JPS6169359A - Structure of rotary electric machine - Google Patents

Structure of rotary electric machine

Info

Publication number
JPS6169359A
JPS6169359A JP59191990A JP19199084A JPS6169359A JP S6169359 A JPS6169359 A JP S6169359A JP 59191990 A JP59191990 A JP 59191990A JP 19199084 A JP19199084 A JP 19199084A JP S6169359 A JPS6169359 A JP S6169359A
Authority
JP
Japan
Prior art keywords
winding
current
armature winding
armature
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59191990A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59191990A priority Critical patent/JPS6169359A/en
Publication of JPS6169359A publication Critical patent/JPS6169359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/26Synchronous generators characterised by the arrangement of exciting windings
    • H02K19/28Synchronous generators characterised by the arrangement of exciting windings for self-excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To simplify the structure and to improve the efficiency by disposing to flow a current to an armature winding through a rectifier in parallel from an external terminal via the secondary winding by a current transformer and a reactive element. CONSTITUTION:A rotary electric machine has a current transformer 2 in which the primary winding 1 is connected with the external terminals 4-6 of an armature winding 3 and external wirings 7-9, and reactive elements 15-18 connected with the terminals 4-6 are connected in parallel with reactors 22-24. The phase intermediate terminals 25-30 of the winding 3 are respectively connected with the rectifiers 22-24, and the DC exciting winding 35 of a saturable reactor 37 is controlled by an automatic voltage regulator 36. Thus, currents are flowed from the secondary windings 10-12 and external terminals 4-6 in parallel to the winding 3 to improve the efficiency by simplifying the structure.

Description

【発明の詳細な説明】 本発明は回転電気機械の構造に関するもので、その中、
特に同期機構造に関する。ここに同期機構造とは単に同
期発電機や同期電動機の構造のみならず、その本体を同
期機と同じ構造とする所謂サイリストモーターにも及ぶ
。然し、説明しやすくするために、以下の説明を同期発
電機に限定しておこなうことにする。これらは同期機構
造の全領域にあてはめられるものとする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a rotating electrical machine, in which:
Especially regarding synchronous machine structure. Here, the term synchronous machine structure refers not only to the structure of a synchronous generator or a synchronous motor, but also to a so-called thyrist motor whose main body has the same structure as a synchronous machine. However, for ease of explanation, the following explanation will be limited to synchronous generators. These shall apply to all areas of synchronous machine construction.

最近ブラシレス同期機構造で、励磁機を省略する構想が
出現した。特許第801991号や特許第801992
号はその例であるが、容量を大きくするにつれて交流を
励磁電源とするこれら既知の方式では交流励磁容量を大
きくせざるを得なくなり、この欠点を除くため、本発明
者は昭和58年特許出願公開第224549号を提出し
た。それによると、電機子巻線と変成器の二次巻線を電
気接続し、変成器の一次巻線の各相の一端を電機子巻線
の各相端子と接続し、上記変成器の二次巻線と上記電機
子巻線の間の接続中に整流器を接続している。然し、こ
のような接続で問題なのは装置全体としてやゝ複雑とな
る欠点がある。それは上記変成器が一次側巻線として電
圧巻線と電流巻線を有し、それに二次巻線を持つ結果、
変成器は三巻線変成器となり、更に加えて電圧巻線には
直列にリアクトルなどかなり大きいリアクチブ素子を設
けざるを得ないからである。
Recently, a concept has emerged that omit the exciter in a brushless synchronous machine structure. Patent No. 801991 and Patent No. 801992
No. 1 is an example of this, but as the capacity increases, in these known systems that use AC as an excitation power source, the AC excitation capacity has to be increased.In order to eliminate this drawback, the inventor filed a patent application in 1981. Publication No. 224549 was submitted. According to this, the armature winding and the secondary winding of the transformer are electrically connected, one end of each phase of the primary winding of the transformer is connected to each phase terminal of the armature winding, and A rectifier is connected during the connection between the next winding and the armature winding. However, a problem with such a connection is that the device as a whole becomes rather complicated. It is a result of the above transformer having a voltage winding and a current winding as the primary winding, and a secondary winding therein.
This is because the transformer is a three-winding transformer, and in addition, a fairly large reactive element such as a reactor must be installed in series with the voltage winding.

本発明はこのようにブラシと励磁機をなくし、電機子巻
線中に負荷電流以外に励磁電流も流す方式において装置
全体の構造を簡略化し、安価にし且つ装置の効率を向上
せしめることを目的とし、次のような構成より成る。す
なわち、本発明の具体的な電気接続図例である第1図に
示すように、その一次巻線1が電機子巻線3の外部接続
端子4、5、6と外部接続電線7、8、9に接続された
変流器2の二次巻線10、11、12の端子13、14
、15と、上記電機子巻線3の外部接続端子4、5、6
に接続されたリアクチブ素子16、17、18の端子1
9、20、21の両者が整流器22、23、24に対し
て並列になるように接続され、この整流器22、23、
24を経て上記電機子巻線3の各相中間端子25、26
、27、28、29、30間へ電気接続するように配列
し、これによつて変流器2の二次巻線10、11、12
からと、リアクチブ素子16、17、18経由で上記外
部接続端子4、5、6から並列的に整流器22、23、
24を経て上記電機子巻線3に電流を流すように配列す
るのである。
The present invention aims to simplify the overall structure of the device, reduce the cost, and improve the efficiency of the device by eliminating the brushes and exciter and passing the exciting current in addition to the load current through the armature winding. , consists of the following structure. That is, as shown in FIG. 1, which is a specific example of an electrical connection diagram of the present invention, the primary winding 1 has external connection terminals 4, 5, 6 of the armature winding 3 and external connection wires 7, 8, Terminals 13, 14 of secondary windings 10, 11, 12 of current transformer 2 connected to 9
, 15, and external connection terminals 4, 5, 6 of the armature winding 3
Terminals 1 of reactive elements 16, 17, 18 connected to
Both of the rectifiers 9, 20, 21 are connected in parallel to the rectifiers 22, 23, 24, and the rectifiers 22, 23,
24 to each phase intermediate terminal 25, 26 of the armature winding 3.
, 27, 28, 29, 30, thereby providing an electrical connection between the secondary windings 10, 11, 12 of the current transformer 2.
Rectifiers 22, 23,
The arrangement is such that a current flows through the armature winding 3 through the armature winding 24.

このようにすると、第1図においては電機子巻線3は二
重量形接続の固定子で三相を形成することになるが、こ
の三相の巻線32、33、34中を流れる電流は負荷電
流と励磁電流と云う二種類の電流となる。第1図におい
て上記三相巻線中一相分32で示すと、点線矢印で示さ
れに電流がある瞬間の負荷電流の方向を示したものであ
り、実線矢印の方向が励磁電流である。第2図は固定子
電機子巻線の一相分の一例を示したもので、第1図の巻
線32の外部接続端子4から中性点31に到るものに対
応する。端子4より鄰接する電機子巻線の一相当りの接
続を二重並列接続とし、その一方の端子4より他の端子
31に到る間の並列巻線接続の二つの回路の中の一方に
よつて造られるコイル接続AとBにより固定子の内面の
別々の個所に二つの磁極を造るようにし、上記二つの回
路の中の他方によつて造らわるコイル接続CとDにより
互いに固定子内面に二つの磁極を造らしめ、且つ上記A
とDによつて互いに同じ磁極を造るよう、AとDのコイ
ルを鄰接せしめ、且つBとCによつても互いに同じ磁極
を造るようBとCのコイルを鄰接せしめ、且つ上記コイ
ルAとBの間を接続する点に25なる接続端子、又上記
コイルCとDの間を接続する点に26なる接続端子を造
り、これらの端子25−26に第1図の整流器22の直
流側端子が接続するように配列される。第2図で点線矢
印はある瞬間の負荷電流の方向を示し、実線矢印は整流
器22を経て変流器2及びリアクチブ素子16、17、
18から電機子巻線32に流される電流の方向を示す。
In this way, in FIG. 1, the armature winding 3 forms a three-phase stator with a double mass type connection, and the current flowing through the three-phase windings 32, 33, and 34 is There are two types of current: load current and excitation current. In FIG. 1, one phase 32 of the three-phase winding indicates the direction of the load current at the moment of current as indicated by the dotted arrow, and the direction of the solid arrow is the exciting current. FIG. 2 shows an example of one phase of the stator armature winding, which corresponds to the winding 32 in FIG. 1 from the external connection terminal 4 to the neutral point 31. The connection of one armature winding connected from terminal 4 is double parallel connection, and one of the two circuits of parallel winding connection between one terminal 4 and the other terminal 31 is connected. The coil connections A and B thus made create two magnetic poles at different locations on the inner surface of the stator, and the coil connections C and D made by the other of the two circuits allow the coils to be connected to each other on the inner surface of the stator. to create two magnetic poles, and the above A
The coils A and D are brought into contact with each other so that the same magnetic poles are created by the coils A and D, and the coils B and C are brought into contact with each other so that the same magnetic poles are created by the coils B and C. A connecting terminal 25 is made at the point connecting between the coils C and D, and a connecting terminal 26 is made at the point connecting the coils C and D, and the DC side terminals of the rectifier 22 in Fig. 1 are connected to these terminals 25-26. Arranged to connect. In FIG. 2, the dotted arrow indicates the direction of the load current at a certain moment, and the solid arrow indicates the direction of the load current through the rectifier 22, the current transformer 2, and the reactive elements 16, 17.
18 to the armature winding 32.

これによつて第2図では負荷電流により4極磁極が造ら
れ、励磁電流により2極磁極が造られることが判る。同
様にして第3図の場合、負荷電流により2極磁極が造ら
れ。励磁電流により4極磁極が造られることが判る。今
変流器2の二次巻線10、11、12に接続される整流
器22、23、24の直流側端子の正負方向を電機子巻
線32、33、34に対し、どう接続すべきかが一つの
問題である。第1図において32、33、34がその順
に相順として配列されるのに対し、整流器22、23、
24の接続の正負方向はその中の一つを他の二つの方向
に対し逆になるように接続する。このように整流器22
、23、24の直流側端子と電機子巻線32、33、3
4の接続を、その相順接続の結果、整流器22、23、
24から電機子巻線に供給する直流励磁電流によつて各
相に造られる磁界を合成して合成磁界が造られるように
配列する。これらの接続説明は昭和57年特許出願第2
17625号に準ずる。
As a result, it can be seen in FIG. 2 that four magnetic poles are created by the load current, and two magnetic poles are created by the excitation current. Similarly, in the case of FIG. 3, two magnetic poles are created by the load current. It can be seen that four magnetic poles are created by the excitation current. Now, how should the positive and negative directions of the DC side terminals of the rectifiers 22, 23, 24 connected to the secondary windings 10, 11, 12 of the current transformer 2 be connected to the armature windings 32, 33, 34? That's one problem. In FIG. 1, rectifiers 22, 23, 34 are arranged in phase sequence in that order,
The positive and negative directions of the 24 connections are such that one of them is connected in the opposite direction to the other two directions. In this way, the rectifier 22
, 23, 24 DC side terminals and armature windings 32, 33, 3
4, as a result of the phase sequential connection, the rectifiers 22, 23,
The arrangement is such that the magnetic fields created in each phase by the DC excitation current supplied from 24 to the armature winding are combined to create a composite magnetic field. These connection explanations were published in patent application No. 2 in 1982.
According to No. 17625.

第1図ではリアクチブ素子の一例としてリアクトル16
、17、18が示される。然し、第4図のコンデンサー
38、39、40とすることも可能である。第1図の場
合、発電機の発生した電力の一部を電圧に比例する成分
はリアクトル16、17、18を介して、電流に比例す
る成分は変流器2によつてとり出し、これを整流器22
、23、24を用いて整流し、電機子巻線3に励磁電流
として供給するのである。第1図のような場合変流器2
によつて複巻特性か與えられるので負荷の変動による端
子電圧の変動をある程度補償することができる。しかし
、負荷の電流の力率によつて電機子反作用が異なるので
、力率および電流の変化にかゝわらす発電機の端子電圧
を常に一定に保つには、自動電圧調整器36を用いて励
磁電流を調整する必要がある。自動電圧調整器36は交
流母線41の電圧を検出して、リアクトル16、17、
18と直列接続される可飽和リアクトル35の直流励磁
巻線37の電流を自動的に制御し、可飽和リアクトル3
5のリアクトル値を制御する。それにより交流母線41
よりリアクトル16、17、18を経て整流器22、2
3、24を通して電機子巻線3に與える励磁電流を制御
して、交流母線41の電圧を自動制御するのである。
In Figure 1, a reactor 16 is shown as an example of a reactive element.
, 17, 18 are shown. However, it is also possible to use the capacitors 38, 39, 40 of FIG. In the case of Fig. 1, a part of the power generated by the generator is extracted through reactors 16, 17, and 18 for the component proportional to the voltage, and the component proportional to the current is taken out by the current transformer 2. Rectifier 22
, 23, and 24 to rectify the current and supply it to the armature winding 3 as an exciting current. In the case shown in Figure 1, current transformer 2
Since a compound winding characteristic is provided by this, fluctuations in terminal voltage due to fluctuations in load can be compensated to some extent. However, since the armature reaction varies depending on the power factor of the load current, an automatic voltage regulator 36 must be used to keep the generator terminal voltage constant regardless of changes in the power factor and current. It is necessary to adjust the excitation current. The automatic voltage regulator 36 detects the voltage of the AC bus 41 and adjusts the voltage of the reactors 16, 17,
The current in the DC excitation winding 37 of the saturable reactor 35 connected in series with the saturable reactor 3 is automatically controlled.
Control the reactor value of 5. As a result, the AC bus 41
Then, the rectifiers 22, 2 pass through the reactors 16, 17, 18.
The voltage of the AC bus 41 is automatically controlled by controlling the excitation current applied to the armature winding 3 through the AC bus 41.

第1図は固定子の部分が示され、回転子の部分について
は後に述べることにする。この第1図に代えて第4図の
接続とすることも可能である。第4図において第1図と
異なる点は、第1図において電機子巻線3の外部接続端
子4、5、6と電気接続されるリアクトル16、17、
18の代りにリアクチブ素子としてコンデンサー38、
39、40が接続される点である。この場合、第1図に
おいてリアクトル16、17、18と変流器2の二次巻
線10、11、12との接続に対し、第4図のコンデン
サー38、39、40と変流器2の二次巻線10、11
、12との電気接続が180度の相異でなされねばなら
ぬ、第4図ではそのようなことが図上で示されてはいな
いけれども、例えば、第1図のリアクトル16、17、
18と第4図のコンデンサー38、39、40を外部接
続端子4、5、6に対し同様の関係を保つて接続される
場合には、変流器2の二次巻線10、11、12の接続
は第1図と第4図では相互に180度の相差があるよう
な接続としなければならない。
FIG. 1 shows the stator section, and the rotor section will be described later. It is also possible to use the connection shown in FIG. 4 instead of the one shown in FIG. 4 differs from FIG. 1 in that in FIG.
Capacitor 38 as a reactive element instead of 18,
This is the point where 39 and 40 are connected. In this case, in contrast to the connections between the reactors 16, 17, 18 and the secondary windings 10, 11, 12 of the current transformer 2 in FIG. 1, the connections between the capacitors 38, 39, 40 and the current transformer 2 in FIG. Secondary windings 10, 11
, 12 must be made with a 180 degree difference, for example, the reactors 16, 17, 12 of FIG.
18 and the capacitors 38, 39, 40 in FIG. 4 are connected to the external connection terminals 4, 5, 6 while maintaining the same relationship, The connections must be such that there is a phase difference of 180 degrees between FIGS. 1 and 4.

第4図では整流器22、23、24を制御素子付き整流
器として、その制御素子を制御装置42で制御するよう
に配列する。交流母線41の電圧を検出して、その検出
値により制御装置42で整流器22、23、24の制御
素子を制御して整流器22、23、24の電流値を制御
するのである。
In FIG. 4, the rectifiers 22, 23, and 24 are arranged as rectifiers with control elements, and the control elements are controlled by a control device 42. The voltage of the AC bus 41 is detected, and the control device 42 controls the control elements of the rectifiers 22, 23, 24 based on the detected value, thereby controlling the current values of the rectifiers 22, 23, 24.

第5図は単相の場合の接続例であり、第4図の三相巻線
中の一相巻線32に関して電気接続したものである。巻
線32の外部接続端子は4と43、又外部接続電線は7
と44である。第5図で示される符号は第4図の同符号
のものと対応したものである。
FIG. 5 shows an example of a single-phase connection, in which the one-phase winding 32 in the three-phase winding shown in FIG. 4 is electrically connected. The external connection terminals of the winding 32 are 4 and 43, and the external connection wire is 7.
and 44. The symbols shown in FIG. 5 correspond to the same symbols in FIG.

第1図の固定子電機子巻線3の中を流れる負荷電流が点
線矢印で示され、端子25−26から入る励磁電流が実
線矢印で示されるが、この点線と実線の矢印の電流で造
られる磁極数は互いに1対2の関係にあり、これら磁極
数と回転子巻線中を流れる電流の関係を次のようにする
。第6図は回転子巻線と回転子上の整流器46が示され
る。電機子巻線3中の実線矢印で示される電流で造られ
る磁極の極数が第2図の例では2極であるが、この磁極
数と同じ2極に巻かれた励磁巻線43に電圧が発生する
。第6図で三相星形に巻かれた巻線中励磁巻線43はそ
の中の二相分で造られ、他の一相分で44のように短絡
して制動巻線として働らかせる。このように励磁巻線4
3に発生した起電力により整流器46を経て界磁巻線4
5に直流電流を流す。それによつて4極界磁が回転子に
造られるが、これは第1図の電機子巻線3中を点線矢印
で示す起電力を発生し、電流を流すが、それは第2図の
例では4極磁界を造り、4極間で対応することになるの
である。このように固定子電機子巻線と回転子巻線との
間の作用はそれぞれ流れる電流或いは発生する起電力の
関する磁極数の等しいもの相互間に作用し合うことが基
本的に考えられ、磁極数が互いに異なるもの相互間では
作用し合わないと云う考えにもとづく。
The load current flowing through the stator armature winding 3 in FIG. The numbers of magnetic poles are in a 1:2 relationship with each other, and the relationship between the number of magnetic poles and the current flowing in the rotor winding is as follows. FIG. 6 shows the rotor windings and rectifier 46 on the rotor. The number of magnetic poles created by the current indicated by the solid arrow in the armature winding 3 is two in the example of FIG. occurs. In Figure 6, the excitation winding 43 in the winding wound in a three-phase star shape is made up of two phases, and the other phase is short-circuited as shown in 44 to work as a damping winding. . In this way, the excitation winding 4
The electromotive force generated in the field winding 4 passes through the rectifier 46 due to the electromotive force generated in the field winding 4.
A direct current is applied to 5. Thereby, a four-pole field is created in the rotor, which generates an electromotive force and causes a current to flow in the armature winding 3 shown by the dotted arrow in FIG. This creates a four-pole magnetic field and corresponds between the four poles. In this way, it is basically considered that the action between the stator armature winding and the rotor winding is that they interact with each other when they have the same number of magnetic poles in terms of flowing current or generated electromotive force. It is based on the idea that things with different numbers do not interact with each other.

第7図と第8図には回転子巻線の他の例が示される。詳
細は昭和58年特許願第157455号に示されるが、
第7図は回転子構造図例である。
Other examples of rotor windings are shown in FIGS. 7 and 8. Details are shown in Patent Application No. 157455 of 1982,
FIG. 7 is an example of a rotor structure diagram.

回転子に20個の溝におさめられたような導体があり、
それが第8図のように配例されているものとする。巻線
回路がこの場合、4回路47、48、49、50に分け
られその4回路のすべてに図のように整流器がそれぞれ
接続されている。この場合には第1図に流される実線矢
印の励磁電流により第3図に示すように4極磁極が造ら
れると、それに対応して回転子巻線には4極としての起
電力を発生するが、整流器51、52、53、54の作
用により常に第8図の実線矢印の方向の電流が流れる。
There is a conductor that is placed in 20 grooves in the rotor.
Assume that they are arranged as shown in FIG. In this case, the winding circuit is divided into four circuits 47, 48, 49, and 50, and a rectifier is connected to each of the four circuits as shown in the figure. In this case, when four magnetic poles are created as shown in Figure 3 by the excitation current shown by the solid arrows flowing in Figure 1, an electromotive force corresponding to four poles is generated in the rotor windings. However, due to the action of the rectifiers 51, 52, 53, and 54, a current always flows in the direction of the solid arrow in FIG.

これは巻線の抵抗がそのインダクタンスの値とくらべて
非常に小さいから、巻線47、48、49、50には常
にこのような実線矢印の電流が流れ、全体として結局2
極の界磁極を造ることになる。このようにして回転子は
2極界磁となり、これが回転して第1図の電機子巻線3
には点線矢印の方向に2極機として起電力を発生し、電
流を負荷に流す。
This is because the resistance of the windings is very small compared to the inductance value, so the current shown by the solid line arrows always flows through the windings 47, 48, 49, and 50, and the overall current is 2.
This will create a field pole. In this way, the rotor becomes a two-pole field, which rotates and the armature winding 3 shown in FIG.
In this case, an electromotive force is generated as a two-pole machine in the direction of the dotted arrow, and current flows through the load.

第9図は第8図と同様、回転子巻線を励磁巻線としても
界磁巻線としても使う兼用方式を示したものであるが、
第8図は単層巻きであるのに対し、第9図は二層巻きの
例である。巻線の配列は昭和58年特許願第19968
6号に述べられているが、巻線55は三相の二重星形接
続のように配列される。然し巻線57、58と巻線59
と60は中性点63、64を中心に配列されるが、他の
一相を構成する巻線61と62は互いに逆の中性点64
と63に接続される。巻線55は57と60と62で一
つの星形接続を造り、58と59と61で他の星形接続
を造るような巻線配列であるが、その中の一相分の巻線
61と62の中性点接続を上記のように逆に接続するの
である。第9図ではこのように接続された三相巻線の外
部接続端子65、66、67を整流器56の交流側端子
に接続し、整流器56の直流側端子を中性点63と64
に接続する。今もし第1図の電機子巻線に実線矢印の方
向に励磁電流が流され、それが4極の磁極を造るとすれ
ば、それに対応して回転子では第9図の実線矢印に示す
方向に起電力を発生し、それが4極巻線として働らく。
Figure 9, like Figure 8, shows a dual-purpose system in which the rotor winding is used both as an excitation winding and as a field winding.
While FIG. 8 shows an example of single-layer winding, FIG. 9 shows an example of two-layer winding. The winding arrangement is based on Patent Application No. 19968 filed in 1982.
No. 6, the windings 55 are arranged in a three-phase double star connection. However, windings 57, 58 and winding 59
and 60 are arranged around the neutral points 63 and 64, but the windings 61 and 62 constituting the other phase are arranged around the neutral point 64 opposite to each other.
and 63. The winding 55 has a winding arrangement in which 57, 60, and 62 make one star-shaped connection, and 58, 59, and 61 make another star-shaped connection, among which the winding 61 for one phase. and 62 are connected in reverse as described above. In FIG. 9, the external connection terminals 65, 66, and 67 of the three-phase windings connected in this way are connected to the AC side terminals of the rectifier 56, and the DC side terminals of the rectifier 56 are connected to the neutral points 63 and 64.
Connect to. Now, if an exciting current is passed through the armature winding in the direction of the solid arrow in Figure 1 and creates four magnetic poles, the rotor will correspond to the direction shown in the solid arrow in Figure 9. It generates an electromotive force, which acts as a 4-pole winding.

それにより整流器56を通して回転子巻線55には点線
矢印で示すような電流を流す。それによつて2極界磁が
造られ、それが回転して電機子巻線には第1図の点線矢
印で示すような起電力を発生し、電流を流すことになる
が、それは2極機として作用することになるのである。
As a result, current flows through the rectifier 56 to the rotor winding 55 as indicated by the dotted arrow. This creates a bipolar field, which rotates and generates an electromotive force in the armature winding as shown by the dotted arrow in Figure 1, causing current to flow. It will act as.

第10図は単相の場合の回転子巻線の配列を示すが、巻
線55と整流器56との関係は第9図の場合と同様であ
る。その状况は昭和58年特許願第199686号に示
される。
FIG. 10 shows the arrangement of the rotor windings in the case of a single phase, and the relationship between the windings 55 and the rectifier 56 is the same as in the case of FIG. 9. The situation is shown in Patent Application No. 199686 filed in 1982.

以上述べてきた本発明の作用効果についてまとめると、
次のようになる。
To summarize the effects of the present invention described above,
It will look like this:

(1)従来公知の例えば特許出願公開昭58−2245
49号とくらべると、その優劣がわかるが、この公知例
では変成器として電圧巻線と電流巻線をその一次巻線と
し、二次巻線と合せて、三巻線変成器を接続中に持たな
ければならない。これに対し、本発明では簡単な変流器
だけで良い。
(1) Conventionally known, for example, patent application published in 1982-2245
Comparing with No. 49, you can see its superiority and inferiority, but in this known example, the voltage winding and current winding are used as the primary winding of the transformer, and together with the secondary winding, a three-winding transformer is connected. Must have. In contrast, the present invention requires only a simple current transformer.

更に公知の上記特許出願公開昭58−224549号で
は三巻線変成器の電圧巻線に直列にリアクトルを插入し
ているが、これに対応して本発明では第1図や第4図の
リアクトル16、17、18やコンデンサー38、39
、40が接続される。
Furthermore, in the well-known patent application publication No. 58-224549, a reactor is inserted in series with the voltage winding of a three-winding transformer. 16, 17, 18 and capacitors 38, 39
, 40 are connected.

このように本発明の装置は上記公知の方式とくらべて明
らかに簡略化する。
The device according to the invention is thus clearly simplified compared to the known systems mentioned above.

(2)上に述べたように公知の特許出願公開昭58−2
24549号にくらべて三巻線変成器が変流器2に簡略
化されるため、その装置として簡略化された電圧巻線分
だけ全体装置の効率が向上する。
(2) As mentioned above, the publicly known patent application was published on 1982-2.
Compared to No. 24549, the three-winding transformer is simplified to the current transformer 2, so the efficiency of the entire device is improved by the voltage winding that is simplified.

(3)第4図や第5図に示されたコンデンサー接続の場
合にはその電機子反作用により必要な無負荷誘導起電力
を小さくしうるし、結局その励磁電力を節約しうるので
電機子巻線の寸法を節約しうるし、効率も向上する。
(3) In the case of the capacitor connection shown in Figures 4 and 5, the required no-load induced electromotive force can be reduced due to the armature reaction, and the excitation power can be saved, so the armature winding The dimensions can be saved and the efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的電気接続図例であり、その中、
固定子電機子巻線関連の電気接続図を示し、第2図及び
第3図はそれぞれ第1図の電機子巻線の中の一相分巻線
の具体的接続図例を示す。第4図は第1図とは別の具体
的な本発明の電気接続図例であり、これも固定子電機子
巻線関連の電気接続図例である。第5図は本発明を単相
機に適用させた具体的電気接続図例であり、これも亦固
定子電機子巻線関連の電気接続図である。第6図は本発
明に用いられる部分図例であり、回転子巻線に関する図
例である。第7図は回転子巻線の配列図例が示され、本
発明の固定子と共に用いうる回転子の例であり、導体が
入れられる溝を示す。第8図は第7図における溝中の巻
線導体の配列図例であり、これも本発明の固定子と共に
用いうるものである。第9図及び第10図も本発明の固
定子と共に用いうる回転子巻線の接続図例を示す。 次に図の主要な部分をあらわす符号には次のようなもの
がある。 1:変流器一次巻線、 2:変流器、 3:電機子巻線
、 4、5、6:電機子巻線3の外部接続端子、 7、
8、9:外部接続電線、 10、11、12:変流器2
の二次巻線、 13、14、15:変流器2の二次巻線
端子、 16、17、18:リアクチブ素子(リアクト
ル)、 19、20、21:リアクチブ素子の端子、 
22、23、24:整流器、 25、26、27、28
、29、30:電機子巻線3の各相中間端子、31:電
機子巻線3の中性点、32、33、34:三相電機子巻
線3を構成する各相の電機子巻線、 35:可飽和リア
クトル、 36:自動電圧調整器、 37:直流励磁巻
線、 38、39、40:コンデンサー、 41:交流
母線、 42:制御装置、 43:励磁巻線、 44:
制動巻線、 45:界磁巻線、 46:整流器、47、
48、49、50:巻線回路、 51、52、53、5
4:整流器、 55:回転子巻線、56:整流器、 5
7、58、59、60、61、62:回転子巻線55を
構成する各相の巻線、63、64:回転子巻線55の中
性点、 65、66、67:回転子三相巻線55の外部
接続端子。
FIG. 1 is an example of a specific electrical connection diagram of the present invention, in which:
An electrical connection diagram related to the stator armature winding is shown, and FIGS. 2 and 3 each show a specific example of a connection diagram of a one-phase winding in the armature winding of FIG. 1. FIG. 4 is a specific example of an electrical connection diagram of the present invention different from FIG. 1, and this is also an example of an electrical connection diagram related to stator armature windings. FIG. 5 is a specific example of an electrical connection diagram in which the present invention is applied to a single-phase machine, and this is also an electrical connection diagram related to stator armature windings. FIG. 6 is an example of a partial diagram used in the present invention, and is an example of a diagram related to rotor windings. FIG. 7 shows an example arrangement of rotor windings, which is an example of a rotor that can be used with the stator of the present invention, and shows the grooves in which the conductors are placed. FIG. 8 is an example of the arrangement of the winding conductors in the grooves in FIG. 7, which can also be used with the stator of the present invention. FIGS. 9 and 10 also show examples of connections for rotor windings that can be used with the stator of the present invention. Next, there are the following symbols that represent the main parts of the diagram. 1: Current transformer primary winding, 2: Current transformer, 3: Armature winding, 4, 5, 6: External connection terminal of armature winding 3, 7,
8, 9: External connection wire, 10, 11, 12: Current transformer 2
13, 14, 15: Secondary winding terminals of current transformer 2, 16, 17, 18: Reactive element (reactor), 19, 20, 21: Terminals of reactive element,
22, 23, 24: Rectifier, 25, 26, 27, 28
, 29, 30: Intermediate terminal of each phase of armature winding 3, 31: Neutral point of armature winding 3, 32, 33, 34: Armature winding of each phase constituting three-phase armature winding 3 line, 35: saturable reactor, 36: automatic voltage regulator, 37: DC excitation winding, 38, 39, 40: capacitor, 41: AC bus, 42: control device, 43: excitation winding, 44:
Brake winding, 45: Field winding, 46: Rectifier, 47,
48, 49, 50: Winding circuit, 51, 52, 53, 5
4: Rectifier, 55: Rotor winding, 56: Rectifier, 5
7, 58, 59, 60, 61, 62: Windings of each phase constituting the rotor winding 55, 63, 64: Neutral point of the rotor winding 55, 65, 66, 67: Rotor three phases External connection terminal for winding 55.

Claims (1)

【特許請求の範囲】[Claims] その一次巻線が電機子巻線の外部接続端子と外部接続電
線に接続された変流器の二次巻線端子と上記電機子巻線
の外部接続端子に接続されたリアクチブ素子端子とを接
続して、変流器二次巻線とリアクチブ素子の両者が整流
器に対して並列になる用に接続され、この整流器を経て
上記電機子巻線の各層中間端子間へ電気接続するように
配列し、これによって変流器二次巻線からとリアクチブ
素子経由で上記外部接続端子から並列的に整流器を経て
上記電機子巻線に電流を流すようにした回転電気機械の
構造
The primary winding connects the external connection terminal of the armature winding, the secondary winding terminal of the current transformer connected to the external connection wire, and the reactive element terminal connected to the external connection terminal of the armature winding. Then, both the current transformer secondary winding and the reactive element are connected in parallel to a rectifier, and are arranged so that an electrical connection is made between the intermediate terminals of each layer of the armature winding through the rectifier. This is a structure of a rotating electrical machine in which current flows in parallel from the current transformer secondary winding, via the reactive element, from the external connection terminal, through the rectifier, and into the armature winding.
JP59191990A 1984-09-13 1984-09-13 Structure of rotary electric machine Pending JPS6169359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191990A JPS6169359A (en) 1984-09-13 1984-09-13 Structure of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191990A JPS6169359A (en) 1984-09-13 1984-09-13 Structure of rotary electric machine

Publications (1)

Publication Number Publication Date
JPS6169359A true JPS6169359A (en) 1986-04-09

Family

ID=16283781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191990A Pending JPS6169359A (en) 1984-09-13 1984-09-13 Structure of rotary electric machine

Country Status (1)

Country Link
JP (1) JPS6169359A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017643A (en) * 1973-06-14 1975-02-25
JPS5017644A (en) * 1973-06-14 1975-02-25
JPS58224549A (en) * 1982-06-23 1983-12-26 Fukuo Shibata Structure of rotary electric machine
JPS59110356A (en) * 1982-12-11 1984-06-26 Fukuo Shibata Structure of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017643A (en) * 1973-06-14 1975-02-25
JPS5017644A (en) * 1973-06-14 1975-02-25
JPS58224549A (en) * 1982-06-23 1983-12-26 Fukuo Shibata Structure of rotary electric machine
JPS59110356A (en) * 1982-12-11 1984-06-26 Fukuo Shibata Structure of rotary electric machine

Similar Documents

Publication Publication Date Title
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
US4656410A (en) Construction of single-phase electric rotating machine
US4723202A (en) Converter-fed AC machine without damper winding
US20020053851A1 (en) Electric machine, in particular three-phase alternator
JPS6169359A (en) Structure of rotary electric machine
JPS6181157A (en) Structure of rotary electric machine
JPH077999A (en) Ac generator
JPS6139894A (en) Structure of rotary electric machine
JPS5967858A (en) Structure of rotary electric machine
JPS6173558A (en) Structure of rotary electric machine
JPH0528065B2 (en)
JPS60197142A (en) Structure of rotary electric machine
JPS60113641A (en) Rotary electric machine
JPS59110356A (en) Structure of rotary electric machine
JPS61189200A (en) Structure of rotary electric machine
JPS644320Y2 (en)
JP3812782B2 (en) Three-phase AC generator for vehicles
JPH0218038B2 (en)
JPH0723025Y2 (en) AC output combined welding generator
JPH0540698Y2 (en)
JPS6194546A (en) Mechanism for rotary electric machine
RU1798864C (en) Electromachine unit
JPS63114548A (en) Rotary electric machine having brushless rotary machine structure
JPS58224549A (en) Structure of rotary electric machine
JPH0626063Y2 (en) Brushless 4-pole 3-phase generator