JPS6192461A - Optomagnetic disc device - Google Patents

Optomagnetic disc device

Info

Publication number
JPS6192461A
JPS6192461A JP59214542A JP21454284A JPS6192461A JP S6192461 A JPS6192461 A JP S6192461A JP 59214542 A JP59214542 A JP 59214542A JP 21454284 A JP21454284 A JP 21454284A JP S6192461 A JPS6192461 A JP S6192461A
Authority
JP
Japan
Prior art keywords
light
rod
full
prism
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59214542A
Other languages
Japanese (ja)
Inventor
Masaharu Imura
正春 井村
Hiromichi Ishibashi
広通 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59214542A priority Critical patent/JPS6192461A/en
Priority to KR1019850006440A priority patent/KR890004260B1/en
Priority to US06/772,749 priority patent/US4730297A/en
Priority to DE8585306284T priority patent/DE3581033D1/en
Priority to EP85306284A priority patent/EP0176271B1/en
Publication of JPS6192461A publication Critical patent/JPS6192461A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To improve S/N of a reproducing signal, to attain light weight of a moving part and high-speed access by using a rod prism and applying a metallic film to the reflecting plane. CONSTITUTION:The metallic films 35, 36 are applied to full reflecting planes 14, 15 of the rod prism 13. In rotating the rod prism 13, the phase of P and S components on the full reflecting plane of the rod prism 13 is advanced respectively by phiP, phiS. In general, the reflecting factor is deteriorated at the reflection of the metallic surface, and the said phase difference (phiP-phiS) is known to be smaller than the full reflection, the phase difference on the full reflecting plane of the rod prism by the metallic surface reflection, not by the full reflection, is reduced by applying the metallic film to the full reflection plane of the rod prism and the reflecting light from the recording medium is minimized to be elliptic polarized light (as the elliptic rate of the elliptic polarized light is smaller, transmitted luminous amounts A'x, A'y of the analyzer are equal).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ビームの微少なスポットを記録媒体上に照
射し、磁気光学効果によって偏光面が回転した反射光を
検出することにより、情報を読み出す光磁気ディスク装
置に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention reads information by irradiating a minute spot of a light beam onto a recording medium and detecting reflected light whose polarization plane has been rotated by the magneto-optic effect. The present invention relates to magneto-optical disk devices.

従来例の構成とその問題点 近年、光学的に記録再生のできる光ファイル装置など光
デイスク装置が現われ始めている。
Conventional Structure and Problems In recent years, optical disk devices such as optical file devices that are capable of optical recording and reproduction have begun to appear.

一般に光学的に記録再生するディスク装置は、対物レン
ズを含む光学ヘッドをディスク上のトラックに対し垂直
方向に直線的に移動させるリニア方式と前記光ヘッドを
ある点を中心に回転させるスイングアーム方式に大別さ
れる。
In general, disc devices that perform optical recording and playback are divided into two types: a linear system in which an optical head including an objective lens is moved linearly in a direction perpendicular to the track on the disc, and a swing arm system in which the optical head is rotated around a certain point. Broadly classified.

本発明はこのスイングアーム方式の光磁気ディスク装置
に関するものである。第1図は従来の改良形スイングア
ーム方式の光デイスク装置の構成図である。光ディスク
1は、ディスク回転手段たとえばモータで回転される。
The present invention relates to this swing arm type magneto-optical disk device. FIG. 1 is a block diagram of a conventional improved swing arm type optical disk device. The optical disc 1 is rotated by a disc rotating means, such as a motor.

2は記録トラックのアクセス動作と、トラック追従動作
を同時に行なう回動制御手段である回動アクチュエータ
、Mはその回動中心軸である。3は回動アクチュエータ
と共に回動する回転子で、これは、棒状光導手段である
棒状プリズム4と、平行バネsa、sbが取り付けられ
ている。平行バネ5a、5klの先端部には、先端部材
6を介して、対物レンズ了、フォーカスコイル8が固定
されている。フォーカスコイル8は、フォーカス用磁気
回路(図では省略)のギャップに挿入されている。前記
回動中心軸Mの上部には、半導体レーザ光源、コリメー
タレンズ、分光プリズム、ミラー、光検出器などから成
る光学系が固定してあり、前記回動中心軸Mにそって放
射された光ビームは、棒状プリズム4の一端で全反射さ
れ、棒状プリズムの内部を通り、反対の他端で再び全反
射され、対物レンズ7によって光デイスク10表面に焦
点を絞られ照射される。
Reference numeral 2 denotes a rotation actuator which is rotation control means for simultaneously performing recording track access operation and track following operation, and M is its rotation center axis. Reference numeral 3 denotes a rotor that rotates together with the rotation actuator, to which a rod-shaped prism 4, which is a rod-shaped light guiding means, and parallel springs sa and sb are attached. An objective lens and a focus coil 8 are fixed to the tips of the parallel springs 5a and 5kl via a tip member 6. The focus coil 8 is inserted into a gap in a focus magnetic circuit (not shown). An optical system consisting of a semiconductor laser light source, a collimator lens, a spectroscopic prism, a mirror, a photodetector, etc. is fixed above the rotation center axis M, and the light emitted along the rotation center axis M is fixed. The beam is totally reflected at one end of the rod-shaped prism 4, passes through the inside of the rod-shaped prism, is totally reflected again at the opposite end, and is focused by the objective lens 7 and irradiated onto the surface of the optical disk 10.

光ディスク1からの反射光は、前述とは逆に、棒状プリ
ズム内部を通り、再び回動中心軸Mにそって、前記光学
系へ戻される。このように、光ビームを導く棒状プリズ
ムは、1本の棒からできているため剛性の面から非常に
すぐれ、しかも、棒以外に特別な付属物が無いため、低
慣性であり、高速アクセス動作に非常に有益である。ま
たプリズムを用いることにより反射面では効率の良い全
反射が行なわれ、光効率も良い。棒状プリズムの代りに
中空の光導管を使い、先端にミラーを固定する方法も考
えられるが、剛性の面から光導管の管の肉厚が必要であ
ったり、ミラー取付角度を高精度にするため、複雑な取
付は治具を要したりして、結局大きな慣性を持つことに
なる。これらの点で棒状プリズムは非常に没れている。
Contrary to the above, the reflected light from the optical disk 1 passes through the inside of the rod-shaped prism and is returned to the optical system along the rotation center axis M again. In this way, the rod-shaped prism that guides the light beam has excellent rigidity because it is made of a single rod.Furthermore, since there are no special attachments other than the rod, it has low inertia and can be used for high-speed access operation. is very beneficial. Furthermore, by using a prism, efficient total reflection is performed on the reflecting surface, resulting in good light efficiency. It is also possible to use a hollow light pipe instead of a rod-shaped prism and fix a mirror at the tip, but this would require a thicker light pipe for rigidity, or it would be necessary to set the mirror mounting angle with high precision. , complicated installation may require jigs, resulting in large inertia. At these points, the bar prism is very submerged.

しかしながら、プリズム反射面で全反射を用いる前述の
方法では、光効率の面からは優れているが、偏光方向の
違いを検出することによって再生信号を読取る光磁気デ
ィスク装置においては、諸問題が生じる。
However, although the above-mentioned method using total reflection on a prism reflective surface is superior in terms of optical efficiency, it causes various problems in magneto-optical disk devices that read playback signals by detecting differences in polarization direction. .

以下これらの問題点について説明する。These problems will be explained below.

第2図に前記棒状プリズムを用いた光磁気再生光学系を
示す。半導体レーザ9から発した光は、コリメートレン
ズ10で平行光束となる。11は偏光子で光束を直線偏
光の光とする。12はビームスプリッタで入射光と記録
媒体からの反射光を分離する。偏光子で直線偏光となっ
た光は、ビームスプリッタを通り、(仝状プリズム13
に入射する。この入射光は、全反射面14及び15で反
射され、フォーカスレンズ16により微少スポットにな
って、記録媒体であるディスク17に当る。
FIG. 2 shows a magneto-optical reproducing optical system using the rod-shaped prism. The light emitted from the semiconductor laser 9 is turned into a parallel beam by the collimating lens 10. A polarizer 11 converts the light beam into linearly polarized light. A beam splitter 12 separates incident light and reflected light from the recording medium. The light that has become linearly polarized by the polarizer passes through the beam splitter and passes through the (shaped prism 13)
incident on . This incident light is reflected by the total reflection surfaces 14 and 15, turned into a minute spot by the focus lens 16, and hits the disk 17, which is a recording medium.

この記録媒体の磁化方向に対応して、その偏光面をカー
効果によりθ工あるいは一〇〇回転して反射される。こ
の反射光は、再びフォーカスレンズを通り、棒状プリズ
ムで2回の全反射を行なった後ビームスプリッタ12に
よって分離され、ハーフミラ−18によって2方向に分
割される。分割された光束はそれぞれ検光子19.20
を通り、光検出器21.22に導びかれ電気信号として
取り出される。ここで再生信号は差動検出法によって得
ているが、この検出法を第3図を用いて説明する。第3
図C9dはそれぞれ、第2図における検光子19,20
(7)透過軸方向を示す図で、23は記録媒体に入射す
る光の偏光面の方向を示し、24.26は記録媒体の磁
化の向きにより、それぞれ十〇え、−θエ たけ回転し
た反射光の偏光面の方向を示したものである。
Corresponding to the magnetization direction of the recording medium, the polarization plane is reflected by θ or 100 rotations due to the Kerr effect. This reflected light passes through the focus lens again, undergoes two total reflections at the rod-shaped prism, is separated by the beam splitter 12, and is split into two directions by the half mirror 18. The divided light beams are each analyzed by an analyzer 19.20
The light is guided to photodetectors 21 and 22 and extracted as an electrical signal. Here, the reproduced signal is obtained by a differential detection method, and this detection method will be explained using FIG. 3. Third
Figure C9d shows analyzers 19 and 20 in Figure 2, respectively.
(7) In the diagram showing the transmission axis direction, 23 indicates the direction of the polarization plane of the light incident on the recording medium, and 24 and 26 are rotated by 10 and -θ depending on the direction of magnetization of the recording medium, respectively. This shows the direction of the polarization plane of reflected light.

今、第2図における検光子19の透過軸を第3図aの2
6に示すように記録媒体に入射する光の偏光面に対して
一45°の方向に配置する。一方策2図の検光子20の
透過軸を第3図すのように記録媒体入射光の偏光面に対
し+45°の方向に配置する。このような配置により、
第2図における光検出器21.22により得られる電気
信号はそれぞれ第3図C9dに示すごとく、信号位相が
1800ずれた信号となる。また通常記録媒体には反射
率のムラ、ゴミ等があり、これらの影響によるノイズ成
分は、検光子の有無にかかわらず、検出器21.22で
同じように検出される。例えば、反射率のムラがある場
合第3図c、dの破線。
Now, the transmission axis of the analyzer 19 in Fig. 2 is set to 2 in Fig. 3 a.
As shown in FIG. 6, the recording medium is arranged at an angle of -45° to the polarization plane of the light incident on the recording medium. One solution is to arrange the transmission axis of the analyzer 20 shown in FIG. 2 in a direction of +45° with respect to the polarization plane of the light incident on the recording medium, as shown in FIG. With this arrangement,
The electrical signals obtained by the photodetectors 21 and 22 in FIG. 2 are signals whose signal phases are shifted by 1800, as shown in FIG. 3 C9d. Further, recording media usually have uneven reflectance, dust, etc., and noise components due to these influences are detected in the same way by the detectors 21 and 22 regardless of whether an analyzer is used or not. For example, if there is uneven reflectance, the broken lines in Figure 3 c and d.

で示したノイズ成分によって信号波形は波打つ。The signal waveform is wavy due to the noise component shown in .

第2図に示す光磁気光学系においては、第3図C9dで
示した検出信号の差分を取ることによって、同位相であ
るノイズ成分は相殺され、情報信号;は加算された形と
なって、最終的な再生信号は第3図eのごとく得られ、
従って信号再生のS/N比が向上する効果がある。
In the magneto-optical system shown in FIG. 2, by taking the difference between the detection signals shown in FIG. The final reproduced signal is obtained as shown in Figure 3e,
Therefore, there is an effect of improving the S/N ratio of signal reproduction.

しかしながら、前記棒状プリズムを用いたスイングアー
ム方式においては、棒状プリズムの回動により前記検出
器21.22によって検出される検出信号の直流成分が
各々異なるため、同位相であるノイズ成分は相殺されず
、情報信号のノイズ成分として検出され、信号再生のS
/N比が悪化する。以下第4図および第5図、第6図を
用いて前述のS/N悪化について説明する。棒状プリズ
ム28の座標を第4図の様に定める。全反射面29.3
0はP軸に殆して一46°、46°の角度で切断されて
いる。この棒状プリズム31に光軸32にそって直線偏
光の光33が入射する。この直線偏光の光は、(p、s
)平面において第6図aの様に A=Acos θcoswt = A、  coswt
ム5= A sin θcosWt =人scoswt
で表わされる。(但し、AP I’sは直線偏光33の
(P、S)a分で、θは直線偏光33とP軸のなす角) この直線偏光33が全反射面29に入射し、全反射する
と、直線偏光の各成分の位相がそれぞれOP、、gsだ
けすすむことは一般に知られている。
However, in the swing arm method using the rod-shaped prism, the DC components of the detection signals detected by the detectors 21 and 22 differ depending on the rotation of the rod-shaped prism, so the noise components that are in the same phase are not canceled out. , is detected as a noise component of the information signal, and S of the signal reproduction
/N ratio deteriorates. The aforementioned S/N deterioration will be explained below using FIG. 4, FIG. 5, and FIG. 6. The coordinates of the bar-shaped prism 28 are determined as shown in FIG. Total reflection surface 29.3
0 is cut at an angle of approximately -46°, 46° to the P axis. Linearly polarized light 33 is incident on this rod-shaped prism 31 along an optical axis 32 . This linearly polarized light is (p, s
) plane as shown in Figure 6a, A=Acos θcoswt = A, coswt
M5 = A sin θcosWt = person scoswt
It is expressed as (However, AP I's is the (P, S) a portion of the linearly polarized light 33, and θ is the angle between the linearly polarized light 33 and the P axis.) When this linearly polarized light 33 enters the total reflection surface 29 and is totally reflected, It is generally known that the phase of each component of linearly polarized light advances by OP, . . . gs.

したがって、全反射された光は、もはや直線偏光の光で
はなく、 ム’、=A、cos(wt−、gP) lり、15 =  A 、  cos  (wt −メ
2ブ。 ン    (に!5.ヨシ零ヨメ2ヅ、 )で
表わされる楕円偏光となる。仮りに、プリズムの材質が
屈折率n = 1.5で、入射角45°の全反射である
とするとlP′;3T0.J258!;74°である。
Therefore, the totally reflected light is no longer linearly polarized light, but is expressed as: m', = A, cos (wt-, gP), 15 = A, cos (wt - me2b. It becomes elliptically polarized light expressed as .Yoshi zero Yome 2ヅ, ).If the material of the prism has a refractive index n = 1.5 and total reflection occurs at an incident angle of 45°, then lP';3T0.J258!; 74°.

この全反射が、面30でもおこるため媒体34に入射す
る光は、 ム”p = A 、 cos (wt−2g、 )A亀
=人、cos(wt−2g、) となる。今媒体34でのカー効果を無視したとして、媒
体からの反射光は再び全反射面3Q 、 29で全反射
して、プリズムから放出される。この光は A”、 = A 、 cos (w t−4)、)IP
、=As cos(wt−40,)で表わされる楕円偏
光の光となる。(第6図b)この楕円偏光の光は、ビー
ムスプリッタ12によって分離され、ノ・−フミラー1
Bによって2方向に分割される。分割された光束はそれ
ぞれ検光子19.20を通り、光検出器21.22に導
かれ電気信号としてとり出されるが、記録媒体からの反
射光が前述のように棒状プリズムの回動により楕円偏光
になると、第6図に示すように各光検出器の出力は変動
することになる。第6図においてS軸、P軸は、棒状プ
リズムの座標軸、y軸は棒状プリズムに入射する入射光
の偏光方向を示す軸(棒状プリズムの回動角をθとする
とP軸とy軸のなす角がθとなる。)、またy軸、y軸
は、検光子19.20の透過光軸を示す。いまy軸に平
行に偏光された直線偏光の光Aは前述のように4回の全
反射により楕円偏光ム7となる。この楕円円偏光rの検
光子19.20の透過光は、y軸およびy軸への投射と
考えられるため、光検出器21.22の出力はh′x、
 A/yに比例する。第6図において、Ar<Aアーリ
<A′yとなり、A−<Arである。したがって、棒状
プリズムの回動による楕円偏光の検出信号の直流成分は
光検出器21およユp:22で異なることになる。この
ため、同位相で検出されるノイズ成分は、差動方式にも
かかわらず相殺されず情報信号のノイズ成分として検出
され、信号再生のS/N比が悪化する。
Since this total reflection also occurs on the surface 30, the light incident on the medium 34 becomes: p = A, cos (wt-2g, ) A turtle = person, cos (wt-2g,). Assuming that we ignore the Kerr effect of )IP
, = As cos (wt-40,). (Fig. 6b) This elliptically polarized light is separated by a beam splitter 12, and is separated by a nof mirror 1.
It is divided into two directions by B. Each of the divided light beams passes through an analyzer 19.20, is guided to a photodetector 21.22, and is extracted as an electrical signal.However, as mentioned above, the reflected light from the recording medium is converted into elliptically polarized light by the rotation of the rod-shaped prism. Then, as shown in FIG. 6, the output of each photodetector will fluctuate. In Figure 6, the S-axis and P-axis are the coordinate axes of the rod-shaped prism, and the y-axis is the axis that indicates the polarization direction of the incident light incident on the rod-shaped prism. ), and the y-axis indicates the transmission optical axis of the analyzer 19.20. The linearly polarized light A that is now polarized parallel to the y-axis becomes elliptically polarized light 7 by total reflection four times as described above. Since the transmitted light of this elliptically polarized light r by the analyzer 19.20 is considered to be projected onto the y-axis and the y-axis, the output of the photodetector 21.22 is h'x,
Proportional to A/y. In FIG. 6, Ar<Aari<A'y, and A-<Ar. Therefore, the DC component of the detection signal of the elliptically polarized light due to the rotation of the rod-shaped prism is different between the photodetector 21 and the photodetector 22. Therefore, noise components detected in the same phase are not canceled out despite the differential system and are detected as noise components of the information signal, resulting in a worsening of the S/N ratio of signal reproduction.

このように、棒状プリズムを用いた回動アクチュエータ
は剛性面にすぐれ、かつ軽量となるため、高速アクセス
が容易となるが光磁気ディスク装置にこの方式を導入す
ると情報信号の質の低下という問題点があった。
In this way, a rotary actuator using a rod-shaped prism has excellent rigidity and is lightweight, making high-speed access easy, but when this method is introduced into a magneto-optical disk drive, there is a problem that the quality of the information signal deteriorates. was there.

発明の目的 本発明は高速アクセスが容易に実現でき、しかも情報信
号の質の低下をおさえることのできる光磁気ディスク装
置を実現することを目的としている。
OBJECTS OF THE INVENTION An object of the present invention is to realize a magneto-optical disk device that can easily realize high-speed access and can suppress deterioration in the quality of information signals.

発明の構成 本発明による光デイスク装置は、対物レンズを回動中心
軸を中心に前記トラックを横切る方向に回動制御させる
回動制御手段と、前記回動中心軸に沿って入射する光ビ
ームを前記対物レンズに導びき、さらにディスク面から
の反射光を、前記回動中心軸に戻し、かつその一端は回
動制御手段側に固定され対物レンズ側の他端は自由端と
なっている棒状光導手段から成り、前記棒状光導手段の
光反射面に金属膜を施したものである。
Structure of the Invention The optical disk device according to the present invention includes a rotation control means for controlling the rotation of an objective lens in a direction across the track about the rotation center axis, and a light beam incident along the rotation center axis. A rod-shaped rod that guides the light reflected from the disk surface to the objective lens and returns it to the rotation center axis, and has one end fixed to the rotation control means side and the other end on the objective lens side free. It consists of a light guiding means, and a metal film is applied to the light reflecting surface of the rod-shaped light guiding means.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する、第7図に本実施例における光磁気再生光学系を
示す。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 7 shows a magneto-optical reproducing optical system in this embodiment.

第7図において、棒状プリズムの全反射面14゜16に
金属膜35.36を施したことを除けば、すべて第2図
に示したものと同一である。このように構成された本実
施例の動作について以下説明する。
In FIG. 7, everything is the same as that shown in FIG. 2, except that metal films 35 and 36 are applied to the total reflection surfaces 14 and 16 of the rod-shaped prism. The operation of this embodiment configured in this way will be described below.

棒状プリズム13が回動することにより、その棒状プリ
ズム13の全反射面においてP成分、S成分の位相がそ
れぞれa、、、asだけすすむことは前述したが、一般
に金属表面の反射においては、反射率こそ悪くなるもの
の、前述の位相差(*P−/s)は全反射に比べ、小さ
いことが知られている。本実施例では、棒状プリズムの
全反射面に金属膜を施すことばより、全反射ではなく、
金属表面反射により棒状プリズムの全反射面での位相差
を小さくし、記録媒体からの反射光が楕円偏光になるこ
とを極力おさえることができる。(楕円偏光の楕円率が
小さいほど検光子の透過光量A′よ、A′。
As mentioned above, when the rod-shaped prism 13 rotates, the phases of the P component and the S component advance by a, ... as on the total reflection surface of the rod-shaped prism 13, but in general, in the reflection of a metal surface, the reflection It is known that the above-mentioned phase difference (*P-/s) is smaller than total internal reflection, although the rate is worse. In this example, a metal film is applied to the total reflection surface of the rod-shaped prism, so that total reflection is not achieved.
The metal surface reflection reduces the phase difference on the total reflection surface of the rod-shaped prism, and it is possible to suppress as much as possible the reflected light from the recording medium from becoming elliptically polarized light. (The smaller the ellipticity of elliptically polarized light, the more the amount of light transmitted by the analyzer A'.

が等しくなることは第6図より明らかである。)ここで
本実施例の棒状プリズムの全反射面の代りに金属表面ミ
ラーを固定することも考えられるが、これは前述したご
とく、前記金属表面ミラー取付の剛性、精度の点で本実
施例の棒状プリズムに金属膜を施こす方が、優れている
。また、反射面での反射率の低下も金属の種類を選択す
ることにより、はぼ全反射に近い反射率のものが実現で
きる。
It is clear from FIG. 6 that the values are equal. ) Here, it is possible to fix a metal surface mirror instead of the total reflection surface of the rod-shaped prism of this embodiment, but as mentioned above, this is not possible in this embodiment in terms of the rigidity and accuracy of mounting the metal surface mirror. It is better to apply a metal film to a bar-shaped prism. Furthermore, by selecting the type of metal, it is possible to reduce the reflectance on the reflective surface, thereby achieving a reflectance that is close to total reflection.

以上のように、本実施例によれば、高速アクセスを容易
に実現できる構造を持ち、しかも、それがために情報信
号の質の低下が生じるといったことがない優れた光磁気
ディスク装置を実現することができる。なお前記実施例
では棒状光導手段として台形型のプリズムを用いて説明
したが、平行型のプリズムやこれに類した形状でレーザ
光を透過するものであればなんでもよい。また、反射面
に施こす金属膜もレーザ光の波長により適当に選択でき
る。
As described above, according to this embodiment, it is possible to realize an excellent magneto-optical disk device which has a structure that allows high-speed access to be easily realized, and which does not cause a deterioration in the quality of information signals. be able to. In the above embodiment, a trapezoidal prism is used as the rod-shaped light guiding means, but any parallel prism or similar shape that transmits laser light may be used. Furthermore, the metal film applied to the reflective surface can be appropriately selected depending on the wavelength of the laser beam.

発明の効果 以上の説明から明らかなように本発明は棒状プリズムを
使用し、その反射面に金属膜を施すことにより、回動ア
クチェータ型の光磁気ディスク再生装置において、再生
信号のS/Nの向上及び可動部の軽量化がはかれ、高速
アクセスを実現できるという効果が得られる。
Effects of the Invention As is clear from the above description, the present invention uses a rod-shaped prism and coats its reflective surface with a metal film, thereby improving the S/N ratio of the reproduced signal in a rotary actuator type magneto-optical disk reproducing device. The effect of this is that the weight of the movable parts can be reduced, and high-speed access can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の改良形スイングアーム方式の光磁気デ
ィスク装置の一部切欠斜視図、第2図はその光磁気再生
光学系の構成図、第3図は、光磁気ディスクの再生原理
を説明するだめの図、第4図は棒状プリズムの斜視図、
第5図及び第6図は棒状プリズムを光磁気ディスク再生
に用いた場合の問題点を説明するだめの図、第7図は本
発明の一実施例による光磁気ディスク装置の構成図であ
る。 13・・・・・・棒状プリズム、16・・・・・・対物
レンズ、17・・・・・・光磁気ディスク、19 、2
0・・・・・・検光子、21.22・・・・・・光検出
器、35.36・・・・・・金属膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 (cl、](b)
Fig. 1 is a partially cutaway perspective view of a conventional improved swing arm type magneto-optical disk device, Fig. 2 is a configuration diagram of its magneto-optical reproducing optical system, and Fig. 3 shows the principle of reproducing a magneto-optical disk. Figure 4 is a perspective view of a rod-shaped prism for explanation purposes.
5 and 6 are diagrams for explaining problems when a bar-shaped prism is used for reproducing a magneto-optical disk, and FIG. 7 is a block diagram of a magneto-optical disk device according to an embodiment of the present invention. 13... Rod prism, 16... Objective lens, 17... Magneto-optical disk, 19, 2
0...Analyzer, 21.22...Photodetector, 35.36...Metal film. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 (cl,] (b)

Claims (1)

【特許請求の範囲】[Claims] 同心円状または渦巻き状のトラックを有するディスクの
反射光を集光する対物レンズ、前記対物レンズを回動中
心軸を中心に前記トラックを横切る方向に回動制御させ
る回動制御手段と、前記回動中心軸に沿って入射する光
ビームを前記対物レンズに導き、さらに上記対物レンズ
で集光されたディスク面からの反射光を、前記回動中心
軸に戻し、かつその一端は回動制御手段側に固定され対
物レンズ側の他端は自由端となっている棒状光導手段を
備え、前記棒状光導手段の光反射面に金属膜を施したこ
とを特徴とする光磁気ディスク装置。
an objective lens for condensing reflected light from a disk having concentric or spiral tracks; a rotation control means for controlling the rotation of the objective lens in a direction across the tracks around a rotation center axis; A light beam incident along the central axis is guided to the objective lens, and the reflected light from the disk surface, which is focused by the objective lens, is returned to the rotation center axis, and one end thereof is on the rotation control means side. What is claimed is: 1. A magneto-optical disk device comprising a rod-shaped light guiding means which is fixed to the lens and whose other end on the objective lens side is a free end, and a metal film is applied to a light reflecting surface of the rod-shaped light guiding means.
JP59214542A 1984-09-04 1984-10-12 Optomagnetic disc device Pending JPS6192461A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59214542A JPS6192461A (en) 1984-10-12 1984-10-12 Optomagnetic disc device
KR1019850006440A KR890004260B1 (en) 1984-09-04 1985-09-04 Reproduction equipment for light recording
US06/772,749 US4730297A (en) 1984-09-04 1985-09-04 Retardation compensating light beam guiding system in an optical storage medium drive apparatus
DE8585306284T DE3581033D1 (en) 1984-09-04 1985-09-04 DEVICE FOR DRIVING AN OPTICAL STORAGE MEDIA.
EP85306284A EP0176271B1 (en) 1984-09-04 1985-09-04 Optical storage medium drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214542A JPS6192461A (en) 1984-10-12 1984-10-12 Optomagnetic disc device

Publications (1)

Publication Number Publication Date
JPS6192461A true JPS6192461A (en) 1986-05-10

Family

ID=16657460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214542A Pending JPS6192461A (en) 1984-09-04 1984-10-12 Optomagnetic disc device

Country Status (1)

Country Link
JP (1) JPS6192461A (en)

Similar Documents

Publication Publication Date Title
CA2025311C (en) Optical head
US4451863A (en) Information reproducing apparatus based on opto-magnetic effect
US5119352A (en) Magneto optic data storage read out apparatus and method
JP2738543B2 (en) Optical pickup
JPS6192461A (en) Optomagnetic disc device
JPS6320732A (en) Optical pickup for disk
JPS6220149A (en) Optical head
JP2978269B2 (en) Optical disk drive
JPS6163945A (en) Photomagnetic disk device
JPH0321974B2 (en)
JPS59121637A (en) Magneto-optical recording and reproducing device
JPS62223842A (en) Optical magnetic disk device
JP3061976B2 (en) Inner / outer circumference access optical head
JPH04181525A (en) Optical information recorder/reproducer
JP2579013B2 (en) Light head
JPH11250489A (en) Optical pickup optical system
JPH02185750A (en) Optical pickup
JPS61198458A (en) Method for reproducing magnetooptic information
JPS61104437A (en) Optical head
WO2002089120A1 (en) Apparatuses and methods for directing light beams in an optical recording system
JPS61104435A (en) Optical head
JPH03296939A (en) Optical information writer/reader
JPH07169085A (en) Optical information recorder/reproducer
JPS63157341A (en) Magneto-optical recording/reproducing head
JPS63229646A (en) Magneto-optical disk recording and reproducing device