JPH0540698Y2 - - Google Patents

Info

Publication number
JPH0540698Y2
JPH0540698Y2 JP1796787U JP1796787U JPH0540698Y2 JP H0540698 Y2 JPH0540698 Y2 JP H0540698Y2 JP 1796787 U JP1796787 U JP 1796787U JP 1796787 U JP1796787 U JP 1796787U JP H0540698 Y2 JPH0540698 Y2 JP H0540698Y2
Authority
JP
Japan
Prior art keywords
output
winding
pole
self
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1796787U
Other languages
Japanese (ja)
Other versions
JPS63127269U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1796787U priority Critical patent/JPH0540698Y2/ja
Publication of JPS63127269U publication Critical patent/JPS63127269U/ja
Application granted granted Critical
Publication of JPH0540698Y2 publication Critical patent/JPH0540698Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、1つの発電機から、溶接出力と交流
出力とを取り出せるようにした交流出力併合溶接
発電機に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an AC output combined welding power generator that allows welding output and AC output to be extracted from one generator.

〔従来の技術〕[Conventional technology]

溶接出力と交流出力との同時使用が可能なエン
ジン駆動発電機がある。エンジンの出力が、溶接
出力のためには充分あるものの、溶接出力と交流
出力との合計の分までは賄えないことがあり、こ
のための対策が考慮されている。
There are engine-driven generators that can be used for welding output and AC output simultaneously. Although the output of the engine is sufficient for the welding output, it may not be able to cover the total of the welding output and the AC output, and countermeasures have been taken into account.

そして、この種の交流出力併合溶接発電機に関
しては、出願人も、従来、いくつかの提案をして
いる(例えば、実願昭60−183549号)。その回路
構成図を第2図に示す。第2図において、20ない
し25は溶接用巻線、26は整流ダイオード、27
はリアクタ、28は溶接出力端子、29は単相交
流出力巻線、30はブレーカ、31は単相交流出
力端子、32は自励出力巻線、33は整流ダイオ
ード、34は半固定抵抗、35は可変抵抗、36
は界磁巻線、37はスリツプリングである。
Regarding this type of AC output combined welding generator, the applicant has also made several proposals in the past (for example, Utility Model Application No. 183549/1983). The circuit configuration diagram is shown in FIG. In Fig. 2, 20 to 25 are welding windings, 26 is a rectifier diode, and 27 is a welding winding.
is a reactor, 28 is a welding output terminal, 29 is a single-phase AC output winding, 30 is a breaker, 31 is a single-phase AC output terminal, 32 is a self-excited output winding, 33 is a rectifier diode, 34 is a semi-fixed resistor, 35 is a variable resistance, 36
is a field winding, and 37 is a slip ring.

自励出力巻線32は、2極成分の出力を生ずる
ように巻かれた(2極巻き)自励出力巻線であ
る。自励出力巻線32の電圧は、整流ダイオード
33で整流され、半固定抵抗34、可変抵抗35
で制御された後、スリツプリング37を経て界磁
巻線36に供給される。可変抵抗35は溶接電流
の調整を行うものであり、半固定抵抗34は、最
大溶接出力を定めるためのものである。界磁巻線
36が発生する磁束により、溶接用巻線20〜2
5(6極巻き)および単相交流出力巻線29(2
極巻き)に電圧が誘起される。溶接用巻線20〜
25に誘起された電圧は、整流ダイオード26で
整流されリアクタ27を経た後、溶接出力端子2
8より溶接出力として取り出される。また、単相
交流出力巻線29に誘起された電圧は、ブレーカ
30を経て単相交流出力端子31から交流出力と
して取り出される。
The self-excited output winding 32 is a self-excited output winding that is wound (two-pole winding) so as to produce a two-pole component output. The voltage of the self-excited output winding 32 is rectified by a rectifier diode 33, a semi-fixed resistor 34, a variable resistor 35
After being controlled by , it is supplied to the field winding 36 via the slip ring 37 . The variable resistor 35 is for adjusting the welding current, and the semi-fixed resistor 34 is for determining the maximum welding output. The magnetic flux generated by the field winding 36 causes the welding windings 20 to 2 to
5 (6-pole winding) and single-phase AC output winding 29 (2
A voltage is induced in the pole winding). Welding winding 20~
The voltage induced in the welding output terminal 25 is rectified by the rectifier diode 26 and passed through the reactor 27.
8 as the welding output. Further, the voltage induced in the single-phase AC output winding 29 is taken out as an AC output from the single-phase AC output terminal 31 via the breaker 30.

上記交流出力併合溶接発電機の固定子の巻線図
の1例を第7図に示す。溶接用巻線は6極に巻か
れており、単相交流出力巻線は2極に巻かれてい
る。自励出力巻線32も、前述したように2極に
巻かれている。各巻線の途中に入れられた数字
は、該当するスロツトに挿入されている導体数を
表している。単相交流出力巻線29で、挿入する
導体数がスロツトによつて6本、8本、12本と異
ならせてある理由は、単相交流出力の波形を良く
するためである。
An example of a winding diagram of the stator of the AC output combined welding generator is shown in FIG. The welding winding is wound around six poles, and the single-phase AC output winding is wound around two poles. The self-excited output winding 32 is also wound into two poles as described above. The number inserted in the middle of each winding represents the number of conductors inserted into the corresponding slot. The reason why the number of conductors inserted in the single-phase AC output winding 29 is varied from 6 to 8 and 12 depending on the slot is to improve the waveform of the single-phase AC output.

上記交流出力併合溶接発電機の回転子を、第3
図、第4図に示す。第3図と第4図との違いは、
補極9,10の極性の相違にある。第3図の極性
は溶接出力が無負荷時の極性であり、第4図の極
性は溶接出力が負荷時の極性である。
The rotor of the above AC output combined welding generator is
It is shown in Fig. 4. The difference between Figure 3 and Figure 4 is
This is due to the difference in polarity between the commutating poles 9 and 10. The polarity in FIG. 3 is the polarity when the welding output is under no load, and the polarity in FIG. 4 is the polarity when the welding output is under load.

第3図、第4図において、回転子1には溝2な
いし7が設けられ、回転子1の中心部にはシヤフ
ト8が取付けられている。溝4と5及び溝6と7
によつて補極9及び10が形成されている。溝4
と2との間に界磁巻線36が巻回され、同図図示
の方向に流れる界磁電流により磁極11にはN極
が発生する。以下同様に、溝2と6との間に巻回
された界磁巻線36により磁極12はS極とな
り、溝7と3との間に巻回された界磁巻線36に
より磁極13はS極となり、溝3と5との間に巻
回された界磁巻線36により磁極14はN極とな
る。
3 and 4, the rotor 1 is provided with grooves 2 to 7, and a shaft 8 is attached to the center of the rotor 1. As shown in FIGS. Grooves 4 and 5 and Grooves 6 and 7
The commutating poles 9 and 10 are formed by. Groove 4
A field winding 36 is wound between and 2, and a north pole is generated in the magnetic pole 11 by the field current flowing in the direction shown in the figure. Similarly, the field winding 36 wound between grooves 2 and 6 turns the magnetic pole 12 into an S pole, and the field winding 36 wound between grooves 7 and 3 turns the magnetic pole 13 into an S pole. The magnetic pole 14 becomes an S pole, and the field winding 36 wound between the grooves 3 and 5 causes the magnetic pole 14 to become an N pole.

補極9,10には界磁巻線が巻回されていない
が、その極性は発電機の負荷状態によつて次のよ
うに変化する。
Although no field winding is wound around the commutating poles 9 and 10, the polarity thereof changes as follows depending on the load condition of the generator.

溶接出力が無負荷時には、極性は第3図のよう
になる。この時、N極の磁極11→磁極11と固
定子(図示せず)との間隙→固定子→固定子と補
極9との間隙→補極9→N極の磁極11の経路の
磁気回路により、またN極の磁極14→磁極14
と固定子との間隙→固定子→固定子と補極9との
間隙→補極9→N極の磁極14の経路の磁気回路
により、第3図図示のように、補極9はS極に磁
化される。同様にして、補極9と対をなす補極1
0は、N極に磁化される。従つて、第3図に示さ
れる回転子1は、交互に異極を有する6極回転子
となつている。
When the welding output is under no load, the polarity is as shown in Figure 3. At this time, the magnetic circuit follows the path of N magnetic pole 11 → gap between magnetic pole 11 and stator (not shown) → stator → gap between stator and commutator 9 → commutator 9 → N pole magnetic pole 11 Accordingly, the magnetic pole 14 of the N pole → the magnetic pole 14
Due to the magnetic circuit of the path of the gap between the stator and the stator → the stator → the gap between the stator and the commutator 9 → the commutator 9 → the N pole magnetic pole 14, the commutator 9 becomes the S pole as shown in Figure 3. magnetized. Similarly, the commutator 1 paired with the commutator 9
0 is magnetized to the north pole. Therefore, the rotor 1 shown in FIG. 3 is a six-pole rotor having alternately different poles.

溶接出力が負荷時には、回転子の極性は第4図
のようになる。この時は、発電機に流れる溶接電
流により電機子反作用が生じる。電機子反作用の
様子を第5図に示すが、該電機子反作用に基づく
起磁力により、補極9は実質上N極になり、また
補極10はS極になる。即ち、大きな溶接電流が
電機子に流れることにより、電機子反作用による
起磁力で補極9,10の極性がそれぞれ反転させ
られる。これにより第4図の回転子1は3つの連
続するN極と3つの連続するS極との凸極型回転
子となり、見掛け上2極回転子となる。従つて2
極巻きである単相交流出力巻線29は、該2極回
転子によつてよく誘導される形となり、一般的に
溶接出力負荷時に溶接電流が流れることにより生
じる単相交流電圧の低下を、補うことが出来る。
これは、見掛け上、界磁磁束における2極成分が
増加されるからである。
When the welding output is a load, the polarity of the rotor is as shown in FIG. At this time, an armature reaction occurs due to the welding current flowing to the generator. The state of the armature reaction is shown in FIG. 5, and due to the magnetomotive force based on the armature reaction, the commutative pole 9 becomes substantially the north pole, and the commutative pole 10 becomes the south pole. That is, when a large welding current flows through the armature, the polarity of the commutating poles 9 and 10 is reversed by the magnetomotive force caused by the armature reaction. As a result, the rotor 1 in FIG. 4 becomes a convex-pole rotor with three consecutive north poles and three consecutive south poles, and appears to be a two-pole rotor. Therefore 2
The pole-wound single-phase AC output winding 29 is well-induced by the two-pole rotor, and generally reduces the drop in single-phase AC voltage caused by the flow of welding current during welding output load. It can be supplemented.
This is because the two-pole component in the field magnetic flux is apparently increased.

第5図は溶接用巻線の電機子反作用の起磁力に
よる磁束分布説明図であり、描かれている磁力線
は、それぞれの相の電流がピークになつた時のも
のを表している。U相電流ピーク時において、回
転子1が第5図図示の位置にある時、補極9,1
0に対する電機子反作用は、図示されている磁力
線の状況から明らかなように、最も大きい。この
時、補極9,10は、固定子に設けられたスロツ
ト#34,#16の近傍に位置しており、溶接無負荷
時にはS極であつた補極9は反作用起磁力によつ
てNに磁化され、溶接無負荷時にはN極であつた
補極10はSに磁化される。即ち、溶接出力負荷
時においては、磁極14,9,11は共にN極、
磁極12,10,13は共にS極となり、見掛け
上回転子1は2極回転子となる。
FIG. 5 is an explanatory diagram of the magnetic flux distribution due to the magnetomotive force of the armature reaction of the welding winding, and the drawn lines of magnetic force represent those when the current in each phase reaches its peak. When the rotor 1 is in the position shown in FIG. 5 at the time of the U-phase current peak,
The armature reaction toward 0 is the largest, as is clear from the situation of the magnetic field lines shown. At this time, the commutative poles 9 and 10 are located near the slots #34 and #16 provided in the stator, and the commutative pole 9, which was the S pole when welding was not loaded, is turned to the N pole by the reaction magnetomotive force. The commutating pole 10, which was a north pole during no-load welding, is magnetized to an south pole. That is, during welding output load, the magnetic poles 14, 9, and 11 are all N poles,
The magnetic poles 12, 10, and 13 are all S poles, and the rotor 1 appears to be a two-pole rotor.

以上はU相の電流がピーク時について説明した
が、V相、W相がピークの場合も全く同様であ
り、溶接出力負荷時においては、各補極9,10
の極性は反転させられ、回転子1は、見掛け上
N,Sの2極回転子として動作する。
The above explanation is for when the U-phase current is at its peak, but the same applies when the V-phase and W-phase currents are at their peak.
The polarity of the rotor 1 is reversed, and the rotor 1 apparently operates as a two-pole rotor of N and S.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、前記した交流出力併合溶接発電
機には、自励出力巻線は2極巻きのもののみであ
つた。そのため、2極巻きの形となつている自励
出力巻線に誘起される電圧は、上記の2極巻きの
単相交流出力巻線29に誘起される電圧と同じよ
うな振る舞いをした。即ち、溶接無負荷時には溶
接電流による電機子反作用がないので、回転子は
主として6極として振る舞うととなり、2極成分
はその分減殺されることになるために、自励出力
巻線の無負荷電圧が低いという問題点があつた。
However, in the above-mentioned AC output combined welding generator, the self-excited output winding was only a two-pole winding. Therefore, the voltage induced in the two-pole self-excited output winding behaved in the same manner as the voltage induced in the two-pole single-phase AC output winding 29 described above. In other words, during no-load welding, there is no armature reaction due to the welding current, so the rotor primarily behaves as six poles, and the two-pole component is reduced by that amount. There was a problem with low voltage.

そして、回転子は、溶接出力負荷時において2
極成分が増大する構成となつているので、このよ
うな構成ではなく完全な2極の回転子を用いた場
合に比べると、自励出力巻線の電圧変動率が必ず
しも充分ではなく、単相交流出力の電圧変動率が
低下するという問題点があつた。
And the rotor is 2 at the time of welding output load.
Since the configuration is such that the polar component increases, the voltage fluctuation rate of the self-excited output winding is not necessarily sufficient compared to when a complete two-pole rotor is used instead of this configuration, and single-phase There was a problem that the voltage fluctuation rate of AC output decreased.

自励出力巻線を6極巻きのもののみにすると、
電圧変動率が向上するとか溶接無負荷電圧が上昇
する等の点では改善されるものの、2極巻きの時
にはなかつた別の新たな問題点が生じていた。例
えば、エンジン出力の上昇カーブと自励出力の上
昇カーブとがうまくマツチングせず、オーバー・
ロードの状態になることがあるとか、或いは自励
出力巻線を構成するための巻線数が多くなるとい
つた問題点である。
If the self-excited output winding is only a 6-pole winding,
Although improvements were made in terms of an improvement in the voltage fluctuation rate and an increase in welding no-load voltage, other new problems that did not exist when using two-pole winding occurred. For example, the rising curve of engine output and the rising curve of self-excited output may not match well, resulting in an overflow.
Problems include the possibility of a load condition or the increase in the number of windings required to form the self-excited output winding.

本考案は、以上の如き問題点に鑑みてなされた
ものである。
The present invention has been made in view of the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するため、本考案では、2極
巻きの自励出力巻線のみにした時および6極巻き
の自励出力巻線のみにした時の短所を抑え長所を
取り入れるべく、2極巻きの自励出力巻線の他に
6極巻きの自励出力巻線を適量設け、これらの整
流出力を並列合成して界磁巻線に供給することと
し、次のような構成とした。
In order to solve the above-mentioned problems, in this invention, in order to suppress the disadvantages of using only 2-pole self-excited output windings and only 6-pole self-excited output windings, we have developed a 2-pole self-excited output winding. In addition to the 6-pole self-exciting output winding, an appropriate number of 6-pole self-exciting output windings were provided, and their rectified outputs were combined in parallel and supplied to the field winding, with the following configuration.

即ち、6極巻きの溶接用巻線と2極巻きの単相
交流出力巻線と2極巻きの自励出力巻線とが巻回
された固定子と、該自励出力巻線の整流出力によ
つて付勢される界磁巻線が巻回されている凸極型
界磁回転子とを備えたエンジン駆動の交流出力併
合溶接発電機において、6極巻きの第2の自励出
力巻き線を固定子に設け、該第2の自励出力巻線
の整流出力と前記自励出力巻線の整流出力を並列
合成した出力によつて前記界磁巻線を付勢する構
成とした。
That is, a stator is wound with a six-pole welding winding, a two-pole single-phase AC output winding, and a two-pole self-excited output winding, and a rectified output of the self-excited output winding. In an engine-driven AC output combined welding generator having a convex-pole field rotor wound with a field winding energized by A wire is provided in the stator, and the field winding is energized by an output obtained by parallel synthesis of the rectified output of the second self-excited output winding and the rectified output of the self-excited output winding.

〔実施例〕〔Example〕

第1図に、本考案の実施例にかかわる交流出力
併合溶接発電機の回路構成図を示す。第6図に本
考案の実施例における固定子の巻線図を示す。第
1図において、第2図と同じ符号のものは、第2
図と同じものをさす。そして、32′は自励出力
巻線、33′は整流ダイオードである。
FIG. 1 shows a circuit configuration diagram of an AC output combined welding generator according to an embodiment of the present invention. FIG. 6 shows a winding diagram of a stator in an embodiment of the present invention. In Figure 1, the same numbers as in Figure 2 are the same as those in Figure 2.
Refers to the same thing as shown in the figure. 32' is a self-excited output winding, and 33' is a rectifier diode.

第2図に示す従来のものと異なる点は、新たに
自励出力巻線32′と該自励出力巻線32′の出力
を整流する整流ダイオード33′を設け、その整
流出力を整流ダイオード33の整流出力と並列合
成した点である。ここに自励出力巻線32′は、
第6図の巻線図からも分かるように、6極成分の
出力を生ずるように巻かれた(6極巻き)もので
ある。その巻線数は、自励出力巻線32の出力と
自励出力巻線32′の出力を並列合成した場合に
おいて、前述した6極巻きの短所(エンジン出力
の上昇カーブと自励出力の上昇カーブとがマツチ
ングせずオーバー・ロードを起こすとか、6極巻
きのみとすれば巻線数が多くなつてしまうとかと
いつた点)はあまり顕著には出ず、一方、電圧変
動率が少ないとか溶接無負荷電圧が高くなるとい
つた長所は出るように、2極巻きの自励出力巻線
32の出力の大きさとも勘案しつつ、適量に選定
する。なお、必ずしも回転子の全周にわたつてま
んべんなく施す必要はない。
The difference from the conventional one shown in FIG. 2 is that a self-excited output winding 32' and a rectifying diode 33' for rectifying the output of the self-excited output winding 32' are newly provided, and the rectified output is connected to the rectifying diode 33. This is the point that is combined in parallel with the rectified output of . Here, the self-excited output winding 32' is
As can be seen from the winding diagram in FIG. 6, it is wound so as to produce a six-pole component output (six-pole winding). When the output of the self-excited output winding 32 and the output of the self-excited output winding 32' are combined in parallel, the number of windings will be (The curves do not match and overload occurs, and if only 6 pole windings are used, the number of windings increases) are not so noticeable, but on the other hand, the voltage fluctuation rate is small. An appropriate amount is selected while taking into consideration the output size of the two-pole self-excited output winding 32 so that the advantages of increasing the welding no-load voltage become higher. Note that it is not necessarily necessary to apply the coating evenly over the entire circumference of the rotor.

このように構成された交流出力併合溶接発電機
は、次のように動作する。自励出力巻線32(2
極巻き)、自励出力巻線32′(6極巻き)の出力
は、それぞれ整流ダイオード33,33′によつ
て整流され、並列接続により合成される。2種の
巻き方の自励出力巻線の出力が合成されるから、
その合成出力による界磁巻線36の励磁は、例え
ば、2極巻きの自励出力巻線32の出力による励
磁では不都合を生ずる時には、6極巻の自励出力
巻線32′の出力がそれを補うように効くという
具合に行われる。界磁巻線36が生ずる磁束によ
り溶接用巻線20ないし25及び単相交流出力巻
線29に電圧が誘起され、それぞれ溶接出力、交
流出力が取り出される。
The AC output combined welding generator configured as described above operates as follows. Self-excited output winding 32 (2
The outputs of the self-excited output winding 32' (six-pole winding) are rectified by rectifier diodes 33 and 33', respectively, and combined by parallel connection. Since the outputs of the self-excited output windings with two winding methods are combined,
The field winding 36 is excited by the combined output, for example, when excitation by the output of the two-pole self-exciting output winding 32 causes a problem, the output of the six-pole self-exciting output winding 32' is It is done in such a way that it works to compensate for. Voltage is induced in the welding windings 20 to 25 and the single-phase AC output winding 29 by the magnetic flux generated by the field winding 36, and welding output and AC output are respectively taken out.

〔考案の効果〕[Effect of idea]

以上述べた如く、本考案によれば、界磁巻線3
6は、2極巻きの自励出力巻線32からの出力に
6極巻きの自励出力巻線32′からの出力を適度
な大きさで並列合成したもので付勢するので、
各々の出力のみの時には目立つていた問題点は解
消され、交流出力の電圧変動率は良くなり、溶接
無負荷電圧は高くなる。また、6極巻きの自励出
力巻線32′の巻線は、それによる効果を勘案し
つつ適量巻けばよいから、いたずらに巻線数が多
くなつてしまうこともない。
As described above, according to the present invention, the field winding 3
6 is energized by the parallel combination of the output from the two-pole self-excited output winding 32 and the output from the six-pole self-excited output winding 32' in an appropriate size.
The problems that were noticeable when only each output was used are resolved, the voltage fluctuation rate of the AC output is improved, and the welding no-load voltage becomes higher. In addition, since the six-pole self-excited output winding 32' may be wound in an appropriate amount while taking into account its effects, the number of windings will not increase unnecessarily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図…本考案の実施例にかかわる交流出力併
合溶接発電機の回路構成図、第2図…従来の交流
出力併合溶接発電機の回路構成図、第3図、第4
図…回転子の磁極の説明図、第5図…溶接用巻線
の電機子反作用の起磁力による磁束分布説明図、
第6図…本考案の実施例における固定子の巻線
図、第7図…従来例における固定子の巻線図。 図において、1は回転子、2ないし7は溝、
9,10は補極、11ないし14は磁極、20な
いし25は溶接用巻線、26は整流ダイオード、
27はリアクタ、28は溶接出力端子、29は単
相交流出力巻線、30はブレーカ、31は単相交
流出力端子、32,32′は自励出力巻線、33,
33′は整流ダイオード、34は半固定抵抗、3
5は可変抵抗、36は界磁巻線、37はスリツプ
リングである。
Fig. 1...Circuit configuration diagram of an AC output combined welding generator according to an embodiment of the present invention, Fig. 2...Circuit configuration diagram of a conventional AC output combined welding generator, Figures 3, 4.
Figure...Explanatory diagram of the magnetic poles of the rotor, Figure 5...Explanatory diagram of the magnetic flux distribution due to the magnetomotive force of the armature reaction of the welding winding,
FIG. 6: A winding diagram of a stator in an embodiment of the present invention. FIG. 7: A winding diagram of a stator in a conventional example. In the figure, 1 is a rotor, 2 to 7 are grooves,
9 and 10 are commutating poles, 11 to 14 are magnetic poles, 20 to 25 are welding windings, 26 is a rectifier diode,
27 is a reactor, 28 is a welding output terminal, 29 is a single-phase AC output winding, 30 is a breaker, 31 is a single-phase AC output terminal, 32, 32' are self-excited output windings, 33,
33' is a rectifier diode, 34 is a semi-fixed resistor, 3
5 is a variable resistor, 36 is a field winding, and 37 is a slip ring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 6極巻きの溶接用巻線と2極巻きの単相交流出
力巻線と2極巻きの自励出力巻線とが巻回された
固定子と、該自励出力巻線の整流出力によつて付
勢される界磁巻線が巻回されている凸極型界磁回
転子とを備えたエンジン駆動の交流出力併合溶接
発電機において、6極巻きの第2の自励出力巻線
を固定子に設け、該第2の自励出力巻線の整流出
力と前記自励出力巻線の整流出力を並列合成した
出力によつて前記界磁巻線を付勢するようにした
ことを特徴とする交流出力併合溶接発電機。
A stator is wound with a 6-pole welding winding, a 2-pole single-phase AC output winding, and a 2-pole self-excited output winding, and the rectified output of the self-excited output winding In an engine-driven AC output combined welding generator equipped with a convex-pole field rotor around which a field winding is energized, the second self-excited output winding has a six-pole winding. The field winding is provided in the stator, and the field winding is energized by an output that is a parallel combination of the rectified output of the second self-excited output winding and the rectified output of the self-excited output winding. AC output combined welding generator.
JP1796787U 1987-02-10 1987-02-10 Expired - Lifetime JPH0540698Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1796787U JPH0540698Y2 (en) 1987-02-10 1987-02-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1796787U JPH0540698Y2 (en) 1987-02-10 1987-02-10

Publications (2)

Publication Number Publication Date
JPS63127269U JPS63127269U (en) 1988-08-19
JPH0540698Y2 true JPH0540698Y2 (en) 1993-10-15

Family

ID=30811211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1796787U Expired - Lifetime JPH0540698Y2 (en) 1987-02-10 1987-02-10

Country Status (1)

Country Link
JP (1) JPH0540698Y2 (en)

Also Published As

Publication number Publication date
JPS63127269U (en) 1988-08-19

Similar Documents

Publication Publication Date Title
EP0425132A1 (en) Alternating current generator
JP2001327137A (en) Alternator for vehicle
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
US5796233A (en) Multiple-stator induction synchronous motor
EP1109300B1 (en) Automotive alternator
JPS61167359A (en) Alternating current generator
US20050006973A1 (en) Twin coil claw pole rotor with five-phase stator winding for electrical machine
JPH0540698Y2 (en)
JPS6146149A (en) Inductor type brushless generator
JPH033461B2 (en)
JPH0723025Y2 (en) AC output combined welding generator
JPH0528064B2 (en)
JPH0739334Y2 (en) AC output combined welding generator
JP2753721B2 (en) Brushless self-excited synchronous generator
JPH0531379B2 (en)
RU1798864C (en) Electromachine unit
JPH0528065B2 (en)
JPH0424782Y2 (en)
JPH0817560B2 (en) Brushless generator
JP2000134889A (en) Engine-welding machine
JPH061971B2 (en) Brushless generator
JPH0626063Y2 (en) Brushless 4-pole 3-phase generator
JPS63117644A (en) Brushless generator
JPS61231855A (en) Brushless 4-pole 3-phase generator
JPS59110356A (en) Structure of rotary electric machine