JPS6163945A - Photomagnetic disk device - Google Patents

Photomagnetic disk device

Info

Publication number
JPS6163945A
JPS6163945A JP59185505A JP18550584A JPS6163945A JP S6163945 A JPS6163945 A JP S6163945A JP 59185505 A JP59185505 A JP 59185505A JP 18550584 A JP18550584 A JP 18550584A JP S6163945 A JPS6163945 A JP S6163945A
Authority
JP
Japan
Prior art keywords
optical
axis
reflecting member
magneto
disk device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59185505A
Other languages
Japanese (ja)
Other versions
JPH0439137B2 (en
Inventor
Hiromichi Ishibashi
広通 石橋
Masaharu Imura
正春 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59185505A priority Critical patent/JPS6163945A/en
Priority to KR1019850006440A priority patent/KR890004260B1/en
Priority to US06/772,749 priority patent/US4730297A/en
Priority to DE8585306284T priority patent/DE3581033D1/en
Priority to EP85306284A priority patent/EP0176271B1/en
Publication of JPS6163945A publication Critical patent/JPS6163945A/en
Publication of JPH0439137B2 publication Critical patent/JPH0439137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To prevent the deterioration of quality of the reproduction signal and to facilitate an easy high-speed access to tracks, by using a wavelength plate provided into a rotary optical axis to compensate the retardation which is caused by the 1st and 2nd reflection members set on a rotary member. CONSTITUTION:A wavelength plate 100 is set on the incident face of an optical conduction member 2 to offset the retardations caused on the reflection faces 2a and 2b of the member 2. The plate 100 has a fast phase axis Fast and a slow axis Slow which are orthogonal to each other. Thus the plate 100 is set on the incident face of the member 2 so that the light passing over the axis P (phase slower than the axis S by delta) of the faces 2a and 2b passes through the axis Fast of the plate 100 and that the light passing through the axis S passes through the axis Slow of the plate 100 respectively. When the phase difference between both axes Fast and Slow is set at 2delta for the plate 100, the retardation is completely eliminated. This avoids the deterioration of quality of the reproduction signal and facilitates an easy high-speed access to the tracks.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高速アクセス機能を有する光磁気ディスク装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magneto-optical disk device having a high-speed access function.

従来例の構成とその問題点 光磁気記録は高密度でしかも書込消去可能な記録方法で
あシ、近年注目を集めている。
Conventional Structures and Problems Magneto-optical recording is a high-density, writable and erasable recording method that has attracted attention in recent years.

第1図に従来の光磁気ディスク装置の側面図を示す。第
1図において、1は対物レンズ、4はレーザー発光源4
a、コリメータレンズ4b、分光素子4c、検光子4e
、受光レンズ4d、受光素子5によって構成される光学
系本体である。10は回転する光磁気ディスク、2oは
光学系本体4ならびに対物レンズをディスクの半径方向
に沿って移動させるトラバースモーターである。光磁気
に限らず光テ゛イスクは一般に記録情報の大きさく数μ
)に比べ面ぶれ、偏心量(数十μ)が大きいため、ディ
スクの回転に伴う記録信号列(トラック)の変動に対物
レンズ1が追従しなければならない。そのため一般の光
デイスク装置においては、対物レンズはバネ材等でに体
に結合されていて、しかもディスクの而ぶれ、偏心方向
に電磁、駆動できるようになっている。しかし、これら
の追従制御系に関する構成は本願に直接関係がないため
詳細については省略する。また光磁気ディスク10上へ
の信号の記録および消去4に用いる外部磁場印加装置等
も、特に説明の必要がないので省略する。
FIG. 1 shows a side view of a conventional magneto-optical disk device. In Fig. 1, 1 is an objective lens, 4 is a laser emission source 4
a, collimator lens 4b, spectroscopic element 4c, analyzer 4e
, a light-receiving lens 4d, and a light-receiving element 5. 10 is a rotating magneto-optical disk, and 2o is a traverse motor that moves the optical system main body 4 and the objective lens along the radial direction of the disk. Not limited to magneto-optical disks, optical disks generally record information in the size of several micrometers.
), the amount of surface runout and eccentricity (several tens of microns) is large, so the objective lens 1 must follow the fluctuations in the recording signal train (track) as the disk rotates. For this reason, in a typical optical disk device, the objective lens is connected to the body using a spring material or the like, and can be electromagnetically driven in the direction of deflection and eccentricity of the disk. However, since the configuration regarding these follow-up control systems is not directly related to the present application, details thereof will be omitted. Further, the external magnetic field applying device used for recording and erasing signals 4 on the magneto-optical disk 10 does not need to be explained, and will therefore be omitted.

以上のように構成された従来の光磁気テ゛イスク装置に
ついてその動作を説明する。
The operation of the conventional magneto-optical disk device configured as described above will be explained.

レーザー発光源4aより発せられた光はコリメータレン
ズ4bで平行光にされた後対物レンズ1で光磁気テ゛イ
スク1o上に集光さjする。元はその後反射して対物レ
ンズ1を再び通り、分光素子4Cによって方向を変えら
れ検光子4e、受光レンズAdi通り受光素子6に達す
る。
The light emitted from the laser light source 4a is collimated by a collimator lens 4b, and then focused by an objective lens 1 onto a magneto-optical disk 1o. The original light is then reflected, passes through the objective lens 1 again, is changed direction by the spectroscopic element 4C, and reaches the light receiving element 6 through the analyzer 4e and the light receiving lens Adi.

光磁気ディスク10上には、磁区の極性の違いによる2
値情報が記録されている。その表面に直線偏光の光が当
たって反射したとすると、その偏光角は磁区の極性によ
ってそれぞれ反対方向に偏光角が変化する。この現象は
カー効果と呼ばれている。カー効果による偏光角の変化
は検光子4eを用いることにより信号として検出するこ
とができる。この様子を第2図に示す。検光子4eはあ
る偏光角の光(図中Wで示した直線の方向に振動する光
)のみが通過できるように作られた光学素子である。今
、検光子4eにおける検光方向(W方向)と検光子4e
に入射する光の偏光方向がある角度をなしているとする
(一般にはカー効果を受けていない入射光の偏光方向0
に対してWは45°の方向に設定されている)。ここで
互いに反対方向にカー効果を受けた光(S、N)が入射
すると、それぞれのW方向投影成分のみが検光子を通過
するから結局偏光角の違いが光の強弱に変換されること
になり、受光素子5で電気信号として取り出すことがで
きる。
On the magneto-optical disk 10, there are two
Value information is recorded. When linearly polarized light hits the surface and is reflected, the polarization angle changes in opposite directions depending on the polarity of the magnetic domain. This phenomenon is called the Kerr effect. The change in polarization angle due to the Kerr effect can be detected as a signal by using the analyzer 4e. This situation is shown in FIG. The analyzer 4e is an optical element made so that only light having a certain polarization angle (light vibrating in the direction of a straight line indicated by W in the figure) can pass through. Now, the analysis direction (W direction) of the analyzer 4e and the analyzer 4e
Suppose that the polarization direction of the incident light is at a certain angle (in general, the polarization direction of the incident light that is not affected by the Kerr effect is 0).
(W is set in the direction of 45°). When light (S, N) subjected to the Kerr effect enters in opposite directions, only the W-direction projected components of each will pass through the analyzer, so the difference in polarization angle will be converted into the strength of the light. Therefore, the light receiving element 5 can extract it as an electrical signal.

ディスク状記録媒体はそのほぼ全面にわたって情報の記
録が可能であるから、テ゛イスク上には数多くの情報セ
クタが存在する。ディスク装置の最すの禾11占はデノ
スク17′1叱j6古曲θrヘ ド9立まf移動させる
ことによシディスク上の任意に場所に記された情報をす
早く読み出せる(アクセスできる)ことにある。しかし
光デイスク装置の場合は光学ヘッドが重たくしかも精密
で複雑な構造をしているため、光学へ、ドを高速に移動
させることは容易ではない。第1図に示しであるのが光
学ヘッドを移動させる一般的な方法で、発光源、受光素
子を含むすべての光学系をトラバースモーターで送って
いる。
Since information can be recorded over almost the entire surface of a disk-shaped recording medium, there are many information sectors on the disk. By moving the disc device's most convenient location, you can quickly read out information written anywhere on the disk (accessible). ) in particular. However, in the case of an optical disk device, the optical head is heavy and has a precise and complicated structure, so it is not easy to move the optical head to the optical head at high speed. The general method for moving the optical head is shown in FIG. 1, in which the entire optical system including the light emitting source and light receiving element is moved by a traverse motor.

アクセス能力の高い光学ヘッドとして分離回動型光学ピ
ックアップを用いた光デイスク装置が既に提案されてい
る。第3図は分離回動型光学ビ。
An optical disk device using a separate rotating optical pickup as an optical head with high access capability has already been proposed. Figure 3 shows a separate rotating optical camera.

クアップを用いた光磁気ディスク装置の側面図を表わす
。なお構造を明らかにするため一部断面図を用いている
。第3図において光学系本体4は第1図のものと全く同
じである。第3図では対物レンズ1と光学系本体4との
間に回動部材3とその上面に取りつけられた互いに平行
に対向する2つの反射面2a 、2bi有する光伝導部
材2が設けられていることが特敵である。さらに回動部
材3の回動軸心は対物レンズ1の中心、光伝導部材2、
光学系本体4を通る光軸のうち光学系本体4と光伝導部
材2を結ぶものと完全に一致していること?特徴として
いる。
1 shows a side view of a magneto-optical disk device using a backup. A partial cross-sectional view is used to clarify the structure. In FIG. 3, the optical system main body 4 is exactly the same as that in FIG. In FIG. 3, a rotating member 3 and a light-conducting member 2 having two reflecting surfaces 2a and 2bi mounted on the upper surface thereof and facing each other in parallel are provided between the objective lens 1 and the optical system main body 4. is a special enemy. Furthermore, the rotational axis of the rotational member 3 is the center of the objective lens 1, the photoconductive member 2,
Of the optical axes passing through the optical system main body 4, does it completely coincide with the one connecting the optical system main body 4 and the photoconductive member 2? It is a feature.

このように構成された分11!u回動型の光磁気ディス
クの動作を簡単に説明すると次のようになる。
11 minutes configured like this! The operation of the u-rotation type magneto-optical disk will be briefly explained as follows.

即ち、トラックアクセスをする際には光学系本体4は動
かさず、対物レンズ1および光伝導部材2を回動部材3
とともに回動させる。対物レンズ1が光磁気ディスク1
0の半玉方向にほぼ沿った円弧上を動くように回動中心
の位置全光磁気ディスク1Qに対して定めておけば、デ
ィスク面全域をアクセスすることができる。特に、対物
レンズ1の中心を通る光軸と回動部材3の回動軸心が一
致していることから、対物レンズ1と光伝導部材2とを
回動させても光学系本体4の光軸と対物レンズ1の光軸
との間にずれが生じることがなく、従って光磁気ディス
ク10と光学系本体4とは常に適確に光線情報のやりと
りができることになる。
That is, when performing track access, the optical system main body 4 is not moved, and the objective lens 1 and the light-conducting member 2 are moved to the rotating member 3.
rotate with the Objective lens 1 is magneto-optical disk 1
If the position of the center of rotation is determined for the entire magneto-optical disk 1Q so that it moves on an arc substantially along the direction of the zero half-sphere, the entire disk surface can be accessed. In particular, since the optical axis passing through the center of the objective lens 1 and the rotation axis of the rotation member 3 coincide, even if the objective lens 1 and the light-conducting member 2 are rotated, the light from the optical system body 4 remains unchanged. There is no deviation between the axis and the optical axis of the objective lens 1, so that the magneto-optical disk 10 and the optical system main body 4 can always exchange light beam information accurately.

この分離回動型光学ピックアップの最大の特徴はトラッ
クアクセス時の可動質量を最軽量化したことにある。第
1図における従来例と違って、トラックアクセスの際に
動かさなければならないのは対物レンズ1と光伝導部材
2だけである。その結果、光デイスク装置の最大の難点
であった高速アクセス能力に関する問題点を解決するこ
とができる。
The greatest feature of this separate rotary optical pickup is that it minimizes the weight of the movable mass during track access. Unlike the conventional example shown in FIG. 1, only the objective lens 1 and the light-conducting member 2 need to be moved during track access. As a result, it is possible to solve the problem regarding high-speed access capability, which has been the biggest drawback of optical disk devices.

しかし、この分離回動型光学ピックアップを光磁気ディ
スク装置に適用するに当だっては、大きな問題点があっ
た。即ち光伝導部材2の反射面2a 、2bが入射した
光線に対してリタデーシコンを起こさせるために、光磁
気信号再生の品質を低下させるという問題点を有してい
た。この様子を第4図に示す。
However, there are major problems when applying this separate rotary optical pickup to a magneto-optical disk device. That is, since the reflective surfaces 2a and 2b of the photoconductive member 2 cause retardation of the incident light beam, there is a problem in that the quality of magneto-optical signal reproduction is degraded. This situation is shown in FIG.

今、光伝導部材2が入射光(光学系本体4からの出射光
)工の偏光方向に対して角度φ回動しているとする(第
2図a)。一般に反射面で光が反射する際には光波の位
相遅れが異方的に発生する。
Now, it is assumed that the photoconductive member 2 is rotated by an angle φ with respect to the polarization direction of the incident light (light emitted from the optical system main body 4) (FIG. 2a). Generally, when light is reflected by a reflective surface, a phase delay of the light wave occurs anisotropically.

第4図を一例にとれば反射面2bと入射および反射光線
を含む平面との交線p軸と、それと垂直なS軸との間に
、 cos2− n’ s in2θ+n2θ・・・・入射
角 n = nl / n2 n、・・・・・反射面内部の屈折率 n2・・・・反射面外部の屈折率 で表わされる位相差を生じる。これはりタテ゛−ジョン
と呼ばれる現象である。反↓1j面2bを入射光に対し
45°に設置し、反射面2bは屈折率1.5のガラスを
用いた全反射プリズムであるとすると、θ=45°、n
+=1.6、”2 = ”Th(1)式に代入して、 δ=38.6゜ といっだ値を得る。第2図で示した構成では反射2a−
2bA:汁31Y−M、21−でl?: ニア’rニー
す入禍、I’−II 4 F−ジョンも4δ、上の例で
は154°生じることになる。
Taking FIG. 4 as an example, between the p-axis, the intersection line of the reflecting surface 2b and the plane containing the incident and reflected rays, and the S-axis perpendicular thereto, the angle of incidence n is cos2-n's in2θ+n2θ. = nl / n2 n, . . . refractive index n2 inside the reflective surface, . . . generates a phase difference expressed by the refractive index outside the reflective surface. This is a phenomenon called reversion. If the anti-↓1j surface 2b is set at 45° with respect to the incident light, and the reflective surface 2b is a total reflection prism using glass with a refractive index of 1.5, θ=45°, n
+=1.6, "2="Th Substituting into equation (1), we obtain the value δ=38.6°. In the configuration shown in FIG. 2, the reflection 2a-
2bA: Soup 31Y-M, 21- and l? : Near 'r knee injury, I'-II 4 F-John will also occur 4δ, 154° in the above example.

光磁気ディスク装置における光学系においてこういった
リタデーションが生じることは再生信号の品質に大きく
影響する。今、s、p軸が入射光線工の偏光方向に対し
φ頌いていたとすると、入射光線のS軸、P軸投影方向
で互いに位相差を生ずるため、リタデーンヨンを受けた
光線0は楕円偏光となる。光磁気ディスク装置における
信号の読出しは光磁気ディスク上の記録信号である正負
の磁極によって生ずる偏光角の変化を検出することによ
って行なうことは先述したとおシである。
The occurrence of such retardation in the optical system of a magneto-optical disk device greatly affects the quality of reproduced signals. Now, if the s and p axes are φ with respect to the polarization direction of the incident beam, there will be a phase difference between the S and P axis projection directions of the incident beam, so the ray 0 that has received the retardation will be elliptically polarized. Become. As mentioned above, signals in a magneto-optical disk device are read by detecting changes in the polarization angle caused by positive and negative magnetic poles, which are recorded signals on the magneto-optical disk.

リタブ!−7コンが光磁気再生信号に与える影響として
は、■リタデーンヨンそのものによるf信号の劣化と■
リタデーションによって再生光線が楕円化されたことに
よる信号の劣化の2つがあげられる。以下簡単に説明す
る。
Retab! The effects of the −7 controller on the magneto-optical reproduction signal are: ■deterioration of the f signal due to the retardation itself;■
There are two types of signal deterioration caused by the reproduction light beam being made into an oval due to retardation. This will be briefly explained below.

■については詳しい説明はしないが、リタデーションδ
に対して、cosδに比例して再生信号の振幅が減衰す
ることが知られている。δ−900では再生信号はイ1
)られない+) llシ促の全反射プリズムを用いた光
伝導部材2によるリターiニージョンは154°であっ
たから、再生信号の振幅はcoslS4°即ち9(lメ
に減少する。
I will not explain in detail about ■, but the retardation δ
It is known that the amplitude of the reproduced signal is attenuated in proportion to cos δ. At δ-900, the reproduced signal is 1
Since the return knee by the photoconductive member 2 using the total reflection prism of 154° is 154°, the amplitude of the reproduced signal is reduced to 4°, that is, 9 (l).

■は分し1([回動+q+、I光学ビックア、プ特有の
問題点である。第4図において、光学系本体4から出た
直線偏光の光線Iが、光伝導部材2、対物レンズ1、光
磁気ディスク10を通る往復光路中で4回すタデーンヨ
ン企生じ、その結果、光学系本体4に戻って来る光線O
は楕円偏光になる場合があることを述べた。ここで特記
すべきことは光線0が楕円になっている度合(楕円率)
は反射面2a。
■ is a problem specific to division 1 ([rotation + q+, I optical system, , the light ray O is rotated four times in the reciprocating optical path passing through the magneto-optical disk 10, and as a result, the light beam O returns to the optical system main body 4.
It was mentioned that the light may become elliptically polarized. What should be noted here is the degree to which ray 0 is an ellipse (ellipticity)
is the reflective surface 2a.

2b即ち光伝導部材2の入射光線工の偏光方向に対する
回動角φによって変化するということである。これは光
伝導部材2を回動することにより入射光線工に対してS
軸とP軸が回動し、その結果s、p軸への投影成分が変
化することから明らかである(第2図す、c)。第4図
からはφ=0゜、のときには出射光線Oは直線偏光で帰
って来る(テ゛イスク面で受けたン1−回転による光線
のS。
2b, that is, it changes depending on the rotation angle φ of the light-conducting member 2 with respect to the polarization direction of the incident beam. By rotating the photoconductive member 2, the S
This is clear from the fact that the axis and the P axis rotate, and as a result, the projection components to the s and p axes change (Figure 2, c). From FIG. 4, when φ=0°, the emitted light ray O returns as linearly polarized light (the light ray S due to the rotation of the light ray received on the surface of the disk).

P軸に対する頌きで生じる11′1円化は無視する)。(Ignore the 11'1 circularization that occurs when considering the P axis).

光線0の(11円率が、光伝導部材2の回動角に依存し
ていることは信号再生上好ましくない。理由を以下に述
べる。光磁気ディスク装置で一番問題となるのは再生信
号のS/N比であるっ光磁気−7−イスク装置はカー効
果による偏光角の差を検出することにより再生信号を得
ることは先程述べたが、そのカー回転角は高々1°程度
であって非常に小さい。そのためレーザー発光#、4a
が発するノイズによって再生信号のS/Nが極度に劣化
するっS/N向上のための対策としてよく用いられるの
は第5図に示した差動キャンセラによる信号検出方法で
ある。第2図で説明したが、光磁気再生信号は検光子4
0を通過した光の交流分全検出すれば得られる。今、検
光子48を通過できなかったW方向と垂直な成分を反射
させて別の受光素子で受けるとする。通過光が入射する
受光素子5aおよび反射光が入射する受光素子5bの出
力を第5図に示したが、ンーザー光の直流成分ならびに
ノイズ成分は画素子とも同相で、カー回転による逆相成
分は互いに逆相になっている( Rsa + R5b 
)。
It is unfavorable for signal reproduction that the (11 yen rate) of the ray 0 depends on the rotation angle of the photoconductive member 2.The reason is explained below.The biggest problem with magneto-optical disk devices is the reproduction signal. I mentioned earlier that the magneto-optical device obtains a reproduced signal by detecting the difference in polarization angle due to the Kerr effect, but the Kerr rotation angle is about 1° at most. is very small.Therefore, the laser emission #, 4a
The signal-to-noise ratio of the reproduced signal is extremely degraded by the noise emitted by the receiver.A signal detection method using a differential canceller shown in FIG. 5 is often used as a countermeasure for improving the signal-to-noise ratio. As explained in Fig. 2, the magneto-optical reproduction signal is transmitted to the analyzer 4.
This can be obtained by detecting all the alternating current components of the light that has passed through zero. Now, assume that the component perpendicular to the W direction that did not pass through the analyzer 48 is reflected and received by another light receiving element. Figure 5 shows the outputs of the light receiving element 5a, into which the passing light enters, and the light receiving element 5b, into which the reflected light enters. They are in opposite phases to each other (Rsa + R5b
).

そこで両出力のバランスを適当に設定した後に差をとれ
ば、ノイズ成分をキャンセルして信号分だけを取り出す
ことができる( Rout )っところが、分離回動型
ピックアップを用いた場合、光伝導部材20回動角φに
よって検光子4eに入る光の楕円率が変わる。楕円率が
変わ扛ば検光子4eを通過する光量と反射する光量の比
率が変化する。すなわち光伝導部材2の回動角によって
ノイズキャンセルの条件が全く違って来るため、ノイズ
キャンセルは非常に難しくなる。
Therefore, if the balance between both outputs is properly set and the difference is taken, the noise component can be canceled and only the signal component can be extracted (Rout). However, when a separate rotary pickup is used, the photoconductive member 20 The ellipticity of light entering the analyzer 4e changes depending on the rotation angle φ. If the ellipticity changes, the ratio between the amount of light passing through the analyzer 4e and the amount of light reflected changes. In other words, the conditions for noise cancellation are completely different depending on the rotation angle of the photoconductive member 2, making noise cancellation extremely difficult.

以−ヒ述べ/、二〇とを要約すると次のようになる。The following is a summary of what I have said/20 below.

分離回動型光学ピックアップは可動部分が少なく高速ア
クセスが容易にできる光学ピックアップであるが、光磁
気ディスク装置にこの方式を導入すると、回動する2つ
の反射面のリタデーンヨンによって再生信号の質が劣化
するという問題点があった。
Separate rotary optical pickups are optical pickups that have few moving parts and can be easily accessed at high speeds, but when this system is introduced into magneto-optical disk drives, the quality of the reproduced signal deteriorates due to the retardation of the two rotating reflective surfaces. There was a problem with that.

発明の目的 大会[+E+汁東漕了クセり楠;うS兄IF ”fi 
R1−務 1≠\も再生信号の品質は従来のものと同等
のものが得られる光磁気テ゛イスク装置を実現すること
を目的とする。
Purpose of invention competition
R1-Task 1≠\The object of the present invention is to realize a magneto-optical disk device which can obtain reproduction signal quality equivalent to that of the conventional device.

発明の構成 本発明は、回動部材上に対物レンズと、第1の反射部材
と、この第1の反射部材と対向して設定された第2の反
射部材と、光学的な進相軸と遅相軸を有す光学位相部材
を光軸に沿って一列に並ぶように、かつ上記第2の反射
部材を上記回動部材の回動軸心上に設け、さらに上記回
動部材外(′こ設けられた発光手段ならびに受光手段を
有する光学系本体と]二記第2の反射部材化光学的にに
111合させたことにより、トラックアクセス時におけ
る可動部分を軽量化しただけでなく、上記第1および第
2の反射部材によって生じるリタテ゛−ンヨンを光学位
相部材を回動光軸中に設けることによって補償すること
によって、再生信号の品質を劣化させることなく高速ト
ラックアクセスを容易に実現することのできる光磁気テ
゛イスク装置を実現するものである。
Structure of the Invention The present invention includes an objective lens on a rotating member, a first reflecting member, a second reflecting member set opposite to the first reflecting member, and an optical fast axis. The optical phase members having slow axes are arranged in a line along the optical axis, and the second reflecting member is provided on the rotation axis of the rotation member, and By optically aligning the optical system main body having the light emitting means and the light receiving means with the second reflecting member, it not only reduces the weight of the movable parts during track access, but also reduces the weight of the movable parts when accessing the track. To easily realize high-speed track access without deteriorating the quality of a reproduced signal by compensating for the retardation caused by the first and second reflecting members by providing an optical phase member in the rotating optical axis. The objective is to realize a magneto-optical disk device that can perform the following functions.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する。第6図に本実施例における光磁気ディスク装置
の側面図を示す。なお構造を明確にするため一部断面図
を用いている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 6 shows a side view of the magneto-optical disk device in this embodiment. Note that a partial cross-sectional view is used to clarify the structure.

第6図において、光伝導部ト第2上に波長板100を設
けであることを除けば、すべて第3図に示したものと同
一である。波長板とは複屈折性結晶より形成された直線
位相子であり、互いに直交した進相軸および遅相軸と有
す。
In FIG. 6, everything is the same as that shown in FIG. 3, except that a wavelength plate 100 is provided on the second photoconductive part. A wave plate is a linear retarder formed from a birefringent crystal, and has a fast axis and a slow axis that are orthogonal to each other.

このように構成された本実施例について以下説明する。The present embodiment configured in this manner will be described below.

光伝導部材2の反射面2a、2bでリタテ′−7gンが
生じることは既に述べた。本実施例では波長板100金
光(5,J部材2の入射面上に設けることにより、この
リタデーションを相殺させる。この様子を第7図に示す
。波長板1Q○は直交する進相F[11(Fast )
と遅相軸(Slow )  を有す。そこで反射面2a
、2bにおけるP軸(S軸よシ位相がδだけ遅れている
)上を通る光が波長板100の進相軸を通るように、ま
たS軸を通る光が遅相軸を通るように波長板100を光
伝導部材2の入射面上に設け、しかも進相軸の遅相軸に
対する位相進みがちょうど26である波長板を選べば、
光伝導部材2によるリタデー7ヨンは波長板1Q○によ
って完全に打ち消される。その結果、光伝導部材2の回
動による再生光の、111円化を防ぐことができ、光磁
気テ゛イスク装置に分離回動型ピックアップを用いたこ
とによる再生信号の品質劣化は全く生じない。
It has already been mentioned that retardation occurs on the reflective surfaces 2a and 2b of the photoconductive member 2. In this embodiment, this retardation is canceled by providing a wave plate 100 gold light (5, J) on the incident surface of the J member 2. This situation is shown in FIG. (Fast)
It has a slow axis (Slow). Therefore, the reflective surface 2a
, 2b so that the light passing on the P axis (the phase of which is delayed by δ from the S axis) passes through the fast axis of the wave plate 100, and the light passing through the S axis passes through the slow axis. If the plate 100 is provided on the incident surface of the photoconductive member 2 and a wavelength plate is selected in which the phase lead of the fast axis with respect to the slow axis is exactly 26,
The retardation caused by the photoconductive member 2 is completely canceled by the wave plate 1Q○. As a result, it is possible to prevent the reproduced light from becoming 111 yen due to the rotation of the photoconductive member 2, and there is no deterioration in the quality of the reproduced signal due to the use of the separate rotation type pickup in the magneto-optical disk device.

以上のように本実施例によれば、高速アクセスを容易に
実現できる構造を持ち、しかもそれがために再生信号の
品質劣化が生じるといったことが全くない優れた光磁気
ディスク装置を実現することができる。
As described above, according to this embodiment, it is possible to realize an excellent magneto-optical disk device that has a structure that can easily realize high-speed access, and that does not cause any quality deterioration of the reproduced signal. can.

次に本発明の他の実施例について図面を参照しながら説
明する。
Next, other embodiments of the present invention will be described with reference to the drawings.

第8図は本発明の第2の実施例である。先の実施例では
波長板100を光伝導部材2の対物レンズ1側の入射面
上に設けたが、本実施例では回動部材3側に設けている
。このようにすることにより波長板100による慣性モ
ーメントを小さくすることができ、回動負荷を軽減する
ことができる。
FIG. 8 shows a second embodiment of the invention. In the previous embodiment, the wavelength plate 100 was provided on the incident surface of the light-conducting member 2 on the objective lens 1 side, but in this embodiment, it is provided on the rotating member 3 side. By doing so, the moment of inertia due to the wave plate 100 can be reduced, and the rotational load can be reduced.

第9図は本発明の第3の実施例である。本実施ツリでは
、光伝導部材2の軽量化のために反射手段として全反射
プリズムを用いずに鏡面を用いている。鏡面でも若干リ
タデー7ヨンが生じるので、補償用の波長板100は必
要である。波長板100は2つの反射面2a、2bの間
に設けることも可能である。
FIG. 9 shows a third embodiment of the present invention. In this embodiment, in order to reduce the weight of the light-conducting member 2, a mirror surface is used as the reflecting means without using a total reflection prism. Even on a mirror surface, some retardation occurs, so a compensating wave plate 100 is necessary. Wave plate 100 can also be provided between two reflective surfaces 2a and 2b.

り310図は本発明の第4の実施例である。本実施例で
はりタテ′−ジョンの補償を波長板を用いることなく実
現している。第10図において2a。
FIG. 310 shows a fourth embodiment of the present invention. In this embodiment, compensation of beam length is realized without using a wave plate. 2a in FIG.

2bは互いに平行に対向する反射面である。2c。2b are reflective surfaces facing each other in parallel. 2c.

2dも同じく互いに平行に対向する反射面である。2d are also reflective surfaces that face each other in parallel.

ただし反射面2cは反射面2aに対して、反射面2dは
反射面2 bに対してそれぞれ光1qlILa + L
c全中・し・に90°回転した向きに設けられている。
However, the reflective surface 2c and the reflective surface 2d respectively receive light 1qlILa + L with respect to the reflective surface 2a and reflective surface 2b.
c It is installed in a direction rotated 90 degrees to the center.

こういった(14造にすると、反射1川2aのS軸は反
し↑面2CのS・1111に々・I向することになり、
結局リタデーションは相殺される。反射面2b、2dに
ついても同様のことが言える。この方式では高価な波長
板を用いることなくリタデー/gンを消すことができる
。もちろん反射面2aと20、および反射面2bと2d
によって生じるリタデーションの値は全く同じでなけれ
ばならない。
If it is made like this (14 structures), the S axis of the reflection 1 river 2a will be opposite to the S 1111 of the ↑ surface 2C, and will be directed towards I,
In the end, the retardation cancels out. The same can be said of the reflective surfaces 2b and 2d. With this method, retardation/g can be eliminated without using an expensive wave plate. Of course, the reflective surfaces 2a and 20, and the reflective surfaces 2b and 2d
The values of retardation caused by must be exactly the same.

発明の効果 以上述べたように本発明によれば、回動部材上に対物レ
ンズと2つの反射面と、反射面によるリタデーンヨンを
相殺する光学位相部材を設け、かつこれらの部材を、回
動部材外に設けられた発光手段ならびに受光手段を有す
る光学系本体と光学的に結合させた構造にすることによ
り、高速アクセスが容易に実現でき、しかも反射面のリ
タデーションによる再生信号の品質の劣化が生じない憂
れた光磁気ディスク装置を実現することができる。
Effects of the Invention As described above, according to the present invention, an objective lens, two reflecting surfaces, and an optical phase member for canceling the retardation caused by the reflecting surfaces are provided on the rotating member, and these members are attached to the rotating member. By adopting a structure in which the optical system body is optically coupled to the optical system body that has an external light emitting means and light receiving means, high-speed access can be easily achieved, and the quality of the reproduced signal does not deteriorate due to retardation of the reflective surface. Therefore, it is possible to realize a magneto-optical disk device, which has been a problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光磁気ディスク装置の側面図、第2図は
XS磁気信号再生の原理を説明するだめの図、第3図は
分離回動型光学ピックアップを用いた光磁気テ゛イスク
装置の側面図、第4図は分離回動型ピックアップにおけ
るリタダーションの発生を示した図、第6図は従来の光
磁気ディスク装置におけるレーザーノイズ対策を示す図
、第6図は本発明の一実施例における光磁気ディスク装
置の側面図、第7図は実施例の効果を示す説明図、第8
図、第9図、第10図はそれぞれ互いに異なる池の実施
例を示す図である。 1・・・・対物レンズ、2a、2b・・・・・・反射面
、3・・・・・回動部材、4・・・・・・光学系本体、
100・・・・・・波長板、2C,2d・・・・・・反
射面。 代理人の氏名 弁理士 中 尾 故 男 ほか1名茗2
図 50w 5′ 第3図 第 4 図 第7図 石8図 ? 第 9 図
Fig. 1 is a side view of a conventional magneto-optical disk device, Fig. 2 is a diagram for explaining the principle of XS magnetic signal reproduction, and Fig. 3 is a side view of a magneto-optical disk device using a separate rotary optical pickup. 4 is a diagram showing the occurrence of retardation in a separate rotation type pickup, FIG. 6 is a diagram showing a measure against laser noise in a conventional magneto-optical disk device, and FIG. A side view of the magnetic disk device, FIG. 7 is an explanatory diagram showing the effects of the embodiment, and FIG.
9 and 10 are diagrams showing different embodiments of ponds, respectively. 1...Objective lens, 2a, 2b...Reflecting surface, 3...Rotating member, 4...Optical system main body,
100...wave plate, 2C, 2d...reflection surface. Name of agent: Patent attorney Nakao (late man) and 1 other person (Mio 2)
Figure 50w 5' Figure 3 Figure 4 Figure 7 Stone Figure 8? Figure 9

Claims (7)

【特許請求の範囲】[Claims] (1)回動部材上に対物レンズと、上記対物レンズ中心
軸上に設けられた第1の反射部材と、この第1の反射部
材と対向して設定された第2の反射部材と、光学的な進
相軸と遅相軸を有す光学位相部材を光軸に沿って一列に
並ぶように、かつ上記第2の反射部材を上記回動部材の
回動軸心上に設け、さらに上記回動部材外に設けられた
発光手段並びに受光手段を有する光学系本体と上記第2
の反射部材を光学的に結合させたことを特徴とする光磁
気ディスク装置。
(1) An objective lens on a rotating member, a first reflecting member provided on the central axis of the objective lens, a second reflecting member set opposite to the first reflecting member, and an optical optical phase members having a fast axis and a slow axis are arranged in a line along the optical axis, and the second reflecting member is provided on the rotation axis of the rotation member, and the second reflection member is provided on the rotation axis of the rotation member. An optical system main body having a light emitting means and a light receiving means provided outside the rotating member;
What is claimed is: 1. A magneto-optical disk device comprising: optically coupled reflective members;
(2)第1および第2の反射部材として全反射プリズム
を用いたことを特徴とする特許請求の範囲第1項記載の
光磁気ディスク装置。
(2) The magneto-optical disk device according to claim 1, wherein total reflection prisms are used as the first and second reflecting members.
(3)複屈折性結晶より形成された直線位相子を光学位
相部材として用いたことを特徴とする特許請求の範囲第
1項記載の光磁気ディスク装置。
(3) A magneto-optical disk device according to claim 1, characterized in that a linear phase shifter made of a birefringent crystal is used as an optical phase member.
(4)光学位相部材を第1または第2の反射部材の入射
面上に設けた特許請求の範囲第2項記載の光磁気ディス
ク装置。
(4) A magneto-optical disk device according to claim 2, wherein an optical phase member is provided on the incident surface of the first or second reflecting member.
(5)第1の反射部材と第2の反射部材とを結ぶ光路中
にそれぞれ対向する第3の反射部材と第4の反射部材を
設け、しかも第3の反射部材は第1の反射部材と第3の
反射部材を結ぶ光軸を中心に第1の反射部材に対して9
0°回転した方向に設け、第4の反射部材は第2の反射
部材と第4の反射部材を結ぶ光軸を中心に第2の反射部
材に対して90°回転した方向に設けたことを特徴とす
る特許請求の範囲第1項記載の光磁気ディスク装置。
(5) A third reflecting member and a fourth reflecting member are provided in the optical path connecting the first reflecting member and the second reflecting member, and the third reflecting member is opposite to the first reflecting member. 9 points relative to the first reflecting member around the optical axis connecting the third reflecting member.
The fourth reflecting member is provided in a direction rotated by 0° with respect to the second reflecting member around the optical axis connecting the second reflecting member and the fourth reflecting member. A magneto-optical disk device according to claim 1.
(6)第1の反射部材と第2の反射部材とは互いに平行
に設けたことを特徴とする特許請求の範囲第1項記載の
光磁気ディスク装置。
(6) The magneto-optical disk device according to claim 1, wherein the first reflecting member and the second reflecting member are provided parallel to each other.
(7)第1と第2の反射部材を互いに平行に設置し、第
3と第4の反射部材を互いに平行に設置したことを特徴
とする特許請求の範囲第4項記載の光磁気ディスク装置
(7) The magneto-optical disk device according to claim 4, wherein the first and second reflecting members are installed parallel to each other, and the third and fourth reflecting members are installed parallel to each other. .
JP59185505A 1984-09-04 1984-09-04 Photomagnetic disk device Granted JPS6163945A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59185505A JPS6163945A (en) 1984-09-04 1984-09-04 Photomagnetic disk device
KR1019850006440A KR890004260B1 (en) 1984-09-04 1985-09-04 Reproduction equipment for light recording
US06/772,749 US4730297A (en) 1984-09-04 1985-09-04 Retardation compensating light beam guiding system in an optical storage medium drive apparatus
DE8585306284T DE3581033D1 (en) 1984-09-04 1985-09-04 DEVICE FOR DRIVING AN OPTICAL STORAGE MEDIA.
EP85306284A EP0176271B1 (en) 1984-09-04 1985-09-04 Optical storage medium drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59185505A JPS6163945A (en) 1984-09-04 1984-09-04 Photomagnetic disk device

Publications (2)

Publication Number Publication Date
JPS6163945A true JPS6163945A (en) 1986-04-02
JPH0439137B2 JPH0439137B2 (en) 1992-06-26

Family

ID=16171950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59185505A Granted JPS6163945A (en) 1984-09-04 1984-09-04 Photomagnetic disk device

Country Status (1)

Country Link
JP (1) JPS6163945A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146446A (en) * 1985-12-20 1987-06-30 Seiko Epson Corp Photomagnetic recording device
US5200936A (en) * 1990-01-09 1993-04-06 International Business Machines Corporation Magneto-optic method and apparatus for recording and retrieving high-density digital data
WO1998009392A3 (en) * 1996-08-27 1998-04-23 Quinta Corp System and method of using optical fibers in a data storage and retrieval system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044803A (en) * 1973-07-20 1975-04-22
JPS5963041A (en) * 1982-08-24 1984-04-10 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Magnetic optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044803A (en) * 1973-07-20 1975-04-22
JPS5963041A (en) * 1982-08-24 1984-04-10 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Magnetic optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146446A (en) * 1985-12-20 1987-06-30 Seiko Epson Corp Photomagnetic recording device
US5200936A (en) * 1990-01-09 1993-04-06 International Business Machines Corporation Magneto-optic method and apparatus for recording and retrieving high-density digital data
WO1998009392A3 (en) * 1996-08-27 1998-04-23 Quinta Corp System and method of using optical fibers in a data storage and retrieval system

Also Published As

Publication number Publication date
JPH0439137B2 (en) 1992-06-26

Similar Documents

Publication Publication Date Title
US5577018A (en) Phase changing apparatus and optical pickup apparatus for magneto-optic storage device using same
US4841510A (en) Optical characteristic measuring apparatus for an optical recording medium substrate
US4730297A (en) Retardation compensating light beam guiding system in an optical storage medium drive apparatus
US5570333A (en) Head device for magneto-optical disk
US5309423A (en) Magneto-optical reproducing device with optical system having two reflective elements and providing phase difference cancellation
JPS6163945A (en) Photomagnetic disk device
US5581403A (en) Beam shaping and beam splitting device and optical head comprising the same
US5119352A (en) Magneto optic data storage read out apparatus and method
JPH0340252A (en) Phase difference measuring device for magneto-optical recording medium
JPS63291238A (en) Optical memory device
JPS62223842A (en) Optical magnetic disk device
JP2624241B2 (en) Magneto-optical disk device
JP3320875B2 (en) Light deflection element
JPS6220148A (en) Optical recording/reproducing device
KR960000270B1 (en) Optical pick-up apparatus
JPS6214340A (en) Erasable optical head
JPS6273445A (en) Optical head
JP2579013B2 (en) Light head
JPS62285264A (en) Optical head for magneto-optical recording
JPS63251952A (en) Optical pickup for magneto-optical disk
JPS6273444A (en) Optical head
JPS62172550A (en) Pickup for optomagnetic recording medium
JPS63222356A (en) Magneto-optical head device
JPS63222357A (en) Magneto-optical head device
JPS62257120A (en) Faraday rotator