Kabushiki Kaisha Apparatus for controlling a hydraulic elevator
US5649422A (en) * 1994-01-29 1997-07-22 Jungheinrich Aktiengesellschaft Hydraulic lift apparatus for a battery driven lift truck

Similar Documents

Publication Publication Date Title
JPH0780644B2 (en) Hydraulic elevator
US4593792A (en) Apparatus for controlling a hydraulic elevator
JPH0367877A (en) Control device of hydraulic elevator
JP2560587B2 (en) Oil temperature rise operating device for hydraulic elevator
JPH0367875A (en) Control device of hydraulic elevator
JPH0373773A (en) Controller for hydraulic elevator
JPH0218053Y2 (en)
JPH0367876A (en) Control device of hydraulic elevator
JPH0227263B2 (en)
JPS64312B2 (en)
JPH0784309B2 (en) Hydraulic elevator controller
JP3141254B2 (en) Hydraulic elevator control device
JPH04217569A (en) Controller for hydraulic elevator
JP2872820B2 (en) Hydraulic elevator control device
JPH0485272A (en) Method and device for operating hydraulic elevator using inverter driving system
JPS60248576A (en) Controller for hydraulic elevator
JPH03120178A (en) Control device for hydraulic elevator
JPH0383777A (en) Control device for hydraulic elevator
JPH05319723A (en) Controller for hydraulic elevator
JPS60112573A (en) Controller for hydraulic elevator
JP3226398B2 (en) Hydraulic elevator control device
JPH0398965A (en) Controller of hydraulic elevator
JPH0151434B2 (en)
JPH0575673B2 (en)
JPH0517154B2 (en)