JPS6194546A - Mechanism for rotary electric machine - Google Patents

Mechanism for rotary electric machine

Info

Publication number
JPS6194546A
JPS6194546A JP21373584A JP21373584A JPS6194546A JP S6194546 A JPS6194546 A JP S6194546A JP 21373584 A JP21373584 A JP 21373584A JP 21373584 A JP21373584 A JP 21373584A JP S6194546 A JPS6194546 A JP S6194546A
Authority
JP
Japan
Prior art keywords
winding
current
armature winding
armature
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21373584A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21373584A priority Critical patent/JPS6194546A/en
Publication of JPS6194546A publication Critical patent/JPS6194546A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/26Synchronous generators characterised by the arrangement of exciting windings
    • H02K19/28Synchronous generators characterised by the arrangement of exciting windings for self-excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators

Abstract

PURPOSE:To simplify an apparatus economically and enhance the efficiency of the apparatus, by providing a current transformer between the outside connecting terminals of an armature winding and an outside connecting appliance, and by introducing exciting current. CONSTITUTION:The primary winding 1 of a current transformer 7 is connected in series between the outside connecting terminals 3-5 of an armature winding 2 and an outside connecting appliance 6, and the secondary winding 8 of the current transformer 7 is connected in series between the outside connecting terminals 3-5 of the armature winding 2 and a rectifier 9. Exciting current is provided between the intermediate terminals 10-11, 12-13, 14-15 of the armature winding via the rectifier 9 through the outside connecting terminals 3-5 of the armature winding 2.

Description

【発明の詳細な説明】 本発明は面転電気機械の構造に関するもので、その中、
特に同期機構造に関する。こゝに同期機構造とは単に同
期発電機や同期電動機の構造のみならず、その本体を同
期機と同じ構造とする所謂サイリストモーターにも及ぶ
。然し、説明を容易ならしめるため、以下、同期発電機
の説明に限定する。これらは同期機構造の全領域に適用
するものとする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a surface rolling electric machine, in which:
Especially regarding synchronous machine structure. Here, the synchronous machine structure does not just mean the structure of a synchronous generator or a synchronous motor, but also includes a so-called thyrist motor whose main body has the same structure as a synchronous machine. However, in order to simplify the explanation, the following explanation will be limited to the synchronous generator. These shall apply to all areas of synchronous machine construction.

最近ブラシレス同期機構造で励磁機を省略する構想が出
現した。特許第801991号や特許第801992号
はその例であるが、容量を大きくするにつれて交流を励
磁電流とするこれら既知の方式では交流励磁容量を大き
くせざるを得なくなり、この欠点を除くため、本発明者
は昭和58年特許出願公開第224549号を発明した
。それによると、電機子巻線と変成器の二次巻線を電気
接続し、変成器の一次巻線の各相の一端を電機子巻線の
各相端子と接続し、上記変成器の二次巻線と上記電機子
巻線の間に整流器を接続している。
Recently, a concept has emerged that omit the exciter with a brushless synchronous machine structure. Patent No. 801991 and Patent No. 801992 are examples of this, but as the capacity increases, in these known systems that use alternating current as the excitation current, the alternating current excitation capacity has to be increased. The inventor invented Patent Application Publication No. 224549 in 1982. According to this, the armature winding and the secondary winding of the transformer are electrically connected, one end of each phase of the primary winding of the transformer is connected to each phase terminal of the armature winding, and A rectifier is connected between the next winding and the armature winding.

然し、このような接続では装置全体として複雑となる欠
点がある。それは上記変成器が一次側巻線として電圧巻
線と電流巻線を有し、更に二次巻線を持ち、その上電圧
巻線には直列にリアクトルなどかなり大きいリアクチブ
素子を設けざるを得ないからである。
However, such a connection has the disadvantage of complicating the entire device. The above transformer has a voltage winding and a current winding as the primary winding, and also has a secondary winding, and on top of that, it is necessary to install a fairly large reactive element such as a reactor in series with the voltage winding. It is from.

昭和59年9月13日出願の発明「面転電気機械の構造
」は本出願人自身のものであるが、それは上記昭和58
年特許出願公開第224549号の構造を簡略化し、安
価且つ効率向上させることと目的とし、その目的を達成
せしめるために次のような構造としている。すなわち、
その一次巻線が電機子巻線の外部接続端子と外部接続電
線に接続された変流器の二次巻線の端子と、上記電機子
巻線の外部接続端子に接続されたリアクチブ素子の端子
の両者が整流器に対して並列になるように接続され、こ
の整流器を経て上記電機子巻線の各相中間端子間へ電気
接続するように配列し、これによつて変流器の二次巻線
からと、リ アクチブ素子経由で上記外部接続端子から並列的に整流
器を経て上記電機子巻線に励磁電流を流すように配列す
るのである。然しながら、このような発明は変流器以外
にリアクチブ素子を必要とし、装置は未だ複雑であり、
効率上にも改善の余地があると考えられる。
The invention filed on September 13, 1982, ``Structure of a rolling electric machine,'' is the applicant's own invention;
The purpose is to simplify the structure of Patent Application Publication No. 224549, reduce the cost and improve efficiency, and in order to achieve this purpose, the following structure is adopted. That is,
The terminal of the secondary winding of the current transformer whose primary winding is connected to the external connection terminal of the armature winding and the external connection wire, and the terminal of the reactive element connected to the external connection terminal of the armature winding. are connected in parallel to a rectifier, and electrically connected between the intermediate terminals of each phase of the armature winding through the rectifier, thereby connecting the secondary winding of the current transformer. The arrangement is such that an excitation current is passed from the wire to the armature winding via the reactive element and from the external connection terminal via the rectifier in parallel. However, such inventions require reactive elements in addition to current transformers, and the devices are still complex.
It is thought that there is room for improvement in terms of efficiency as well.

本発明はブラシと励磁機をなくし、電機子巻線中に二種
類の電流を流す面転電気機械の装置におけるこのような
従来既に考えられた装置の欠点を改善し、装置を簡略化
し、安価にし、而も装置の効率を高めることを目的とす
る。
The present invention eliminates brushes and exciters, improves the shortcomings of such conventional devices for surface-turning electric machines in which two types of current are passed through the armature windings, simplifies the device, and reduces the cost. The purpose is to increase the efficiency of the device.

上記の目的を達成せしめるため、本発明ではその具体的
な電気接続図である第1図に示すように、その一次巻線
1が電機子巻線2の外部接続端子3、4、5とこの面転
電気機械の外部接続機器6との間に直列接続された変流
器7の二次巻線8を直列に通して上記電機子巻線2の外
部接続端子3、4、5から整流器9を経て上記電機子巻
線2の中間端子10−11、12−13、14−15間
へその励磁電流を與えるよう電気接続するのである。こ
ゝに外部接続機器6とあるのは上記面転電気機械が発電
機の場合には負荷の機器であり、又上記面転電気機械が
電動機の場合には電源の機器となる。更に変流器7の二
次巻線8は外部接続端子3、4、5から整流器9を経て
電機子巻線2に励磁電力を供給する時にリアクトルとし
て働らかせ、その場合不飽和リアクトルとさせるため、
磁気回路に空隙を設けるものとする。
In order to achieve the above object, in the present invention, as shown in FIG. The rectifier 9 is connected to the external connection terminals 3, 4, and 5 of the armature winding 2 by passing the secondary winding 8 of the current transformer 7 connected in series between the external connection equipment 6 of the rolling electric machine and the external connection terminals 3, 4, and 5 of the armature winding 2. The intermediate terminals 10-11, 12-13, and 14-15 of the armature winding 2 are electrically connected to each other through the intermediate terminals 10-11, 12-13, and 14-15 so as to supply the exciting current. The external connection device 6 here is a load device when the above-mentioned surface rolling electric machine is a generator, and a power source device when the above mentioned surface rolling electric machine is an electric motor. Furthermore, the secondary winding 8 of the current transformer 7 is made to work as a reactor when supplying exciting power from the external connection terminals 3, 4, 5 to the armature winding 2 via the rectifier 9, and in that case is made to be an unsaturated reactor. For,
An air gap shall be provided in the magnetic circuit.

このようにすると、第1図では電機子巻線2は二重星形
接続の固定子で三相巻線を形成することになる。第1図
には回転子部分が示されていないで、回転子の電気接続
については後に述べる。電機子巻線2は三相分の巻線1
7、18、19に分けられるが、これらの巻線中を流れ
る電流は負荷電流と励磁電流と云う二種類の電流となる
。上記三相巻線中の一相分の巻線17についてこれを考
えると、点線矢印で示された電流がある瞬間の負荷電流
の方向を示したものであり、実線矢印の方向が励磁電流
である。第2図は固定子電機子巻線の一相分の一例を示
したもので、第1図の巻線17の外部接続端子3から中
性点16に到るものに対応する。端子3より鄰接する電
機子巻線の一相当りの接続を二重並列接続とし、その一
方の端子3より他の端子16に到る間の並列巻線接続の
二つの回路の中の一方によつて造られるコイル接続Aと
Bにより固定子の内面の別々の個所に二つの磁極を造る
ようにし、上記二つの回路の中の他方によつて造られる
コイル接続CとDにより互いに固定子内面に二つの磁極
を造らしめ、且つ上記AとDによつて互いに同じ磁極を
造るよう、AとDのコイルを鄰接せしめ、且つBとCに
よつても互いに同じ磁極を造るようBとCのコイルを鄰
接せしめ、且つ上記コイルAとBの間を接続する点に1
1なる接続端子、又上記コイルCとDの間を接続する点
に10なる接続端子を造り、これらの端子10−11に
第1図の整流器9の中の20の直流側端子が接続するよ
うに配列される。第2図の点線矢印はある瞬間の負荷電
流の方向を示し、実線矢印は整流器20を経て変流器7
から電機子巻線17に流される電流の方向を示す。これ
により第2図では負荷電流によつて4極磁極が造られ、
励磁電流により2極磁極が造られることが判る。
In this way, in FIG. 1, the armature winding 2 forms a three-phase winding with a double star-connected stator. The rotor portion is not shown in FIG. 1, and the electrical connections of the rotor will be described later. Armature winding 2 is three-phase winding 1
The current flowing through these windings is divided into two types: a load current and an excitation current. Considering the winding 17 for one phase in the above three-phase winding, the current indicated by the dotted line arrow indicates the direction of the load current at a certain moment, and the direction of the solid line arrow is the exciting current. be. FIG. 2 shows an example of one phase of the stator armature winding, which corresponds to the winding 17 in FIG. 1 from the external connection terminal 3 to the neutral point 16. The connection of one armature winding connected from terminal 3 is double parallel connection, and one of the two circuits of parallel winding connection between one terminal 3 and the other terminal 16 is connected. The coil connections A and B thus made create two magnetic poles at different locations on the inner surface of the stator, and the coil connections C and D made by the other of the two circuits allow the two magnetic poles to be connected to each other on the inner surface of the stator. The coils A and D are brought into contact with each other so that the same magnetic poles are created by A and D, and the same magnetic poles are created by B and C. 1 at the point where the coils are brought into contact and where the coils A and B are connected.
1, and a connecting terminal 10 at the point connecting the coils C and D, so that the 20 DC side terminals in the rectifier 9 in Fig. 1 are connected to these terminals 10-11. Arranged in The dotted arrows in FIG.
indicates the direction of current flowing through the armature winding 17. As a result, in Figure 2, four magnetic poles are created by the load current,
It can be seen that two magnetic poles are created by the excitation current.

同様にして第3図の場合、負荷電流により2極磁極が造
られ、励磁電流により4極磁極が造られることが判る。
Similarly, in the case of FIG. 3, it can be seen that a two-pole magnetic pole is created by the load current, and a four-pole magnetic pole is created by the excitation current.

整流器9を構成する20、21、22の直流側端子と電
機子巻線17、18、19の接続を、その相順接続の結
果、整流器20、21、22から電機子巻線17、18
、19に供給する直流励磁電流によつて各相に造られる
磁界を合成して合成磁界が造られるように配列する。こ
れらの接続説明は昭和57年特許出願第217625号
に準ずる。
The DC side terminals of 20, 21, 22 constituting the rectifier 9 are connected to the armature windings 17, 18, 19 as a result of the phase-sequential connection.
. These connection descriptions are based on Patent Application No. 217625 of 1982.

第1図で変流器7の二次巻線8はその磁気回路と共にリ
アクトルの役割をする。そのため、変流器7の磁気回路
は空隙を設けるのが好ましい。電機子巻線2から変流器
7の二次巻線8を通し、整流器9を経て電機子巻線2自
身に與える励磁電流は二次巻線8のリアクトル効果によ
り、電機子巻線2の端子3、4、5間の電圧より90度
近く遅れる。一方負荷電流が変流器7の一次巻線1を流
れると、その二次巻線8には強制的に電流を流すことに
なるが、電機子巻線2から二次巻線8を経て流される電
流と、変流器中を流れる負荷電流による二次巻線8中の
強制電流とのべクトル合成はあたかも一次巻線として電
圧巻線と電流巻線を持つ三巻線変成器と同様の効果を持
つ。三巻線変成器の場合も一次電圧巻線に直列にリアク
トルが接続される。無負荷の場合には電機子巻線2から
変流器二次巻線8を経て励磁電流が供給されるだけで、
変流器作用による強制電流は流されない。負荷電流が変
流器の一次巻線1を流れた時にその二次巻線に強制的に
流される電流によつて電機子反作用の電圧降下を補償す
るように働らく、つまり変流器7によつて複巻特性が與
えられ、負荷の変動による端子電圧の変動をある程度補
償することができる。然し、負荷の電流の力率によつて
電機子反作用が異なるので、力率および電流の変化にか
ゝわらず発電機の端子電圧を常に一定に保つには、自動
電圧調整器23を用いて励磁電流を調整する必要がある
。自動電圧調整器23は交流母線24の電圧を検出して
設定電圧値と比較し、その比較値により整流器9の制御
素子に作用させて自動的に交流母線24の電圧を自動制
御するように配列するのである。
In FIG. 1, the secondary winding 8 of the current transformer 7, together with its magnetic circuit, serves as a reactor. Therefore, it is preferable to provide a gap in the magnetic circuit of the current transformer 7. The excitation current that passes from the armature winding 2 to the secondary winding 8 of the current transformer 7, passes through the rectifier 9, and is applied to the armature winding 2 itself due to the reactor effect of the secondary winding 8. lags behind the voltage between terminals 3, 4, and 5 by nearly 90 degrees. On the other hand, when the load current flows through the primary winding 1 of the current transformer 7, the current is forced to flow through the secondary winding 8, but the current is forced to flow from the armature winding 2 through the secondary winding 8. The vector composition of the current flowing through the current transformer and the forced current in the secondary winding 8 due to the load current flowing through the current transformer is similar to a three-winding transformer with a voltage winding and a current winding as the primary winding. have an effect. In the case of a three-winding transformer, a reactor is also connected in series with the primary voltage winding. In the case of no load, the exciting current is only supplied from the armature winding 2 through the current transformer secondary winding 8.
No forced current is caused by current transformer action. When the load current flows through the primary winding 1 of the current transformer, the current forced to flow through the secondary winding serves to compensate for the voltage drop due to the armature reaction, that is, the current transformer 7 Therefore, compound winding characteristics are provided, and variations in terminal voltage due to variations in load can be compensated to some extent. However, since the armature reaction differs depending on the power factor of the load current, an automatic voltage regulator 23 must be used to keep the generator terminal voltage constant regardless of changes in the power factor and current. It is necessary to adjust the excitation current. The automatic voltage regulator 23 is arranged to detect the voltage of the AC bus 24, compare it with a set voltage value, and act on the control element of the rectifier 9 based on the comparison value to automatically control the voltage of the AC bus 24. That's what I do.

第1図の点線と実線の矢印の電流で造られる磁極数は互
いに1対2の関係にあり、これら磁極数と回転子巻線中
を流れる電流の関係を次のようにする。第4図は回転子
巻線と回転子上の整流器25を示す。電機子巻線2中の
実線矢印で示される電流で造られる磁極の極数が第2図
では2極であるが、この磁極数と同じ2極に巻かれた励
磁巻線26に電圧が発生する。このように励磁巻線26
に発生した起電力により整流器25を経て界磁巻線27
に直流電流を流す。第4図の場合界磁巻線27は誘導機
固定子巻線の三相巻線のような接続で、三相巻線28、
29、30の中の二相29と30を並列とし、他の巻線
28をこれに直列接続した形とする。このような界磁巻
線27に整流器25の直流端子から電流を供給して4極
界磁が回転子に造られるが、これは第1図の電機子巻線
2の中を点線矢印で示す起電力による電流に対応し、第
2図の例では4極磁界を造り、4極間で対応することに
なるのである。このように固定子電機子巻線と回転子巻
線との間の作用はそれぞれ流れる電流或いは発生する起
電力の関する磁極数の等しいもの相互間に作用し合うこ
とが基本的に考えられ、磁極数が互いに異なるもの相互
間では作用し合わないと云う考えにもとづく。
The numbers of magnetic poles created by the currents indicated by the dotted line and the solid arrow in FIG. 1 are in a 1:2 relationship with each other, and the relationship between these numbers of magnetic poles and the current flowing in the rotor winding is as follows. FIG. 4 shows the rotor windings and rectifier 25 on the rotor. The number of magnetic poles created by the current shown by the solid arrow in the armature winding 2 is two in Figure 2, but a voltage is generated in the excitation winding 26 wound around the same two poles as this number of magnetic poles. do. In this way, the excitation winding 26
The electromotive force generated in the field winding 27 passes through the rectifier 25.
A direct current is applied to the In the case of FIG. 4, the field winding 27 is connected like a three-phase winding of an induction motor stator winding, and the three-phase winding 28,
Two phases 29 and 30 of 29 and 30 are connected in parallel, and the other winding 28 is connected in series. A four-pole field is created in the rotor by supplying current to such field winding 27 from the DC terminal of the rectifier 25, which is shown in the armature winding 2 by the dotted arrow in FIG. In response to the current caused by the electromotive force, a four-pole magnetic field is created in the example shown in FIG. 2, and correspondence is generated between the four poles. In this way, it is basically considered that the action between the stator armature winding and the rotor winding is that they interact with each other when they have the same number of magnetic poles in terms of flowing current or generated electromotive force. It is based on the idea that things with different numbers do not interact with each other.

第5図は回転子巻線を励磁巻線としても界磁巻線として
も使う兼用方式を示し、第5図では巻線を二層巻きとし
た例が示される。巻線の配列は昭和58年特許願第13
0604号に述べられているが、巻線31は三相の二重
星形接続のように配列される。然し、巻線32、33と
巻線35と36は中性点39と40を中心に配列される
が、他の一相を構成する巻線34と37は互いに逆の中
性点40と39に接続される。巻線31の中で、32、
33、34が一つの星形接続の配列となるべき巻線配列
であり、35、36、37が他の一つの星形接続となる
べき巻線配列である。これらのことについては固定子巻
線につき第7図で同様の関係が採用されるので、そこで
説明する。第5図ではこのように接続された三相巻線の
外部接続端子41、42、43を整流器38の交流側端
子に接続し、その整流器38の直流側端子を中性点の3
9、40間に接続する。今もし第1図の電機子巻線に実
線矢印の方向に励磁電流が流され、それが第2図のよう
に2極の磁極を造るとすれば、それに対応して回転子で
は第5図の実線矢印に示す方向に起電力を発生し、2極
巻線として働らくことになる。それにより整流器38を
通して回転子巻線31には点線矢印のような電流を流す
。そこで4極界磁が造られ、それが回転して電機子巻線
2には第1図の点線矢印で示すような起電力を発生し、
電流を流すことになるが、それは第2図の点線矢印もこ
れに対応し、4極機として作用することになるのである
FIG. 5 shows a system in which the rotor winding is used both as an excitation winding and a field winding, and FIG. 5 shows an example in which the winding is wound in two layers. The winding arrangement is based on Patent Application No. 13 of 1982.
No. 0604, the windings 31 are arranged in a three-phase double star connection. However, although the windings 32 and 33 and the windings 35 and 36 are arranged around neutral points 39 and 40, the windings 34 and 37 constituting another phase are arranged around neutral points 40 and 39 opposite to each other. connected to. In the winding 31, 32,
33 and 34 are winding arrays that should be one star-shaped connection arrangement, and 35, 36, and 37 are winding arrays that should be another star-shaped connection arrangement. Regarding these matters, similar relationships are adopted in FIG. 7 for the stator windings, so they will be explained there. In FIG. 5, the external connection terminals 41, 42, 43 of the three-phase windings connected in this way are connected to the AC side terminal of the rectifier 38, and the DC side terminal of the rectifier 38 is connected to the neutral point 3.
Connect between 9 and 40. If an exciting current is passed through the armature winding in the direction of the solid arrow in Figure 1, creating two magnetic poles as shown in Figure 2, then the rotor will produce two magnetic poles as shown in Figure 5. It generates an electromotive force in the direction shown by the solid arrow, and acts as a two-pole winding. As a result, a current as indicated by a dotted arrow is caused to flow through the rectifier 38 to the rotor winding 31. Therefore, a four-pole field is created, which rotates and generates an electromotive force in the armature winding 2 as shown by the dotted arrow in Figure 1.
A current will flow through it, which corresponds to the dotted arrow in Figure 2, and it will act as a four-pole machine.

第6図には回転子巻線の他の配列例が示されている。第
5図の例では二層巻であつたが、第6図の例は単層巻で
ある。4巻線回路44、45、46、47のすべてに整
流器48、49、50、51がそれぞれ接続され、図示
のように20個の溝に導体がおさめられている。この場
合には第1図に流される実線矢印の励磁電流により第3
図のように4極磁極が造られると、それに対応して回転
子巻線には4極としての起電力を発生するが、整流器4
8〜51の作用により常に第6図の実線矢印の方向の電
流が流れ、全体として2極の界磁極を造ることになる。
FIG. 6 shows another arrangement example of the rotor windings. The example in FIG. 5 is a two-layer winding, but the example in FIG. 6 is a single-layer winding. Rectifiers 48, 49, 50, and 51 are connected to all four-winding circuits 44, 45, 46, and 47, respectively, and conductors are housed in 20 grooves as shown. In this case, the excitation current indicated by the solid arrow shown in Figure 1 causes the third
When four magnetic poles are created as shown in the figure, an electromotive force corresponding to four poles is generated in the rotor winding, but the rectifier 4
Due to the actions of 8 to 51, a current always flows in the direction of the solid arrow in FIG. 6, creating two field poles as a whole.

これは巻線の抵抗がそのインダクタンス値とくらべて、
非常に小さいから、このような結果となるのである。結
局回転子は2極界磁となり、これが回転して第1図の電
機子巻線2には点線矢印の方向に2極機として起電力を
発生し、電流を負荷に流す。
This is because the resistance of the winding is compared to its inductance value.
This is the result because it is very small. Eventually, the rotor becomes a two-pole field, which rotates and generates an electromotive force in the armature winding 2 of FIG. 1 as a two-pole machine in the direction of the dotted arrow, causing current to flow through the load.

第1図の代りに第7図を用いることが出来る。FIG. 7 can be used instead of FIG. 1.

図では第一の一組の三相巻線52−53−54で一つの
星形接続を、また第二の一組の三相巻線55−56−5
7で他の一つの星形接続を造るべき配列の固定子電機子
巻線において、第一及び第二の星形接続巻線を形成すべ
きそれぞれの三相中の一相の巻線54と57と、上記二
組のそれぞれの星形の中性点58と59との間の接続を
互いに逆接続するように配列する。すなわち二重星形接
続を形成するそれぞれの単一星形接続はそれぞれ三相の
巻線から成つており、その三相の巻線配列が互いに電気
位相的に対称的な位置に配列された巻線のことを云う。
The figure shows one star connection with the first set of three-phase windings 52-53-54 and the second set of three-phase windings 55-56-5.
In the stator armature windings of the arrangement to form another star connection at 7, the winding 54 of one phase of each of the three phases to form the first and second star connection windings. 57 and the two pairs of star-shaped neutral points 58 and 59 are arranged so as to be connected in reverse to each other. That is, each single star connection forming a double star connection consists of three-phase windings, and the three-phase winding arrangement consists of windings arranged in electrically symmetrical positions with respect to each other. It refers to a line.

例を示すと、第9図の(a)と(b)との巻線配列で第
7図の巻線52、53、54、55、56、57が完結
される。コイル片の下に連続的に示された1〜36の文
字は溝番号であり、コイル片の実線で書かれたものは上
口、点線で書かれたものは下口にあるコイル片を示した
ものである。図中、52、53、54、55、56、5
7とあるのは電機子巻線で第7図の同符号の巻線に対応
したものである。外部接続端子3から巻線52を経て第
9図(b)では中性点58に到る回路と、巻線55を経
て中性点59に到る回路も示されている。この第9図(
b)では外部接続端子3から出る巻線52の配列は溝番
号で示すと、1−2−3−10−11−12、19−2
0−21−28−29−30である。外部接続端子4か
ら出る巻線53の配列は溝番号で示すと、13−14−
15−22−23−24、31−32−33−4−5−
6である。対称的に考えると第9図(a)で示された外
部接続端子5から出る巻線54の配列は図に示すように
溝番号で示すと25−26−27−34−35−36、
7−8−9−16−17−18となる。このように考え
ると、上記巻線52、53、54が対称的な位置に配列
され、これによつて通常は対称三相星形接続を形成し、
中性点58を共有すべきであるが、本発明では巻線52
、53、54の中の一相の巻線54は中性点58に接続
されず、他の中性点59に接続されるのである。同様の
関係が巻線55、56、57の間でも成り立ち、その中
の一相の巻線57が巻線55−56−57の中性点とな
るべき59とは接続されずに、他の巻線の中性点58に
接続されるのである。
For example, the windings 52, 53, 54, 55, 56, and 57 in FIG. 7 are completed with the winding arrangement shown in FIGS. 9(a) and 9(b). The letters 1 to 36 shown consecutively below the coil piece are the groove numbers; those written in solid lines indicate the coil pieces at the upper opening, and those written in dotted lines indicate the coil pieces at the lower opening. It is something that In the figure, 52, 53, 54, 55, 56, 5
7 is an armature winding, which corresponds to the winding with the same symbol in FIG. A circuit from the external connection terminal 3 to the neutral point 58 via the winding 52 and a circuit to the neutral point 59 via the winding 55 are also shown in FIG. 9(b). This figure 9 (
In b), the arrangement of the windings 52 coming out from the external connection terminal 3 is indicated by groove numbers: 1-2-3-10-11-12, 19-2.
It is 0-21-28-29-30. The arrangement of the windings 53 coming out from the external connection terminal 4 is indicated by groove numbers 13-14-
15-22-23-24, 31-32-33-4-5-
It is 6. Considering symmetrically, the arrangement of the windings 54 coming out of the external connection terminal 5 shown in FIG.
7-8-9-16-17-18. Considering this, the windings 52, 53, 54 are arranged in symmetrical positions, thereby typically forming a symmetrical three-phase star connection;
Although the neutral point 58 should be shared, in the present invention the winding 52
, 53, 54 is not connected to the neutral point 58, but is connected to the other neutral point 59. A similar relationship holds between the windings 55, 56, and 57, in which one-phase winding 57 is not connected to 59, which should be the neutral point of the windings 55-56-57, and the other It is connected to the neutral point 58 of the winding.

このようにして第7図の電機子巻線2の中を流れる電流
は二種類となる。すなわち第7図の中、一相分の52、
55に沿つて書かれた点線矢印で示された負荷電流と、
実線矢印で示された励磁電流である。第10図(a)(
b)は電機子巻線2の一相分の一例を示したもので、等
7図の巻線52及び55に対応し、外部接続端子3と中
性点58及び59の間の接続とその電流の流れ、そして
それによる極数の変換の状況が示される。第10図(a
)と(b)は同一の巻線接続でも電流の流れの方向が変
ると、そこを流れる電流によつて造られる磁極の極数は
一方が8極で他方が4極と云うように、その極数比は2
対1或いは1対2となしうることを示している。第7図
の電機子巻線52と55の中を流れる電流で点線矢印で
示されたのは負荷電流のある瞬間の方向であり、実線矢
印で示されたものは励磁電流の方向である。結局第7図
の電機子巻線2の中を流れる二種類の電流とそれらによ
り造られる磁極の極数関係は第1図の電機子巻線2の中
を流れる二種類の電流と磁極の極数関係に類似し、第1
図に関して述べられたことは第7図についても同様に述
べうる。たゞ第1図では整流器9を構成する整流子素子
の数が12個必要であつたのに対し、第7図では6個で
良い。
In this way, two types of current flow through the armature winding 2 of FIG. 7. In other words, in Fig. 7, 52 for one phase,
A load current indicated by a dotted arrow drawn along 55;
This is the excitation current indicated by the solid arrow. Figure 10(a) (
b) shows an example of one phase of the armature winding 2, which corresponds to the windings 52 and 55 in Figure 7, and shows the connection between the external connection terminal 3 and the neutral points 58 and 59, and the The flow of current and the resulting change in the number of poles are shown. Figure 10 (a
) and (b), even if the windings are connected in the same way, if the direction of current flow changes, the number of magnetic poles created by the current flowing there will be 8 poles on one side and 4 poles on the other. The pole number ratio is 2
This shows that it is possible to have a ratio of 1 to 1 or 2 to 1. In the current flowing through the armature windings 52 and 55 in FIG. 7, the dotted arrow indicates the direction of the load current at a certain moment, and the solid arrow indicates the direction of the exciting current. After all, the relationship between the two types of currents flowing in the armature winding 2 in Figure 7 and the number of magnetic poles created by them is the same as the two types of currents flowing in the armature winding 2 in Figure 1 and the number of magnetic poles created by them. Similar to the number relation, the first
What has been said with respect to FIG. 7 can be similarly said with respect to FIG. In FIG. 1, 12 rectifier elements are required to constitute the rectifier 9, whereas in FIG. 7, only 6 rectifier elements are required.

第11図は第1図や第7図における本発明の変流器7の
作用を説明するためのべクトルダイアグラムである。E
Oは同期発電機の無負荷誘導起電力であり、Vは電機子
巻線2の端子電圧、jXSIは電機子反作用電圧降下、
Iは負荷電流である。無負荷時には第1図や第7図にお
いて電機子巻線2の端子電圧Vに対し、変流器7の二次
巻線8をリアクトルとして、そのリアクトルと整流器9
を通して流す電流iOによる整流器9の交流端子より見
た電圧降下はRiO、又その電流iOによる変流器7の
二次巻線におけるリアクタンス電圧降下がRiOに直角
なjXOiOである。これに対し、負荷時、変流器7の
一次巻線1にIなる負荷電流が流れると、それによつて
二次巻線8にはI2なる電流が流れ、無負荷時に流れる
iOとべクトル的に合成したiLが二次巻線8に流れる
ことになる。この電流iLによる整流器9の交流側端子
から見た電圧降下はその抵抗Rを含むRiL、又その電
流iLによる変流器7の二次巻線8のリアクタンス電圧
降下はjXLiLである。OMNHはOHを直径とする
円周上にある。Fは無負荷時の起磁力、Ffは負荷時の
界磁起磁力、Faは電機子反作用起磁力である。このよ
うにして△NMOと△GHOと△ABOとが相似形であ
れば電機子巻線2の端子電圧が一定に制御されることに
なるのである。
FIG. 11 is a vector diagram for explaining the action of the current transformer 7 of the present invention shown in FIGS. 1 and 7. E
O is the no-load induced electromotive force of the synchronous generator, V is the terminal voltage of armature winding 2, jXSI is the armature reaction voltage drop,
I is the load current. When there is no load, the secondary winding 8 of the current transformer 7 is used as a reactor, and the reactor and rectifier 9 are connected to the terminal voltage V of the armature winding 2 in FIG.
The voltage drop seen from the AC terminal of the rectifier 9 due to the current iO flowing through the current iO is RiO, and the reactance voltage drop at the secondary winding of the current transformer 7 due to the current iO is jXOiO perpendicular to RiO. On the other hand, when a load current of I flows through the primary winding 1 of the current transformer 7, a current of I2 flows through the secondary winding 8, which is vectorially equal to iO flowing during no load. The combined iL will flow to the secondary winding 8. The voltage drop seen from the AC side terminal of the rectifier 9 due to this current iL is RiL including the resistance R, and the reactance voltage drop of the secondary winding 8 of the current transformer 7 due to the current iL is jXLiL. OMNH is on the circumference with OH as the diameter. F is the magnetomotive force under no load, Ff is the field magnetomotive force under load, and Fa is the armature reaction magnetomotive force. In this way, if ΔNMO, ΔGHO, and ΔABO are similar, the terminal voltage of the armature winding 2 will be controlled to be constant.

このような変流機器7により、負荷電流の電機子反作用
電圧降下をかなり良く補償しうる。然し場合によつては
更に精密に発電機の端子電圧或いは負荷への供給端の電
圧を一定に制御する必要があり、その場合には自動電圧
調整器23を併用する。その場合には交流母線24の電
圧を検出し、電圧調整装置23において設定電圧と比較
して、その誤差により整流器9の制御素子に作用せしめ
、それにより電機子巻線2へ與える励磁電流を自動的に
調整して交流母線24の電圧を一定に調整するのである
With such a current transformation device 7, armature reaction voltage drops in the load current can be compensated fairly well. However, in some cases, it is necessary to more precisely control the terminal voltage of the generator or the voltage at the supply end to the load to a constant value, and in that case, the automatic voltage regulator 23 is also used. In that case, the voltage of the AC bus 24 is detected and compared with the set voltage in the voltage regulator 23, and the error is applied to the control element of the rectifier 9, thereby adjusting the excitation current given to the armature winding 2. This automatically adjusts the voltage of the AC bus 24 to a constant value.

変流器7の二次巻線7の回路にコンデンサー60を接続
することも考えられる。この場合には変流器7の一次巻
線と二次巻線の接続が第8図のように第1図や第7図の
場合とやゝ異なるが、本質的には同じである。第1図や
第7図の場合、前に説明したように一次巻線1に負荷電
流が流れた場合、二次巻線のリアクトルとしてのリアク
タンス値が無負荷時よりも減少するように働らくべく接
続される。
It is also conceivable to connect a capacitor 60 to the circuit of the secondary winding 7 of the current transformer 7. In this case, the connection between the primary winding and the secondary winding of the current transformer 7, as shown in FIG. 8, is slightly different from that shown in FIGS. 1 and 7, but is essentially the same. In the case of Figures 1 and 7, as explained earlier, when a load current flows through the primary winding 1, the reactance value of the secondary winding as a reactor works to be smaller than when there is no load. connected as possible.

以上述べてきた本発明の作用効果の特長をまとめて述べ
ると、次のようになる。
The features of the effects of the present invention described above can be summarized as follows.

(1)ブラシと励磁機をなくし、電機子巻線中に二種類
の電流つまり負荷電流と励磁電流を流す面転電気機械の
装置における既に考えられた昭和59年9月13日出願
の発明「面転電気機械の構造」などとくらべて簡略化さ
れ、安価でもある。
(1) An invention filed on September 13, 1980, in a device for a surface-turning electric machine that eliminates brushes and exciters and allows two types of current, namely a load current and an excitation current, to flow through the armature winding. It is simpler and cheaper than the structure of a surface rolling electric machine.

(2)ブラシと励磁機をなくし、電機子巻線中に二種類
の電流を流す面転電気機械の装置における既に考えられ
た上記の発明などとくらべて効率も高くしうる。これは
装置が簡略化されるためである。
(2) Efficiency can be increased compared to the above-described inventions already considered in devices for surface rolling electric machines in which brushes and exciters are eliminated and two types of currents flow through the armature windings. This is because the device is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第7図は本発明の具体的な電気接続図であり
、特にその中固定子に関する接続が示され、回転子は示
されていない。第2図及び第3図は第1図の電機子巻線
接続の部分図である。第4図は回転子巻線接続で本発明
に使用しうる例として示される。第5図も回転子巻線接
続で本発明に使用しうる一例である。第6図も本発明の
回転子巻線接続として使用されうる一例が示される。第
8図は本発明の具体的な部分接続図例である。第9図は
本発明の具体的な電気接続図例である第7図の電機子巻
線接続の一例、第10図は第7図の電機子巻線接続にお
いてその接続に電流方向を変えるだけで極数を変えうる
ことを示す説明図、第11図は本発明の作用効果を示す
ベクトルダイアグラムである。 次に図の主要な部分をあらわす符号は次のようである。
1 and 7 are specific electrical connection diagrams of the present invention, in which connections relating to the stator are particularly shown, and the rotor is not shown. 2 and 3 are partial views of the armature winding connections of FIG. 1; FIG. FIG. 4 shows an example of a rotor winding connection that may be used in the present invention. FIG. 5 is also an example of a rotor winding connection that can be used in the present invention. FIG. 6 also shows an example that can be used as the rotor winding connection of the present invention. FIG. 8 is a specific example of a partial connection diagram of the present invention. Figure 9 is an example of the armature winding connection shown in Figure 7, which is a specific electrical connection diagram of the present invention, and Figure 10 is an example of the armature winding connection shown in Figure 7, only by changing the current direction in that connection. FIG. 11 is a vector diagram showing the effects of the present invention. Next, the symbols representing the main parts of the figure are as follows.

Claims (1)

【特許請求の範囲】[Claims] その一次巻線が電機子巻線の外部接続端子とこの面転電
気機械の外部接続機器との間に直列接続された変流器の
二次巻線を直列に通して上記電機子巻線の外部接続端子
から整流器を経て上記電機子巻線の中間端子間へその励
磁電流を與えるよう電気接続した面転電気機械の構造。
The primary winding of the armature winding is passed in series through the secondary winding of a current transformer connected in series between the external connection terminal of the armature winding and the external connection equipment of this planar electric machine. The structure of a planar electric machine is electrically connected to supply an excitation current from an external connection terminal to intermediate terminals of the armature winding via a rectifier.
JP21373584A 1984-10-12 1984-10-12 Mechanism for rotary electric machine Pending JPS6194546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21373584A JPS6194546A (en) 1984-10-12 1984-10-12 Mechanism for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21373584A JPS6194546A (en) 1984-10-12 1984-10-12 Mechanism for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS6194546A true JPS6194546A (en) 1986-05-13

Family

ID=16644134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21373584A Pending JPS6194546A (en) 1984-10-12 1984-10-12 Mechanism for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS6194546A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017643A (en) * 1973-06-14 1975-02-25
JPS5017644A (en) * 1973-06-14 1975-02-25
JPS58224549A (en) * 1982-06-23 1983-12-26 Fukuo Shibata Structure of rotary electric machine
JPS59110356A (en) * 1982-12-11 1984-06-26 Fukuo Shibata Structure of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017643A (en) * 1973-06-14 1975-02-25
JPS5017644A (en) * 1973-06-14 1975-02-25
JPS58224549A (en) * 1982-06-23 1983-12-26 Fukuo Shibata Structure of rotary electric machine
JPS59110356A (en) * 1982-12-11 1984-06-26 Fukuo Shibata Structure of rotary electric machine

Similar Documents

Publication Publication Date Title
JP3489106B2 (en) Brushless three-phase synchronous generator
WO1997050164A1 (en) A.c. electrical machine and method of transducing power between two different systems
US20110140555A1 (en) Variable speed constant frequency motor
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
JPH02197242A (en) Power source exciting system provided with voltage and current adjustment
JPS6194546A (en) Mechanism for rotary electric machine
JP2003134766A (en) Brushless electric rotating machine
JPH077999A (en) Ac generator
JPS6181157A (en) Structure of rotary electric machine
JPH0528065B2 (en)
JPS6173558A (en) Structure of rotary electric machine
JPS6139894A (en) Structure of rotary electric machine
JPS6169359A (en) Structure of rotary electric machine
JPS5967858A (en) Structure of rotary electric machine
JPS63213439A (en) Single-phase electric rotary machine
JPS63114548A (en) Rotary electric machine having brushless rotary machine structure
JPS6022450A (en) Structure of rotary electric machine
JPS58224549A (en) Structure of rotary electric machine
JPS61189200A (en) Structure of rotary electric machine
JPH0626063Y2 (en) Brushless 4-pole 3-phase generator
JPS60113641A (en) Rotary electric machine
JPS6066655A (en) Structure of rotary electric machine
JPS62131744A (en) Structure of rotary electric machine
JPH09285195A (en) Generator for welding
JPS63144744A (en) Brushless axial field rotary electric machine without exciter