JPS62172550A - Pickup for optomagnetic recording medium - Google Patents

Pickup for optomagnetic recording medium

Info

Publication number
JPS62172550A
JPS62172550A JP1338286A JP1338286A JPS62172550A JP S62172550 A JPS62172550 A JP S62172550A JP 1338286 A JP1338286 A JP 1338286A JP 1338286 A JP1338286 A JP 1338286A JP S62172550 A JPS62172550 A JP S62172550A
Authority
JP
Japan
Prior art keywords
light
light beam
polarized light
phase compensation
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1338286A
Other languages
Japanese (ja)
Inventor
Akihiko Yoshizawa
吉沢 昭彦
Kazutake Sugawara
一健 菅原
Yasuhiro Fujiwara
藤原 靖博
Nobuhide Matsubayashi
松林 宣秀
Yoshihiko Masakawa
仁彦 正川
Kiichi Kato
喜一 加藤
Kazuji Hiyakumura
和司 百村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1338286A priority Critical patent/JPS62172550A/en
Publication of JPS62172550A publication Critical patent/JPS62172550A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration in the C/N due to a light beam subjected to elliptically polarized light restored into a linearly polarized light by using a phase compensation plate to the light receiving means of a returned light from a recording layer. CONSTITUTION:When the light beam of linearly polarized light by an objective lens 6 is converged and focused onto the recording layer 9 of a recording medium 7 as a spot, projected and reflected then returned, the light beam is subjected to elliptic polarization by double refraction through a base 8, and the elliptic light is restored in the linearly polarized light with birefringence through a phase compensation plate 43 after being reflected in a half mirror 5. Then only the component corresponding to uni-magnetization direction is transmitted through an analyzer 11, and the recording information is reproduced by the photoelectric conversion signal output by a photodetector 13. Thus, the deterioration in the C/N due to the birefringence of the base 8 is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複屈折を有する基盤の複屈折の影響を軽減する
位相補償手段を用いた光磁気記録媒体用ピックアップに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pickup for a magneto-optical recording medium that uses phase compensation means to reduce the influence of birefringence of a substrate having birefringence.

[従来の技術] 近年、コンピュータ等情報に関連する産業の進展が目ざ
ましく、取扱われる情報量が飛躍的に拡大化する状況に
ある。
[Background Art] In recent years, industries related to information such as computers have made remarkable progress, and the amount of information handled is rapidly expanding.

このため、従来の磁気ヘッドに代ってレーザ光を用いて
円盤状記録媒体(以下ディスクと記す。)に情報を光学
的に高密度に記録したり、高速度で再生したりすること
ができる光学的記録再生装置が注目される状況にある。
For this reason, information can be optically recorded at high density on a disc-shaped recording medium (hereinafter referred to as a disk) and reproduced at high speed using laser light instead of a conventional magnetic head. Optical recording and reproducing devices are attracting attention.

上記光学的記録再生装置においては光磁気現象(磁気的
カー効果)を利用した光磁気方式のものが、記録情報を
書き換えて記録あるいは再生することのできるため、今
後広く用いられると考えられる。
Among the above-mentioned optical recording and reproducing devices, those of the magneto-optical type that utilize the magneto-optical phenomenon (magnetic Kerr effect) are expected to be widely used in the future because they can rewrite and record or reproduce recorded information.

第6図は従来の光磁気記録再生装置のピックアップの構
成を示1゜ このピックアップ1は、レーザダイオード2から出射さ
れる偏光した光ビームをコリメータレンズ3で平行光束
にして、ハーフミラ−4,5を通した後、対物レンズ6
で集光して円盤状の光学的記録媒体としてのディスク7
に照射するようにしである。このディスク7は、記録媒
体基盤8と、この基板8に形成された強磁性材料の記録
層9とからなり、集光された光は基盤8を通って記録層
9にフォーカスして照射される。
FIG. 6 shows the configuration of a pickup of a conventional magneto-optical recording/reproducing device.1 This pickup 1 converts a polarized light beam emitted from a laser diode 2 into a parallel beam using a collimator lens 3, After passing through the objective lens 6
Disk 7 as a disk-shaped optical recording medium by condensing light with
It should be irradiated to This disk 7 consists of a recording medium base 8 and a recording layer 9 made of ferromagnetic material formed on the base 8, and the condensed light passes through the base 8 and is focused and irradiated onto the recording layer 9. .

上記記録層9で反射された戻り光は、(光の照射部分の
)磁化の方向に応じて偏光方向が互いに逆に回転し、こ
の光は基盤8を通ったものは対物レンズ6で集光され、
ハーフミラ−5でその一部が反射され、検光子11で、
一方に回転した光成分のみが透過し、集光レンズ12を
経てアバランシェフォトダイオード(ΔPD)13等の
光検出器で受光され、この光検出器の光電変換出力で記
録情報の再生が行われる。
The polarization directions of the return light reflected by the recording layer 9 rotate in opposite directions depending on the direction of magnetization (of the irradiated portion), and the light that passes through the substrate 8 is focused by the objective lens 6. is,
A part of it is reflected by the half mirror 5, and the analyzer 11
Only the light component rotated in one direction passes through the condenser lens 12 and is received by a photodetector such as an avalanche photodiode (ΔPD) 13, and the recorded information is reproduced using the photoelectric conversion output of this photodetector.

又、上記ハーフミラ−5を透過した光は、他方のハーフ
ミラ−4でその一部が反射され、臨界角プリズム14で
反射された光を4分割光検出器15で受光することによ
って、臨界角法によるフォーカスエラー信号とプッシュ
プル法によるトラッキングエラー信号とを取り出せるよ
うにしてあり、これら信号によって、対物レンズ6を制
御して、フォーカスサーボ及びトラッキングサーボを行
うことができるようにしである。
Further, a part of the light transmitted through the half mirror 5 is reflected by the other half mirror 4, and the light reflected by the critical angle prism 14 is received by the 4-split photodetector 15, thereby performing the critical angle method. A focus error signal based on the push-pull method and a tracking error signal based on the push-pull method can be extracted, and the objective lens 6 can be controlled using these signals to perform focus servo and tracking servo.

ところで、上記従来例において、射出成形したPC板を
基5!88に用いた場合、光学的に複屈折を示し、常光
線に対してはno =1.5800.異常光線に対して
はne =1.5806の屈折率となる。この場合、光
学軸が垂直となる基盤8の厚さを1.211Ilとし、
110−Noレーザ(波長633nl)を30°の入射
角で入角させたとき(この30°は開口数NAが0.5
のレンズを用いたときの最外周部のレーザ光の入射角に
相当する)の直線偏光に対し、ディスク7の半径方向と
入射面のなす角度eが特定の角度以外では複屈折のため
第7図に示すように位相差を生じ、その結果楕円化が起
こる。又、この角度eが45°の場合における入射角に
対して位相差が生じる様子を第8図に示す。これらの図
に示す位相差による楕円化が生じる理由を第9図を参照
して以下に説明する。
By the way, in the above conventional example, when an injection molded PC board is used for the base 5!88, it exhibits optical birefringence, and for ordinary rays no = 1.5800. For extraordinary rays, the refractive index is ne =1.5806. In this case, the thickness of the substrate 8 whose optical axis is perpendicular is 1.211Il,
When a 110-No laser (wavelength 633nl) is incident at an incident angle of 30° (this 30° has a numerical aperture NA of 0.5).
For linearly polarized light (corresponding to the incident angle of the laser beam at the outermost circumference when using a lens of As shown in the figure, a phase difference occurs, resulting in ovalization. FIG. 8 shows how a phase difference occurs with respect to the incident angle when the angle e is 45 degrees. The reason why ovalization occurs due to the phase difference shown in these figures will be explained below with reference to FIG. 9.

第9図は、対物レンズ6がPCLl18の1部にレーザ
ービーム16を絞り込んでスポット状に照射する様子を
示す説明図である。同図においてPC基5188は1部
のみが示しである。
FIG. 9 is an explanatory diagram showing how the objective lens 6 focuses the laser beam 16 onto a part of the PCL 18 and irradiates it in a spot shape. In the figure, only a portion of the PC group 5188 is shown.

ところで、レーザービーム16は基盤8の半径方向(図
中符号17)に直交し、基盤8に平行な直線偏光(図中
符号19により偏光方向を示す)であり、基盤8の表面
に入射するレーザービーム16は、直線偏光の向きに対
して直交および平行に入射するビーム部分31及び32
と、たとえば、該ビーム部分31.32に対してそれぞ
れ45度ずれて入射するビーム部分33.34を含んで
いる。
Incidentally, the laser beam 16 is linearly polarized light (the direction of polarization is indicated by the reference numeral 19 in the figure) that is perpendicular to the radial direction of the base 8 (reference numeral 17 in the figure) and parallel to the base 8, and the laser beam that is incident on the surface of the base 8 Beam 16 has beam portions 31 and 32 incident perpendicularly and parallel to the direction of linear polarization.
and, for example, beam portions 33, 34 which are incident on beam portions 31, 32 at a 45 degree offset.

これらビーム部分31.32.33.34はビームの中
心方向に絞り込まれるため、この絞り込み方向と直交又
は平行な偏光方向を有するビーム部分31.32につい
てはそれぞれ基盤8の表面にその直線偏光を保持し、(
S偏光又はP偏光で)入射し、屈折する。
Since these beam portions 31, 32, 33, and 34 are focused toward the center of the beam, the beam portions 31, 32 having polarization directions perpendicular or parallel to this focusing direction retain their linearly polarized light on the surface of the base 8, respectively. death,(
(as S-polarized light or P-polarized light) and is refracted.

しかるに、例えば、上記45°ずれて入射するビーム部
分33.34は絞り込みによってP偏光とS偏光との両
成分を含む偏光になる。このため、屈折して透過Jる際
に基盤8による複屈折の作用を受け、基盤8を通る間に
直線偏光から楕円偏光になる。この理由は、特願昭60
−260615号に詳しい。
However, for example, the beam portions 33 and 34 which are incident at a deviation of 45 degrees become polarized light containing both P-polarized light and S-polarized light components by focusing. Therefore, when the light is refracted and transmitted, it is affected by birefringence by the substrate 8, and changes from linearly polarized light to elliptically polarized light while passing through the substrate 8. The reason for this is that the special application
-For details on No. 260615.

尚、上記楕円偏光になる楕円化は第7図に示すように、
半径方向と入射面の角度eが45°で最大になる。
The ellipticalization to become elliptically polarized light is as shown in Figure 7.
The angle e between the radial direction and the plane of incidence becomes maximum at 45°.

[発明が解決すべき問題点] 上記楕円化が生じると、検光子11によって一方の磁化
方向に対する反射光ビームのみを通すように設定しても
、基盤8の複屈折によって楕円化が生じているため記録
層9の磁化によって偏光方向が回転した信号成分の他の
光ビームも透過して、信号となる光ビームに混入しノイ
ズレベルを上y?させ、C/Nを劣化させる。
[Problems to be Solved by the Invention] When the above-mentioned ovalization occurs, even if the analyzer 11 is set to pass only the reflected light beam in one direction of magnetization, the birefringence of the substrate 8 causes ovalization. Therefore, other light beams of signal components whose polarization direction has been rotated due to the magnetization of the recording layer 9 are also transmitted and mixed into the signal light beam, raising the noise level. This causes the C/N to deteriorate.

本発明は上述した点にかんがみてなされたもので、複屈
折ににるC/Nが劣化することを防止できる光磁気記録
媒体用ピックアップを提供づることを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a pickup for a magneto-optical recording medium that can prevent deterioration of C/N due to birefringence.

E問題点を解決するための手段及び作用]本発明では光
磁気記録再生光学系における集光レンズを経て光検出器
で受光する受光部に光学軸が板面に垂直な方向にある位
相補償板を配設して基盤の複屈折の影響を軽減している
Means and operation for solving problem E] In the present invention, a phase compensating plate whose optical axis is perpendicular to the plate surface is provided in the light receiving part of the magneto-optical recording/reproducing optical system that receives light by the photodetector via the condensing lens. is arranged to reduce the influence of birefringence of the base.

[実施例] 以下、図面を参照して本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically described with reference to the drawings.

第1図は本発明の第1実施例を示す。FIG. 1 shows a first embodiment of the invention.

第1実施例の光磁気記録媒体用ピックアップ41は、第
6図に示すピックアップ1において、ハーフミラ−5で
反射により分岐された光ビームを光検出器13で受光す
る情報信号再生用の受光部が次のような構成になってい
る。
A pickup 41 for a magneto-optical recording medium according to the first embodiment includes a light receiving section for reproducing information signals in which a light beam split by reflection by a half mirror 5 is received by a photodetector 13 in the pickup 1 shown in FIG. The structure is as follows.

上記ハーフミラ−5で反射された光ビームは172波長
板(λ/2板とも記す。)42を通ずことによって、1
5188で楕円化した光ビームにおけるS及びP偏光の
位相を、逆位相にする(このλ/2板42に入射前に、
例えば右ねじの方向に回転する楕円化した光ビームであ
れば、λ/2板42を通した後では両者の位相がずれて
左ねじの進む方向に回転する光ビームにされる。)。そ
の後、対物レンズ6と同一径で、且つ等しい開口数NA
の集光レンズ12で集光されて、位相補償板43を通し
て位相補償をすることによって殆んど直線偏光にされた
後、検光子11によって、一方の磁化方向によって回転
された光ビーム成分のみを透過し、この検光子11を通
った光ビームは光検出器13で受光される。
The light beam reflected by the half mirror 5 passes through a 172-wave plate (also referred to as a λ/2 plate) 42 to
The phases of the S and P polarized lights in the light beam ellipticalized in step 5188 are made to have opposite phases (before entering this λ/2 plate 42,
For example, if the light beam is ovalized and rotates in the direction of a right-handed screw, after passing through the λ/2 plate 42, the phase of the two is shifted and the light beam rotates in the direction of a left-handed screw. ). After that, the objective lens 6 has the same diameter and the same numerical aperture NA.
After the light is focused by the condenser lens 12 and made into almost linearly polarized light through phase compensation through the phase compensation plate 43, only the light beam component rotated by one magnetization direction is analyzed by the analyzer 11. The light beam transmitted through the analyzer 11 is received by a photodetector 13.

上記位相補償板43として、例えば基盤8と同一材料つ
まり光学軸が板面に垂直で、且つ厚さが基盤8の2倍の
ものを用いている。(これは基盤8は往復2回通るのに
対し、位相補償板43では一回のみであるからである。
The phase compensation plate 43 is made of the same material as the substrate 8, for example, the optical axis is perpendicular to the plate surface, and the thickness is twice that of the substrate 8. (This is because the base plate 8 passes back and forth twice, whereas the phase compensation plate 43 passes only once.

) その他の構成は上記第6図に示すものと同様である。) The rest of the structure is the same as that shown in FIG. 6 above.

このように構成された第1実施例によれば、対物レンズ
6によって、直線偏光の光ビームが集光されて記録媒体
7の記録層9にスポット状にフォーカスされて照射され
る際及び反射されて戻る際、基盤8を通ることになるた
め、基盤8の複屈折のため屈折率の小さい常光線側の位
相に対し、異常光線側の位相が例えば遅れて楕円化が生
じるが、ハーフミラ−5で反射された後、λ/2板42
によって両者の位相関係が逆にされた後、前記基盤8と
同様の作用をする位相補償板43を通すことによって、
直線偏光が楕円化されるのと逆に、楕円光が直線偏光に
戻される。しかして、検光子11によって、一方の磁化
方向に対応する光ビーム成分のみが透過され、光検出器
13による光電変換信号出力によって記録情報の再生を
行うことができる。
According to the first embodiment configured in this way, when the linearly polarized light beam is condensed by the objective lens 6 and irradiated in a spot-like manner onto the recording layer 9 of the recording medium 7, it is also reflected. When returning, the phase on the extraordinary ray side is delayed relative to the phase on the ordinary ray side, which has a small refractive index, due to the birefringence of the substrate 8, resulting in ovalization. λ/2 plate 42
After the phase relationship between the two is reversed by
In contrast to linearly polarized light being ovalized, elliptical light is converted back to linearly polarized light. Thus, only the light beam component corresponding to one magnetization direction is transmitted by the analyzer 11, and the recorded information can be reproduced by the photoelectric conversion signal output by the photodetector 13.

第2図は本発明の第2実施例における主要部を示1゜ この第2実施例のピックアップ51においては、対物レ
ンズ6は第1実施例と同様に開口数NA=0.5のもの
を用い、−力受光部側の集光レンズ52として上記NA
=0.5より小さい(つまり焦点距離の長い)例えばN
A=0.2のものを用いている。しかして、この集光レ
ンズ52と、光検出器13手前の検光子11との間には
例えば板面に垂直な光学軸を右づるようにZ軸カットし
た水晶板(この場合にはne =1.5473.n。
FIG. 2 shows the main parts of a second embodiment of the present invention.1 In the pickup 51 of this second embodiment, the objective lens 6 has a numerical aperture NA=0.5 as in the first embodiment. The above-mentioned NA
= smaller than 0.5 (that is, the focal length is long), for example, N
The one with A=0.2 is used. Therefore, between this condensing lens 52 and the analyzer 11 in front of the photodetector 13, there is a crystal plate (in this case, ne = 1.5473.n.

−1,5384になる)等の位相補償板53を用いてい
る。この場合、光ビームが水晶板等による位相補償板5
3を通る際の(単位厚さ当りの)複屈折の影響は、集光
レンズ52のNAが対物レンズ6のNAよりかなり小さ
いが、例えば水晶板の屈折率の差Δn=ne−noによ
る位相変化分は、1!!!!t8の場合よりもかなり大
きいため、この基盤8より薄いものを用いている。
-1,5384) or the like is used. In this case, the light beam is transmitted through a phase compensation plate 5 such as a crystal plate.
Although the NA of the condenser lens 52 is considerably smaller than the NA of the objective lens 6, the influence of birefringence (per unit thickness) when passing through the lens 3 is due to the phase difference due to the difference in refractive index of the crystal plates Δn = ne - no, for example. The change is 1! ! ! ! Since it is considerably larger than the case of t8, a thinner substrate than this substrate 8 is used.

この第2実施例によれば集光レンズ52としてNAが小
さいものを用いることによって、この集光レンズ52と
光検出器13との間に、実際に位相補償板53を介装で
きる距離を確保すると共に、位相補償板53として基盤
8よりも複屈折の影響の大きいもの(換言すれば単位厚
さ当りの位相変化Rの大きいもの)を用いることによっ
て、介装される位相補償板53として厚みの薄いもので
十分その機能を果すようにしである。
According to the second embodiment, by using a lens with a small NA as the condenser lens 52, a distance can be secured between the condenser lens 52 and the photodetector 13 to allow the phase compensation plate 53 to be actually inserted. At the same time, by using a phase compensation plate 53 that has a larger effect of birefringence than the substrate 8 (in other words, a plate with a larger phase change R per unit thickness), the thickness of the interposed phase compensation plate 53 can be reduced. A thin one is enough to perform its function.

従って、この第2実施例は、実際に適用する場合有効な
ものとなる。
Therefore, this second embodiment is effective when actually applied.

゛ 次に、本発明の有効性を以下の実験例で説明する。゛Next, the effectiveness of the present invention will be explained with the following experimental examples.

この場合、ディスク7として、ne、noがそれぞれ約
1.5806.1.5800の射出成形に16厚さ1.
2mm(7)PCI盤8aに、記録層9として900A
の厚みのGd −Tb−Fc垂直磁化膜を高周波スパッ
タ法で成膜したもの(この記録媒体をサンプル7aとす
る)と、同じ厚さのPMMA基盤8bに同様の磁化膜を
同時スパッタで成膜したもの(この記録媒体をサンプル
7bとする)とを二種類用意した。
In this case, the disk 7 is injection molded with ne and no of about 1.5806 and 1.5800, respectively, and has a thickness of 1.
2mm (7) PCI board 8a, 900A as recording layer 9
A Gd-Tb-Fc perpendicularly magnetized film with a thickness of (this recording medium is designated as sample 7b) and two types were prepared.

しかして、第2図に示す本発明の実施例の光学系と、第
6図に示ず従来例の光学系を用いIC場合とで比較を行
った。
Therefore, a comparison was made between the optical system according to the embodiment of the present invention shown in FIG. 2 and an IC case using a conventional optical system not shown in FIG.

尚、この実施例における位相補償板として用いられるl
@カットの水晶板の厚さは0.56.0゜64.0.7
2,0.80nuaの4種類を用意した。
Note that l used as the phase compensation plate in this example
@The thickness of the cut crystal plate is 0.56.0°64.0.7
Four types of 2.0.80 nua were prepared.

先ず従来例、つまり第6図の光学系の場合で、PC基1
8a、PMMA基盤8bを用いた場合のノイズレベルを
比較した結果は第3図(a)となり、一方、この実施例
の光学系を用いた場合のPC基18aに対するノイズレ
ベルは同図(b)に示すようになった。
First, in the case of the conventional example, that is, the optical system shown in FIG.
The result of comparing the noise levels when using the PMMA substrate 8a and the PMMA substrate 8b is shown in FIG. 3(a), while the noise level for the PC substrate 18a when using the optical system of this example is shown in FIG. It is now shown in

上記第3図(a)からノイズレベルはPC基盤8aの方
が会いことが分る。尚、第3図(a)において符号りで
示す範囲は実用再生範囲である。
It can be seen from FIG. 3(a) that the PC board 8a has a lower noise level. In addition, the range indicated by the reference numeral in FIG. 3(a) is the practical reproduction range.

一方、第3図(b)から厚さが0.72m1llの場合
には第3図(a)のPMMA基盤8bの場合に近いノイ
ズレベルに低減できる。
On the other hand, as shown in FIG. 3(b), when the thickness is 0.72 ml, the noise level can be reduced to a level close to that of the PMMA substrate 8b in FIG. 3(a).

尚、この測定結果におけるC/Nは、記録媒体サンプル
7a、7bを900rE)mr回転し、り0スニコルの
もとでの1MHzのキャリア信号に対して行ったもので
ある。
Note that the C/N in this measurement result was obtained by rotating the recording medium samples 7a and 7b by 900 rE) mr and using a 1 MHz carrier signal under 0 Snicol.

上記実験例ではPC基盤8aに対してもこの実施例の光
学系はPMMA基盤8bを用いた場合とほぼ同様にC/
Nを増大できる。
In the above experimental example, the optical system of this example is similar to the case where the PC board 8a is used with the PC board 8b.
N can be increased.

この実験例から、他の条件のPCM盤に対しても位相補
償板の厚さ等を調整することによってC/Nを大きくで
きることが推測できる。
From this experimental example, it can be inferred that the C/N can be increased even for PCM discs under other conditions by adjusting the thickness of the phase compensation plate, etc.

第4図は本発明の第3実施例の主要部を示す。FIG. 4 shows the main parts of a third embodiment of the present invention.

この第3実施例のピックアップ61では第2図における
λ/2板を用いないで、位相補償板62として基盤8と
逆極性の複屈折特性を示すものが用いである。つまり、
この位相補償板62は、基盤7がne>noであるのに
対し、ne<noとなるものが用いである。
In the pickup 61 of this third embodiment, the λ/2 plate shown in FIG. 2 is not used, but a phase compensation plate 62 that exhibits birefringence characteristics opposite in polarity to that of the substrate 8 is used. In other words,
The phase compensation plate 62 used is one in which ne<no, whereas the base plate 7 has ne>no.

その他は上記第2実施例と同様である。The rest is the same as the second embodiment.

第5図は本発明の第4実施例の主要部を示す。FIG. 5 shows the main parts of a fourth embodiment of the present invention.

第4実施例のピックアップ71では、第2図に示す第2
実施例において、λ/2板42と集光レンズ12との間
に例えば、入射光に対し、50%を透過し、50%を反
射するハーフミラ−72を配設している。
In the pickup 71 of the fourth embodiment, the second
In the embodiment, a half mirror 72 that transmits 50% of incident light and reflects 50% of the incident light is disposed between the λ/2 plate 42 and the condenser lens 12, for example.

しかして、このハーフミラ−72で透明した光ビームに
対して、第2実施例と同様に位相補償板52、検光子1
1を通して光検出器13で受光すると共に、反射した光
ビームに対しても、前記同一特性の位相補償板52′、
検光子11′を通して光検出器13′で受光している。
As in the second embodiment, the phase compensation plate 52 and the analyzer 1
1 and received by the photodetector 13, and also for the reflected light beam, the phase compensation plate 52' having the same characteristics as described above,
The light is received by a photodetector 13' through an analyzer 11'.

上記検出子11は一方の磁化方向に対する光ビームを透
過するように、その角度を設定するのに対し、他方の検
光子11−は逆方向の磁化方向に対する光ビームを透過
するように、その角度が設定されている。しかして特性
の等しい両光検出器13.13=の光電変換信号を差動
増幅器73を通してその差動出力によって記録情報の再
生を行うようにしている。
The angle of the detector 11 is set so that the light beam for one magnetization direction is transmitted, whereas the other analyzer 11- is set at an angle so that the light beam for the opposite magnetization direction is transmitted. is set. In this way, the photoelectric conversion signals of the two photodetectors 13, 13, which have the same characteristics, are passed through the differential amplifier 73, and the recorded information is reproduced by the differential output thereof.

この第4実施例は差動出力を得るようにしであるので、
よりC/Nを増大できる。
Since this fourth embodiment is designed to obtain differential output,
The C/N can be further increased.

尚、上記各実施例を部分的に組合わせたものも本発明に
屈する。
Incidentally, a partial combination of each of the above embodiments is also subject to the present invention.

尚、本発明はPC基盤に限らず複屈折を示す基盤に広く
適用できるものである。
The present invention is not limited to PC boards, but can be widely applied to boards exhibiting birefringence.

尚、上記各実施例では記録情報を再生する光検出器13
が設けられている記録情報再生用受光部近辺に位相補償
手段を配設しているが、集光レンズ12で集光する前に
拡間する凹レンズ等を配設して、光ビームの径を大きく
づることによって、開口数NAの大きい集光レンズを用
いても、光検出器13(13′)に至るまでの距離を拡
大して位相補償板等を介装し易くすることもできる。こ
の場合、拡径する光路途中に位相補償板を介装すること
もできる。さらに、複数の凸レンズを用いて、平行な光
ビームを集光し、焦点を通りすぎた後再び拡開する光ビ
ームを集光して平行光ビームに、その後上記のような集
光レンズで光検出器13に入射させるようにしても良い
。この場合、位相補償板の介装位置として、集光又は拡
開する光ビーム部分のいずれでも良いし、複数に分けて
介装しても良い。
In each of the above embodiments, the photodetector 13 for reproducing recorded information is
A phase compensating means is provided near the light receiving section for recording information reproduction, which is provided with a light beam, but a concave lens or the like is provided to widen the light beam before condensing it with the condenser lens 12 to adjust the diameter of the light beam. By increasing the size, even if a condensing lens with a large numerical aperture NA is used, the distance to the photodetector 13 (13') can be expanded, making it easier to insert a phase compensation plate or the like. In this case, a phase compensation plate may be interposed in the middle of the optical path that expands in diameter. Furthermore, multiple convex lenses are used to condense a parallel light beam, and the light beam that spreads out again after passing through the focal point is condensed into a parallel light beam, and then the condensing lens as described above is used to condense the light beam into a parallel light beam. The light may be made to enter the detector 13. In this case, the interposed position of the phase compensator may be either the condensing or expanding light beam portion, or the interposition may be divided into a plurality of parts.

[発明の効!!!] 以上述べたように本発明によれば、複屈折を示ず157
14で楕円化が生じても、この楕円化された光ビームを
直線偏光に戻す位相補償手段を設けであるので、C/N
を増大できる。
[Efficacy of invention! ! ! ] As described above, according to the present invention, there is no birefringence and 157
Even if ovalization occurs in step 14, since a phase compensation means is provided to return this ovalized light beam to linearly polarized light, the C/N
can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す構成図、第2図は本
発明の第2実施例の主要部を示J構成図、第3図は本発
明における実験例に係り、第3図(a>は本発明と比較
するための従来例におけるノイズレベルを示す特性図、
同図(b)は本発明において位相補償板の厚さを変えた
場合でのノイズレベルを示す特性図、第4図は本発明の
第3実施例の主要部を示す構成図、第5図は本発明の第
4実施例の主要部を示す構成図、第6図は従来例の構成
を示す構成図、第7図は複屈折を示す基盤に対して入射
される直線偏光の光ビームが入射角に依存して楕円化を
引起す位相差が生じる関係を示す特性図、第8図は半径
方向と入射面どのなす角度が45°の場合における入射
角に依存して位相差が生じる関係を示す特性図、第9図
は直線偏光の光ビームが集光されて記録媒体に入射され
る様子を示す斜視図である。 2・・・レーザダイオード 3・・・コリメータレンズ 4.5・・・ハーフミラ− 6・・・対物レンズ   7・・・記録媒体8・・・基
盤      9・・・記録層11・・・検光子   
 12・・・集光レンズ13・・・光検出器   41
・・・ピックアップ42・・・λ/2板   43・・
・位相補償板第1図 第2し1 第3図 才? 光 3t−A  /jj   (deg)・π4
図 第5図 13゛ 基♀密 の 1コ
Fig. 1 is a block diagram showing a first embodiment of the present invention, Fig. 2 is a block diagram showing the main parts of a second embodiment of the present invention, and Fig. 3 is a block diagram showing an experimental example of the present invention. Figure (a> is a characteristic diagram showing the noise level in a conventional example for comparison with the present invention,
Fig. 4(b) is a characteristic diagram showing the noise level when the thickness of the phase compensation plate is changed in the present invention, Fig. 4 is a configuration diagram showing the main part of the third embodiment of the present invention, Fig. 5 6 is a configuration diagram showing the main part of the fourth embodiment of the present invention, FIG. 6 is a configuration diagram showing the configuration of a conventional example, and FIG. A characteristic diagram showing the relationship in which a phase difference that causes ovalization occurs depending on the angle of incidence. Figure 8 shows the relationship in which a phase difference occurs depending on the angle of incidence when the angle between the radial direction and the plane of incidence is 45°. FIG. 9 is a perspective view showing how a linearly polarized light beam is focused and incident on a recording medium. 2...Laser diode 3...Collimator lens 4.5...Half mirror 6...Objective lens 7...Recording medium 8...Base 9...Recording layer 11...Analyzer
12... Condensing lens 13... Photodetector 41
...Pickup 42...λ/2 plate 43...
・Phase compensation plate 1st figure 2nd figure 3rd figure Light 3t-A /jj (deg)・π4
Figure 5 Figure 1 1 of 13 groups

Claims (1)

【特許請求の範囲】 複屈折を有する基盤に形成した記録層における磁化方向
に応じて、この記録層からの戻り光の偏光方向が変化す
る光磁気現象を利用した光磁気記録媒体用ピックアップ
において、 前記基盤を経た記録層からの戻り光を、光検出器で受光
する受光手段に、位相補償板を配設したものを用いたこ
とを特徴とする光磁気記録媒体用ピックアップ。
[Claims] A pickup for a magneto-optical recording medium that utilizes a magneto-optical phenomenon in which the polarization direction of light returned from the recording layer changes depending on the magnetization direction in the recording layer formed on a base having birefringence, A pickup for a magneto-optical recording medium, characterized in that a light receiving means for receiving the return light from the recording layer via the substrate with a photodetector is provided with a phase compensation plate.
JP1338286A 1986-01-23 1986-01-23 Pickup for optomagnetic recording medium Pending JPS62172550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338286A JPS62172550A (en) 1986-01-23 1986-01-23 Pickup for optomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338286A JPS62172550A (en) 1986-01-23 1986-01-23 Pickup for optomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62172550A true JPS62172550A (en) 1987-07-29

Family

ID=11831542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338286A Pending JPS62172550A (en) 1986-01-23 1986-01-23 Pickup for optomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62172550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285264A (en) * 1986-06-02 1987-12-11 Nec Corp Optical head for magneto-optical recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285264A (en) * 1986-06-02 1987-12-11 Nec Corp Optical head for magneto-optical recording

Similar Documents

Publication Publication Date Title
US4797868A (en) Optical system employing a laser beam for focusing, tracking and transferring information signals with respect to a magneto-optical memory
US6266313B1 (en) Optical pickup for recording or reproducing system
US6888786B2 (en) Optical device and optical storage device
EP0908871A2 (en) Optical information storage apparatus
KR100286865B1 (en) Optical head unit
EP0908879A2 (en) Optical information storage apparatus
US6002653A (en) Magneto-optical head unit capable of compensating the Kerr ellipticity
JPH0650580B2 (en) Erasable optical head
JPS62172550A (en) Pickup for optomagnetic recording medium
JPH09245369A (en) Optical head for optical disk device
US6343059B1 (en) Reading-writing pickup head
JPS5877048A (en) Reader for photomagnetic recording and reproducing system
JPH0352145A (en) Optical pickup
EP0908877A2 (en) Optical information storage unit
JPS62285264A (en) Optical head for magneto-optical recording
JPH0386953A (en) Magneto-optical recording and reproducing device
JPS6214340A (en) Erasable optical head
JPS62204436A (en) Optical pickup
JPH0242647A (en) Optical pick-up device
JPS639038A (en) Optical system for optical information
JPH01211345A (en) Optical head for magneto-optical recording and reproducing
JPH04132032A (en) Optical pickup and optical information recording medium
JPH04251456A (en) Magneto-optical pickup device
JPH02214048A (en) Optical head
JPH0792940B2 (en) Optical pickup device