JP2560587B2 - Oil temperature rise operating device for hydraulic elevator - Google Patents

Oil temperature rise operating device for hydraulic elevator

Info

Publication number
JP2560587B2
JP2560587B2 JP3339394A JP33939491A JP2560587B2 JP 2560587 B2 JP2560587 B2 JP 2560587B2 JP 3339394 A JP3339394 A JP 3339394A JP 33939491 A JP33939491 A JP 33939491A JP 2560587 B2 JP2560587 B2 JP 2560587B2
Authority
JP
Japan
Prior art keywords
hydraulic
oil temperature
oil
electric motor
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3339394A
Other languages
Japanese (ja)
Other versions
JPH05155537A (en
Inventor
和明 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3339394A priority Critical patent/JP2560587B2/en
Publication of JPH05155537A publication Critical patent/JPH05155537A/en
Application granted granted Critical
Publication of JP2560587B2 publication Critical patent/JP2560587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は油圧エレベーターの油
温低下時に油温を上昇させる運転を行なう装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for increasing the oil temperature of a hydraulic elevator when the oil temperature is lowered.

【0002】[0002]

【従来の技術】従来、油圧エレベーターの油圧制御方式
には、流量制御弁方式、ポンプ制御方式、電動機回転速
度制御方式などがある。流量制御弁方式は、上昇時は電
動機を定誘導回転し、油圧ポンプからの定吐出量の油を
油タンクへ戻しておいて、起動指令が出ると油タンクへ
戻す油量を流量制御弁で調節することにより、かごの速
度を制御する。また、下降時は自重によるかごの降下を
流量制御弁で調節し、かごの速度を制御するものであ
る。
2. Description of the Related Art Conventionally, hydraulic control systems for hydraulic elevators include a flow control valve system, a pump control system, a motor rotation speed control system, and the like. The flow rate control valve system rotates the electric motor at a constant induction speed when rising, returns a constant discharge amount of oil from the hydraulic pump to the oil tank, and when the start command is issued, the flow rate control valve controls the amount of oil to be returned to the oil tank. The speed of the car is controlled by adjusting. When the car descends, the car's speed is controlled by adjusting the car's descent due to its own weight with a flow control valve.

【0003】この方式は、上昇時に余分な油を循環させ
ることと、下降時に位置エネルギーを油の発熱に消費す
るため、エネルギー損失が大きく、油温上昇が著しい。
この欠点を補うものとして、上昇時は必要な油温だけを
送り、下降時は電動機を回生制動させる方式として、ポ
ンプ制御方式と電動機回転速度制御方式がある。
In this system, extra oil is circulated when rising, and potential energy is consumed for heat generation of oil when descending, so energy loss is large and oil temperature rises significantly.
As a method of compensating for this drawback, there are a pump control method and an electric motor rotation speed control method as a method of sending only a necessary oil temperature when rising and regeneratively braking the electric motor when lowering.

【0004】ポンプ制御方式は可変容量形ポンプを用
い、ポンプ自身の吐出量を制御装置により可変とするも
のであり、制御装置及びポンプの構造が複雑であり、か
つ高価である。
The pump control system uses a variable displacement pump, and the discharge amount of the pump itself is variable by the control device, and the structure of the control device and the pump is complicated and expensive.

【0005】これに対し、近年半導体の技術進歩に伴
い、インバータを介して電圧及び周波数を変化させて誘
導電動機を広範囲にわたって回転速度制御する方式が考
えられており、これを用いたのが電動機回転速度制御方
式で、定吐出量形ポンプを用い、ポンプの吐出量を電動
機の回転速度を変えることにより、可変制御するもので
あり、安価であり、かつ高信頼性が期待できる。
On the other hand, in recent years, with the technological progress of semiconductors, a method of controlling the rotation speed of an induction motor over a wide range by changing a voltage and a frequency via an inverter has been considered. It is a speed control system, which uses a constant discharge type pump and variably controls the discharge amount of the pump by changing the rotation speed of the electric motor, and is expected to be inexpensive and highly reliable.

【0006】そして油圧エレベーターが長時間停止した
後や、冬期などでは、油温が下がるため、油温を上昇さ
せる機能が設けられるが、上記電動機回転速度制御方式
においても、例えば特開昭60−209484号公報に
示されるような油温上昇運転が行なわれる。これは、油
圧ポンプの吐出側に分岐流路を設け、これに電磁弁を配
置し、油温低下が検出されると電動機を駆動し、電磁弁
を切り換えて油を分岐流路に流して油タンクへ還流さ
せ、その流量抵抗により油温を上昇させるものである。
After the hydraulic elevator has been stopped for a long time, or after the winter season, the oil temperature is lowered, so that a function is provided to raise the oil temperature. The oil temperature increasing operation as shown in Japanese Patent Publication No. 209484 is performed. This is because a branch flow path is provided on the discharge side of the hydraulic pump, and a solenoid valve is placed in this, and when a decrease in oil temperature is detected, the electric motor is driven, and the solenoid valve is switched to flow oil to the branch flow path. The oil is returned to the tank and the oil temperature is raised by the resistance of the flow rate.

【0007】[0007]

【発明が解決しようとする課題】上記のような従来の油
圧エレベーターの油温上昇運転装置では、油温低下が検
出されると電動機を駆動して油を還流させるようにして
いるため、油温上昇運転を長時間行なうと、インバータ
部分に電流が流れる時間も必然的に長くなり、発熱等に
よりインバータ部分を破壊する虞れがある。また、油温
が低くなると、油の粘度が高くなることによって電動機
トルク不足が生じる。これらによって、インバータ部
分の容量を大きくする必要があるという問題点がある。
In the conventional oil temperature rising operating device for a hydraulic elevator as described above, when the oil temperature drop is detected, the electric motor is driven to recirculate the oil. If the ascending operation is performed for a long time, the time during which the current flows through the inverter is inevitably long, and there is a risk that the inverter may be destroyed due to heat generation or the like. Also, as the oil temperature decreases, the viscosity of the oil increases
Torque shortage occurs. As a result, there is a problem in that it is necessary to increase the capacity of the inverter part.

【0008】この発明は上記問題点を解消するためにな
されたもので、インバータ部分を破壊することなく、か
つ通常のエレベーター制御に充分耐えられるインバータ
容量で油温上昇運転ができるようにした油圧エレベータ
ーの油温上昇運転装置を提供することを目的とする。
The present invention has been made to solve the above problems, and is a hydraulic elevator capable of performing an oil temperature increasing operation without destroying the inverter portion and with an inverter capacity that can sufficiently withstand normal elevator control. It is an object of the present invention to provide an oil temperature raising operation device of

【0009】[0009]

【課題を解決するための手段】この発明の第1の発明に
係る油圧エレベーターの油温上昇運転装置は油温上昇運
転時電動機を間欠運転させる指令回路を設けたものであ
る。
According to a first aspect of the present invention, an oil temperature rising operation device for a hydraulic elevator is provided with a command circuit for intermittently operating an electric motor during oil temperature rising operation.

【0010】また、第2の発明に係る油圧エレベーター
の油温上昇運転装置は、第1の発明のものにおいて、油
温上昇運転時の制御パターンの最大値を、かごの定格速
度に対応する電動機速度よりも小さい値に設定したもの
である。
Also, the oil temperature rising operation device for a hydraulic elevator according to the second invention is the motor of the first invention, wherein the maximum value of the control pattern during the oil temperature rising operation corresponds to the rated speed of the car. It is set to a value smaller than the speed.

【0011】また、第3の発明に係る油圧エレベーター
の油温上昇運転装置は、第1の発明のものにおいて、油
温上昇運転時の制御パターンを複数段階加速パターンに
設定したものである。
Further, an oil temperature raising operation device for a hydraulic elevator according to a third aspect of the present invention is the same as that of the first aspect, wherein the control pattern during the oil temperature raising operation is set to a multi-step acceleration pattern.

【0012】[0012]

【作用】この発明の第1の発明においては、電動機を間
欠運転して油温上昇運転し、第2の発明においては、油
温上昇運転時の制御パターンの最大値をかごの定格速度
に対応する電動機速度よりも小さい値に設定し、第3の
発明においては、制御パターンを複数段階加速パターン
に設定したため、インバータの発熱は抑制される。
In the first aspect of the present invention, the electric motor is intermittently operated to increase the oil temperature, and in the second aspect, the maximum value of the control pattern during the oil temperature increasing operation corresponds to the rated speed of the car. Since the control pattern is set to a multi-step acceleration pattern in the third aspect of the invention, heat generation of the inverter is suppressed.

【0013】[0013]

【実施例】図1〜図4はこの発明の一実施例を示す図
で、図1は全体構成図、図2は速度制御装置のブロック
線図、図3は制御パターン曲線図、図4は油温上昇運転
回路図であり、同一符号は同一部分を示す。
1 to 4 are views showing an embodiment of the present invention, FIG. 1 is an overall configuration diagram, FIG. 2 is a block diagram of a speed control device, FIG. 3 is a control pattern curve diagram, and FIG. It is an oil temperature rise driving circuit diagram, and the same code shows the same part.

【0014】図1において、(1)は昇降路、(2)は昇降路
(1)のピットに埋設され作動油(3)が充てんされたシリン
ダ、(4)は作動油(3)により支持されたプランジャ、(5)
はプランジャ(4)の頂部に設けられたかご、(6)は常時は
逆止弁として機能し、コイル(6A)が付勢されると切り換
えられて逆方向にも導通させる電磁切換弁で、この電磁
切換弁とシリンダ(2)間は管(7)で接続されている。
In FIG. 1, (1) is a hoistway and (2) is a hoistway.
Cylinder embedded in pit of (1) and filled with hydraulic oil (3), (4) is a plunger supported by hydraulic oil (3), (5)
Is a car provided on the top of the plunger (4), and (6) is an electromagnetic switching valve that always functions as a check valve and is switched when the coil (6A) is energized to conduct in the reverse direction. A pipe (7) connects the electromagnetic switching valve and the cylinder (2).

【0015】(8)は三相誘導電動機(9)で駆動され可逆回
転可能な油圧ポンプ、(10)は電動機(9)の回転速度を検
出して速度信号(10a)を出力する速度検出器、(11)は管
(12)を介して油圧ポンプ(8)に接続され圧油(3)を送受す
る油タンク、(13)は油タンク(11)の油温を検出してこれ
が所定値以下になると油温信号(13a)を出力する油温検
出器、(14)は油圧ポンプ(8)と電磁切換弁(6)を接続する
管、(15)は管(14)と油タンク(11)を連通する分岐管、(1
6)は分岐管(15)に設けられ常時分岐管(15)を閉塞しコイ
ル(16A)が付勢されると開放して両方向導通可能となる
電磁切換弁、(17)は管(14)の圧力を検出して圧力信号(1
7a)を出力する圧力センサである。
(8) is a hydraulic pump driven by a three-phase induction motor (9) and capable of reversible rotation, and (10) is a speed detector for detecting the rotation speed of the electric motor (9) and outputting a speed signal (10a). , (11) is a tube
An oil tank connected to the hydraulic pump (8) via (12) to send and receive pressure oil (3), (13) detects the oil temperature of the oil tank (11), and when this falls below a predetermined value, an oil temperature signal An oil temperature detector that outputs (13a), (14) a pipe that connects the hydraulic pump (8) and the electromagnetic switching valve (6), and (15) a branch that connects the pipe (14) and the oil tank (11). Tube, (1
6) is an electromagnetic switching valve that is installed in the branch pipe (15) and normally closes the branch pipe (15) and opens when the coil (16A) is energized to allow bidirectional conduction, and (17) is the pipe (14) The pressure signal (1
It is a pressure sensor that outputs 7a).

【0016】R,S,Tは三相交流電源、(21)は三相交
流を直流に変換する整流回路、(22)は整流回路(21)の出
力を平滑する平滑コンデンサ、(23)は直流をパルス幅変
調制御して可変電圧可変周波数の三相交流に変換するイ
ンバータ、(24)は直流を交流電源R,S,Tに返還する
回生用インバータ、(25)は速度制御装置で、制御信号(2
5a)をインバータ(23)へ出力する。(30a)〜(30d)は図4
に示す電動機制御リレー(30)の接点である。
R, S, T are three-phase AC power supplies, (21) is a rectifying circuit for converting three-phase AC into DC, (22) is a smoothing capacitor for smoothing the output of the rectifying circuit (21), and (23) is An inverter that converts direct current into three-phase alternating current of variable voltage and variable frequency by pulse width modulation control, (24) is a regenerative inverter that returns direct current to alternating current power supplies R, S, T, and (25) is a speed control device. Control signal (2
Output 5a) to the inverter (23). (30a) to (30d) are shown in Fig. 4.
It is a contact point of the motor control relay (30) shown in.

【0017】図2において、(41U)は図3に破線で示す
かご(5)を上昇させる上昇走行パターンを発生する上昇
走行パターン発生回路、(41D)は同じく下降走行パター
ンを発生する下降走行パターン発生回路、(42a)(42b)は
上方向運転期間中閉成する上方向接点、(43a)(43b)は下
方向運転期間中閉成する下方向接点、(45)は油圧ポンプ
(8)の漏れ量相当分の回転速度で油圧ポンプ(8)を回転す
る指令を出すバイアスパターン発生回路、(46)は加算器
である。
In FIG. 2, (41U) is an ascending traveling pattern generation circuit for generating an ascending traveling pattern for ascending the car (5) shown by a broken line in FIG. 3, and (41D) is a descending traveling pattern for similarly generating a descending traveling pattern. Generator circuit, (42a) and (42b) are upward contacts that are closed during upward operation, (43a) and (43b) are downward contacts that are closed during downward operation, and (45) is a hydraulic pump.
A bias pattern generation circuit that issues a command to rotate the hydraulic pump (8) at a rotation speed corresponding to the leakage amount of (8), and (46) is an adder.

【0018】(47)は図3に実線で示す油温上昇パターン
(47a)を発生する油温上昇パターン発生回路、(48)は加
算器、(49)は速度信号(10a)をパターン信号と同一電圧
レベルに変換する変換回路、(50)は加算器、(51)は入力
を所定の増幅度で伝達する伝達回路、(52)は周波数指令
信号ω0を出力する加算器、(53)は周波数指令信号ω0
対して直線状の電圧指令信号Vを出力する関数発生回
路、(54)は周波数指令信号ω0と電圧指令信号Vに基づ
いて制御信号(25a)を出力する基準正弦波発生回路であ
る。
(47) is the oil temperature rise pattern shown by the solid line in FIG.
(47a) oil temperature rise pattern generation circuit, (48) adder, (49) conversion circuit for converting the speed signal (10a) to the same voltage level as the pattern signal, (50) adder, ( 51) is a transmission circuit that transmits the input with a predetermined amplification degree, (52) is an adder that outputs the frequency command signal ω 0 , and (53) is a linear voltage command signal V with respect to the frequency command signal ω 0 . A function generating circuit for outputting, (54) is a reference sine wave generating circuit for outputting a control signal (25a) based on the frequency command signal ω 0 and the voltage command signal V.

【0019】図4において、(+)(-)は直流電源、(13b)
は油温信号の機能を示す低温検出接点、(30)は電動機制
御リレー、(42c)は上方向運転期間中開放する上方向接
点、(42d)は同じく閉成する上方向接点、(43c)は下方向
運転期間中開放する下方向接点、(43d)は同じく閉成す
る下方向接点、(61)は油温上昇指令リレーで、(61a)〜
(61c)はその常開接点である。
In FIG. 4, (+) and (-) are DC power supplies, and (13b)
Is a low temperature detection contact indicating the function of the oil temperature signal, (30) is a motor control relay, (42c) is an upward contact that opens during an upward operation period, (42d) is an upward contact that closes the same, (43c) Is a downward contact that opens during the downward operation period, (43d) is a downward contact that is also closed, (61) is an oil temperature rise command relay, and (61a) ~
(61c) is the normally open contact.

【0020】(62)は油温上昇パターン指令リレーで、(6
2a)(62b)はその常開接点、(62c)は同じく常閉接点、(6
3)は限時動作形の停止時限リレーで、(63a)(63b)はその
常閉接点、(63c)(63d)は同じく常開接点、(64)も限時動
作形の起動時限リレーで、(64a)(64b)はその常開接点、
(64c)は同じく常閉接点である。
(62) is an oil temperature rise pattern command relay,
2a) (62b) is its normally open contact, (62c) is the same normally closed contact, (6
(3) is a time-delay type stop time relay, (63a) (63b) is its normally closed contact, (63c) (63d) is a normally open contact, and (64) is also a time-delay type start time relay. 64a) (64b) is its normally open contact,
(64c) is also a normally closed contact.

【0021】次にこの実施例の動作を説明する。今、か
ご(5)が停止していて上昇方向の呼びが発生したとする
と、かご(5)は戸閉し、戸閉完了すると起動指令が出
て、図4の接点(42d)が閉成して電動機制御リレー(30)
が付勢され、接点(30a)〜(30c)が閉成して、電動機(9)
はインバータ(23)に接続される。また、接点(30d)も閉
成するため、バイアスパターン発生回路(45)からバイア
スパターンが発生される。所定時間後に上昇走行パター
ン発生回路(41U)から上昇走行パターン(41Ua)が発生さ
れる。このとき、上方向接点(42a)(42b)は閉成している
ので、両パターンは加算器(46)で加算されて、加算器(4
8)を経て(油温上昇パターン(47a)は零)、加算器(50)に
入力される。
Next, the operation of this embodiment will be described. Now, if the car (5) is stopped and a call in the ascending direction occurs, the car (5) closes the door, and when the door is closed, a start command is issued and the contact (42d) in FIG. 4 is closed. Motor Control Relay (30)
Is energized, the contacts (30a) to (30c) are closed, and the motor (9)
Is connected to the inverter (23). Further, since the contact point (30d) is also closed, the bias pattern generation circuit (45) generates a bias pattern. After a predetermined time, the ascending travel pattern (41Ua) is generated from the ascending travel pattern generation circuit (41U). At this time, since the upward contacts (42a) (42b) are closed, both patterns are added by the adder (46), and the adder (4
After 8) (the oil temperature rise pattern (47a) is zero), it is input to the adder (50).

【0022】加算器(50)で速度信号(10a)と照合され、
その偏差は加算器(52)で速度信号(10a)と加算されて周
波数指令信号ω0となる。また、関数発生器(53)から電
圧指令信号Vが出力される。基準正弦波発生回路(54)
は、両信号ω0、Vに基づいて、正弦波の三相交流がイ
ンバータ(23)から出力されるように制御信号(25a)を出
力する。
The adder (50) collates with the speed signal (10a),
The deviation is added to the speed signal (10a) by the adder (52) to become the frequency command signal ω 0 . Further, a voltage command signal V is output from the function generator (53). Reference sine wave generator (54)
Outputs a control signal (25a) based on both signals ω 0 and V so that a three-phase alternating current of a sine wave is output from the inverter (23).

【0023】これで、電動機(9)は油圧ポンプ(8)を駆動
し、油タンク(11)内の油は、管(12)、油圧ポンプ(8)、
管(14)、電磁切換弁(6)及び管(7)を経て、シリンダ(2)
内に圧送され、油量に応じた分だけかご(5)は上昇走行
する。また、下降運転時は電磁切換弁(6)は付勢され
(回路省略)、下降走行パターン発生回路(41D)から、
上昇走行パターンと対称形の下降走行パターンが発生さ
れて、電動機(9)は逆転してかご(5)は下降走行する。
With this, the electric motor (9) drives the hydraulic pump (8), and the oil in the oil tank (11) is transferred to the pipe (12), the hydraulic pump (8),
Cylinder (2) through pipe (14), electromagnetic switching valve (6) and pipe (7)
The car (5) is pumped inside and the car (5) travels up as much as the amount of oil. In addition, the electromagnetic switching valve (6) is energized during descent operation (circuit omitted), and the descent travel pattern generation circuit (41D)
A downward traveling pattern symmetrical to the upward traveling pattern is generated, the electric motor (9) rotates in the reverse direction, and the car (5) travels downward.

【0024】ここで、例えば長時間の運転休止のため、
油温が所定値以下になったとすると、油タンク(11)内の
油温検出器(13)からの油温信号(13a)が「H」となり、低
温検出接点(13b)が閉成する。このとき、呼びにより運
転指令がなく、上方向及び下方向点(42c)(43c)が閉成
していると、油温上昇運転指令リレー(61)は付勢され、
接点(61a)〜(61c)が閉成する。
[0024] Here, for example, for a long period of suspension of operation,
When the oil temperature falls below a predetermined value, the oil temperature signal (13a) from the oil temperature detector (13) in the oil tank (11) becomes "H", and the low temperature detection contact (13b) is closed. At this time, no operation command by the identification, the upward and downward directions Proximity (42c) (43c) is closed, the oil temperature rises Operation Command (61) is energized,
The contacts (61a) to (61c) are closed.

【0025】接点(61a)が閉成すると、(+)−(63a)−(61
a)−(62)−(-)の回路により、油温上昇パターン指令リ
レー(62)は付勢され、接点(62a)(62b)が閉成する。接点
(62a)の閉成により、電動機制御リレー(30)が付勢さ
れ、接点(30a)〜(30d)が閉成し、既述のように電動機
(9)はインバータ(23)に接続される。
When the contact (61a) is closed, (+)-(63a)-(61
By the circuit of a)-(62)-(-), the oil temperature rise pattern command relay (62) is energized and the contacts (62a) (62b) are closed. contact
The closing of (62a) energizes the motor control relay (30) and closes the contacts (30a) to (30d).
(9) is connected to the inverter (23).

【0026】これで、(11)−(12)−(8)−(14)−(15)−
(16)−(11)の環流路が成立する。一方、油温上昇パター
ン発生回路(47)では、所定値まで油温上昇パターン(47
a)が漸増し(図3の時刻(a)−(b)間)、所定回転速度まで
上昇走行パターン(41Ua)と同等の大きさで加速する(図
3の時刻(b)−(c)間)。そして、上昇走行パターン(41U
a)の最大値よりも小さい一定速度となる(図3の時刻(c)
−(d)間)。これが所定時間経過した後、パターン値は減
少する(図3の時刻(d)−(e)間)。このように、油温上昇
パターン(47a)の加速を緩くしたので、圧油が電磁切換
弁(6)の逆止弁を押し上げてかご(5)を押し上げたりする
ことはない。
Then, (11)-(12)-(8)-(14)-(15)-
The circular flow path of (16)-(11) is established. On the other hand, in the oil temperature rise pattern generation circuit (47), the oil temperature rise pattern (47
a) gradually increases (between time (a) and (b) in FIG. 3), and accelerates to a predetermined rotation speed with the same magnitude as the ascending traveling pattern (41 Ua) (time (b) and (c) in FIG. 3). while). Then, the climbing pattern (41U
It becomes a constant speed smaller than the maximum value of a) (time (c) in Figure 3)
(Between (d)). After this elapses a predetermined time, the pattern value decreases (between time (d)-(e) in FIG. 3). In this way, since the acceleration of the oil temperature increase pattern (47a) is moderated, the pressure oil does not push up the check valve of the electromagnetic switching valve (6) to push up the car (5).

【0027】さて、接点(62b)が閉成すると、(+)−(62
b)−(61b)−(63)−(-)の回路により、停止時限リレー(6
3)が付勢され、油温上昇パターン(47a)が発生している
時間(図3の時刻(a)−(e)間)経過すると、接点(63c)が
閉成して自己保持する。また、接点(63a)が開放する。
これで、油温上昇パターン指令リレー(62)は消勢され、
接点(62a)が開放するので、電動機制御リレー(30)は消
勢されるため、インバータ(23)及び電磁切換弁(16)のコ
イル(16A)への指令が断たれる。したがって、電動機(9)
は停止し、電磁切換弁(16)は還流回路を閉塞する。
Now, when the contact (62b) is closed, (+)-(62
b)-(61b)-(63)-(-) circuit, stop time relay (6
3) is energized and the time (between time (a) and (e) in FIG. 3) during which the oil temperature increase pattern (47a) is generated elapses, the contact (63c) closes and self-holds. Also, the contact (63a) opens.
This deactivates the oil temperature rise pattern command relay (62),
Since the contact (62a) is opened, the electric motor control relay (30) is deenergized, so that the command to the inverter (23) and the coil (16A) of the electromagnetic switching valve (16) is cut off. Therefore, the electric motor (9)
Is stopped, and the electromagnetic switching valve (16) closes the reflux circuit.

【0028】一方、接点(63d)が閉成、接点(63b)が開放
するので、(+)−(63d)−(62c)−(64)−(-)の回路で、起
動時限リレー(64)は付勢され、所定時間経過すると、接
点(64b)が閉成して自己保持する。また、接点(64a)が閉
成するので、油温上昇パターン指令リレー(62)は再度付
勢され、油温上昇運転が再開される。そして、接点(62
c)が開放し、その後接点(63b)が開放したとき、起動時
限リレー(64)は消勢される。このようにして、油温上昇
運転が間欠的に継続する。
On the other hand, since the contact (63d) is closed and the contact (63b) is opened, the start time relay (64) is formed by the (+)-(63d)-(62c)-(64)-(-) circuit. ) Is energized, and after a lapse of a predetermined time, the contact (64b) closes and self-holds. Further, since the contact (64a) is closed, the oil temperature increase pattern command relay (62) is energized again, and the oil temperature increase operation is restarted. Then, the contact (62
When c) opens and then the contact (63b) opens, the start timed relay (64) is de-energized. In this way, the oil temperature increasing operation continues intermittently.

【0029】上記油温上昇運転により油温が上昇し、油
温信号(13a)が「L」になると、低温検出接点(13b)は開放
し、油温上昇運転指令リレー(61)は消勢され、接点(61
a)〜(61c)は開放し、油温上昇パターン指令リレー(6
2)、停止及び起動時限リレー(63)(64)は消勢され、油温
上昇運転は終了する。
When the oil temperature rises due to the oil temperature rise operation and the oil temperature signal (13a) becomes "L", the low temperature detection contact (13b) is opened and the oil temperature rise operation command relay (61) is deenergized. Contact (61
a) to (61c) are opened and the oil temperature rise pattern command relay (6
2), the stop and start timed relays (63) and (64) are deenergized, and the oil temperature increasing operation ends.

【0030】[0030]

【発明の効果】以上説明したとおりこの発明の第1の発
明では、電動機を間欠運転して油温上昇運転し、第2の
発明では、油温上昇運転時の制御パターンの最大値をか
ごの定格速度に対応する電動機速度よりも小さい値に設
定し、第3の発明では、制御パターンを複数段階加速パ
ターンに設定したので、インバータの発熱は抑制され、
インバータを大容量化させることなく、発熱によるイン
バータの破壊を防止できる効果がある。
As described above, in the first invention of the present invention, the electric motor is intermittently operated to increase the oil temperature, and in the second invention, the maximum value of the control pattern during the oil temperature increasing operation is set to the maximum value of the car. Since it is set to a value smaller than the motor speed corresponding to the rated speed, and in the third invention, the control pattern is set to a multi-step acceleration pattern, heat generation of the inverter is suppressed,
This has the effect of preventing damage to the inverter due to heat generation without increasing the capacity of the inverter.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】図1の速度制御装置を示すブロック線図。FIG. 2 is a block diagram showing the speed control device of FIG.

【図3】図2の制御パターン曲線図。FIG. 3 is a control pattern curve diagram of FIG.

【図4】この発明の一実施例を示す油温上昇運転回路
図。
FIG. 4 is an oil temperature increasing operation circuit diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 シリンダ 3 作動油 5 かご 8 油圧ポンプ 9 三相誘導電動機 13 油温検出器 15 分岐管 16 電磁切換弁 23 インバータ 25 速度制御装置 47 油温上昇パターン発生回路 62 油温上昇パターン指令リレー 63 間欠運転指令回路(停止時限リレー) 64 間欠運転指令回路(起動時限リレー) 2 Cylinder 3 Hydraulic oil 5 Cage 8 Hydraulic pump 9 Three-phase induction motor 13 Oil temperature detector 15 Branch pipe 16 Electromagnetic switching valve 23 Inverter 25 Speed controller 47 Oil temperature rise pattern command circuit 62 Oil temperature rise pattern command relay 63 Intermittent operation Command circuit (stop timed relay) 64 Intermittent operation command circuit (start timed relay)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 かごを昇降させる油圧シリンダへの作動
油の給排量を制御する油圧ポンプと、この油圧ポンプを
駆動しかつインバータにより可変速制御される電動機を
有し、上記作動油の油温低下が検出されると上記電動機
を駆動して上記作動油を還流させる油温上昇運転を指令
する油圧エレベーターにおいて、上記油温上昇運転時上
記電動機を間欠運転させる指令回路を備えたことを特徴
とする油圧エレベーターの油温上昇運転装置。
1. A hydraulic pump for controlling the amount of hydraulic oil supplied to and discharged from a hydraulic cylinder for raising and lowering a car, and an electric motor for driving the hydraulic pump and controlled at a variable speed by an inverter. In a hydraulic elevator for instructing an oil temperature increase operation for driving the electric motor to recirculate the hydraulic oil when a temperature decrease is detected, a command circuit for intermittently operating the electric motor during the oil temperature increase operation is provided. An oil temperature rise operation device for a hydraulic elevator.
【請求項2】 かごを昇降させる油圧シリンダへの作動
油の給排量を制御する油圧ポンプと、この油圧ポンプを
駆動しかつインバータにより所定の制御パターンに従っ
て可変制御される電動機を有し、上記作動油の油温低下
が検出されると上記電動機を駆動して上記作動油を還流
させる油温上昇運転を指令する油圧エレベーターにおい
て、上記油温上昇運転時の上記制御パターンの最大値を
上記かごの定格速度に対応する上記電動機の速度よりも
小さい値に設定したことを特徴とする油圧エレベーター
の油温上昇運転装置。
2. A hydraulic pump for controlling a supply / discharge amount of hydraulic oil to / from a hydraulic cylinder for raising / lowering a car, and an electric motor for driving the hydraulic pump and variably controlled by an inverter according to a predetermined control pattern. In a hydraulic elevator that commands an oil temperature increase operation that drives the electric motor to recirculate the hydraulic oil when a decrease in the oil temperature of the hydraulic oil is detected, the maximum value of the control pattern during the oil temperature increase operation is set to the car. Is set to a value smaller than the speed of the electric motor corresponding to the rated speed of.
【請求項3】 かごを昇降させる油圧シリンダへの作動
油の給排量を制御する油圧ポンプと、この油圧ポンプを
駆動しかつインバータにより所定の制御パターンに従っ
て可変制御される電動機を有し、上記作動油の油温低下
が検出されると上記電動機を駆動して上記作動油を還流
させる油温上昇運転を指令する油圧エレベーターにおい
て、上記制御パターンを複数段階加速パターンに設定し
たことを特徴とする油圧エレベーターの油温上昇運転装
置。
3. A hydraulic pump for controlling the amount of hydraulic oil supplied to and discharged from a hydraulic cylinder for raising and lowering a car; and an electric motor for driving the hydraulic pump and variably controlled by an inverter according to a predetermined control pattern. In the hydraulic elevator for commanding an oil temperature increase operation for driving the electric motor to recirculate the hydraulic oil when a decrease in the hydraulic temperature of the hydraulic oil is detected, the control pattern is set to a multi-step acceleration pattern. Oil temperature rise operation device for hydraulic elevator.
JP3339394A 1991-11-29 1991-11-29 Oil temperature rise operating device for hydraulic elevator Expired - Fee Related JP2560587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3339394A JP2560587B2 (en) 1991-11-29 1991-11-29 Oil temperature rise operating device for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3339394A JP2560587B2 (en) 1991-11-29 1991-11-29 Oil temperature rise operating device for hydraulic elevator

Publications (2)

Publication Number Publication Date
JPH05155537A JPH05155537A (en) 1993-06-22
JP2560587B2 true JP2560587B2 (en) 1996-12-04

Family

ID=18327061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3339394A Expired - Fee Related JP2560587B2 (en) 1991-11-29 1991-11-29 Oil temperature rise operating device for hydraulic elevator

Country Status (1)

Country Link
JP (1) JP2560587B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794188B (en) * 2020-12-30 2021-09-24 济南博尔动力设备有限公司 Servo oil source of hydraulic elevator
CN113979250B (en) * 2021-10-29 2023-03-24 杭州赛翔科技有限公司 Hydraulic elevator starting and stopping speed regulation control method based on oil temperature

Also Published As

Publication number Publication date
JPH05155537A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
US5281774A (en) Drive control unit for hydraulic elevator
JPH0780644B2 (en) Hydraulic elevator
US4593792A (en) Apparatus for controlling a hydraulic elevator
JP2560587B2 (en) Oil temperature rise operating device for hydraulic elevator
JPH0367877A (en) Control device of hydraulic elevator
JPH0218053Y2 (en)
JPH0815988B2 (en) Hydraulic elevator controller
JPH0398965A (en) Controller of hydraulic elevator
JPH0227263B2 (en)
JPS60112573A (en) Controller for hydraulic elevator
JPH0367875A (en) Control device of hydraulic elevator
JPH03158375A (en) Control device for hydraulic elevator
JPH0373773A (en) Controller for hydraulic elevator
JPS60209476A (en) Controller for hydraulic elevator
JPS64312B2 (en)
JPH0784309B2 (en) Hydraulic elevator controller
JP2578111B2 (en) Hydraulic elevator device
JP2872820B2 (en) Hydraulic elevator control device
JPH0151437B2 (en)
JPH0517154B2 (en)
JPH04217569A (en) Controller for hydraulic elevator
JP3226398B2 (en) Hydraulic elevator control device
JPS61229787A (en) Safety device for hydraulic elevator
JP2002173278A (en) Hydraulic power unit of hydraulic elevator
JPH05319723A (en) Controller for hydraulic elevator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees