JPS6191541A - Test method and apparatus for promoting corrosion undercover - Google Patents

Test method and apparatus for promoting corrosion undercover

Info

Publication number
JPS6191541A
JPS6191541A JP21272084A JP21272084A JPS6191541A JP S6191541 A JPS6191541 A JP S6191541A JP 21272084 A JP21272084 A JP 21272084A JP 21272084 A JP21272084 A JP 21272084A JP S6191541 A JPS6191541 A JP S6191541A
Authority
JP
Japan
Prior art keywords
medium
corrosion
atmospheric gas
coating
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21272084A
Other languages
Japanese (ja)
Inventor
Shoji Suzuki
正二 鈴木
Yasuyuki Taniguchi
易之 谷口
Toshio Tsubaki
敏男 椿
Kenichi Tanigawa
健一 谷川
Hironobu Kawasaki
川崎 博信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21272084A priority Critical patent/JPS6191541A/en
Publication of JPS6191541A publication Critical patent/JPS6191541A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To enable the forecasting with the reliability almost equivalent to the actual situation, by exposing a covered metal material to a heating corrosion medium balanced with an atmospheric gas having a higher oxygen partial pressure than the atmospheric air. CONSTITUTION:A test piece 1 is supported by a test piece support means 4 in a medium tank 3 holding a corrosion medium 2. The medium tank 3 is set in a thermostatic cell 5 with which the corrosion medium 2 is kept at a constant temperature, where the corrosion medium 2 comes in contact with an atmospheric gas 6 with a counterflow device 7 so that the atmospheric gas 6 is allowed to be balance dissolved in the corrosion medium 2. The counterflow device 7 feeds the medium 2 to the medium tank 3 through a medium discharge tube 9 provided in the medium tank 3 by way of a reflax means such as pump. The use of such an apparatus enables the forecasting of the long-term durability of the anti-corrosive cover.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、長年月に亘る防食を行なうべく被覆を施され
た金属材の耐久性を、促進評価するだめの被覆下腐食促
進試験方法及びこの方法を実施するに適した試験装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides an accelerated under-coating corrosion test method and method for accelerating evaluation of the durability of coated metal materials for long-term corrosion protection. The present invention relates to a test device suitable for carrying out this method.

(従来の技術) 一般に、海洋構造物、土中埋設構造物或いは輸送管の内
面などには、20年を超える長期に亘って、それらの構
造物が腐食損傷することがないよう、各種の防食被覆が
施される。現在、防食被覆として最も多用されているの
は、エポキシ塗装、ポリエチレンライニングなどの絶禄
型樹脂系被覆である。
(Prior Art) In general, various types of corrosion protection are applied to the inner surfaces of offshore structures, underground structures, and transport pipes to prevent corrosion damage to these structures over a long period of over 20 years. A coating is applied. Currently, the most commonly used anticorrosion coatings are epoxy coatings, polyethylene linings, and other impervious resin coatings.

これらの樹脂系被覆は、既に20年に及ぶ耐用実績を有
するものもあり、相応の信頼を受けている。又、使用実
績が信頼性の尺度とされる傾向も大でろる。実績重視は
極めて安全な方策であると云えるが、この方策のみでは
対応できない場面も多々生ずる。たとえば実績と少しく
異なる条件に於ける耐久性の推定、或いは有望な新規被
覆を通用する場合の寿命予測と云った問題に対して、実
績の欠除を補なう方策が必要となる。
Some of these resin-based coatings have already been used for over 20 years, and have received considerable trust. There is also a growing tendency for usage history to be used as a measure of reliability. Emphasizing performance can be said to be an extremely safe strategy, but there are many situations in which this strategy alone cannot be used. For example, measures are needed to compensate for the lack of actual results, such as estimating durability under conditions slightly different from actual results, or predicting lifespan when a promising new coating is used.

この方策の一つは、樹脂系被覆の劣化に関する普偏的な
知見を得ることであり、且つ劣化を妥当な方法で促進再
現し、寿命を予測することにある。
One of the strategies is to obtain universal knowledge about the deterioration of resin-based coatings, to accelerate the deterioration in a reasonable manner, and to predict its life.

ところで樹脂系被覆材の使用場面は、日゛照を受けるも
のと受けないものに大別される。日照は樹脂系材料に対
して最大の劣化要因とも云えるものであり、何ら対策の
なされない樹脂を日照下に放置すれば、短期間のうちに
割れを生じ破壊に至る。
Incidentally, the situations in which resin-based coating materials are used are roughly divided into those that receive sunlight and those that do not. Sunlight can be said to be the biggest deterioration factor for resin-based materials, and if resin is left exposed to sunlight without any countermeasures, it will crack and break down in a short period of time.

しかし日照による劣化がこのように重大であるがゆえに
、アクリル樹脂系上塗り塗料、或いはカーボンブラック
によるポリエチレンの耐候性改良などの技術が鋭意開発
され、今や耐候性問題は、寿命を律する要因ではなくな
って来ている。耐候性の問題を除けば、その池の環境劣
化は、各種樹脂の単体材料としての研究結果から、耐久
性のある樹脂の選定が概ね可能である。
However, because deterioration caused by sunlight is so serious, technologies such as acrylic resin topcoat paints and carbon black to improve the weather resistance of polyethylene have been developed, and now weather resistance is no longer a factor that determines the lifespan. It is coming. Aside from the issue of weather resistance, it is generally possible to select a durable resin based on the research results of various resins as single materials to prevent environmental deterioration of the pond.

而して防食を要求される環境は、一般に酸素と水を含ん
でおり、防食用の樹脂被覆材は、この酸素や水分ケ徐々
にではあるが透過させる性質を有しており、この結果と
して、被覆材と金属面の接着界面が劣化する。この劣化
が実質的な寿命支配要因となることについては、たとえ
ば1981年発行のProgress in Orga
nic Coatings、 vol 9.NILl、
29〜46頁に記載されており、本発明者゛らも軽装的
に同意するところである。
The environment that requires corrosion protection generally contains oxygen and water, and the resin coating for corrosion protection has the property of allowing this oxygen and water to permeate, albeit gradually. , the adhesive interface between the coating material and the metal surface deteriorates. Regarding the fact that this deterioration is actually a factor controlling the lifespan, see, for example, Progress in Orga published in 1981.
nic Coatings, vol 9. NILl,
It is described on pages 29 to 46, and the inventors of the present invention generally agree with this.

さて被覆材と金属の間の接着面劣化が、耐久性支配要内
であるとすると、この劣化を促進評価する手段が必要で
ある。上記界面の劣化現象とビては、先ず、主として透
過水分による接着力の低下を挙げることができる。この
劣化を促進評価する手段としては、1984年発行の鉄
鋼協会第107回講演会予稿集8448頁に記述されて
いる如く、温度勾配劣化促進試験が有用である。
Now, assuming that the deterioration of the bonding surface between the coating material and the metal is within the durability control criteria, a means for accelerating and evaluating this deterioration is required. The phenomenon of deterioration of the interface described above can first be attributed to a decrease in adhesive strength mainly due to permeated moisture. As a means of accelerating and evaluating this deterioration, a temperature gradient deterioration acceleration test is useful, as described in the Proceedings of the 107th Conference of the Iron and Steel Institute of Japan, published in 1984, page 8448.

また、界面劣化現象として同じく重大なものは、被覆下
の腐食である。これは被覆材料を透過した酸素と、水分
によって被覆下の鋼面て生起する。
Also, an equally important interface deterioration phenomenon is corrosion under the coating. This occurs due to oxygen and moisture permeating the coating material onto the steel surface beneath the coating.

か\る腐食に対する試験方法としては、硫化水素や亜硫
酸ガスのような、特に腐食性の強いガスを対象とした気
相耐食性の試験、或いはオートクレーブ内に、水溶液と
高圧の腐食性ガスを導入して行なう試験など、通常よく
なされるところであり、たとえば1981年日刊工業発
行のパブラスチックによる防食技術”50〜70頁に記
載されているが、これらの試峡ホ、比較評価試験の域を
出るものではなく、その試験結果をもって、被覆工腐食
に関る寿命についての定量的知見を提供しうるものでは
ない。即ち従来技術には真に適切な被覆工腐食促進手段
が見当らない。
Testing methods for such corrosion include gas-phase corrosion resistance tests targeting particularly corrosive gases such as hydrogen sulfide and sulfur dioxide gas, or introducing an aqueous solution and high-pressure corrosive gas into an autoclave. These tests are commonly conducted and are described in "Publastic Corrosion Prevention Technology" published by Nikkan Kogyo in 1981, pages 50-70, but these tests are beyond the scope of comparative evaluation tests. However, the test results cannot provide quantitative knowledge regarding the life span of coating corrosion.In other words, in the prior art, no truly appropriate means for accelerating coating corrosion has been found.

(発明が解決しようとする問題点) 本発明は、平衡雰囲気の酸素分圧と系の温度を制御した
腐食媒体中に、被覆金属材をばくろすることによって、
被覆工腐食を所望の倍率で促進しうるという知見に基く
被覆下層食促進試験方法及びその装置を提供するもので
ある。
(Problems to be Solved by the Invention) The present invention solves the
The present invention provides a coating underlayer corrosion acceleration test method and apparatus based on the knowledge that coating corrosion can be accelerated at a desired rate.

(間2題点を解決するための手段、作用)本発明の要旨
とするところは、大気より高い酸素分圧を有する雰囲気
と平衡させた昇温腐食媒体中に、被覆金属材をばくろす
ることを特徴とする被覆下腐食促進試験方法、及びか\
る方法を具現化するための装置にある。
(Means and operations for solving the problems in question 2) The gist of the present invention is to expose a coated metal material to a corrosive medium at elevated temperature equilibrated with an atmosphere having a higher partial pressure of oxygen than the atmosphere. A test method for accelerated corrosion under coating, characterized by
There is a device for embodying the method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず、本発明において、被覆金属材とは各種鋼材、メッ
キ鋼材、金属溶射鋼材、非鉄金属材、或いはこれらに化
成処理を施した金属材に対し、これらの金属材料の腐食
を長期に亘って防止するなどの目的で、エポキシ系、ポ
リオレフィン系、ポリオレフィン系などの樹脂被覆や、
レジンモルタル、ポリマーセメントモルタルなどの被覆
を施した材料を指す。
First, in the present invention, coated metal materials are various steel materials, plated steel materials, metal sprayed steel materials, non-ferrous metal materials, or metal materials that have undergone chemical conversion treatment, and are used to prevent corrosion of these metal materials over a long period of time. For purposes such as coating with epoxy, polyolefin, and polyolefin resins,
Refers to materials coated with resin mortar, polymer cement mortar, etc.

次に、本発明においては、か\る被覆金属材を、腐食媒
体中にばくるして試験を行なうものであるが、こ\で云
う腐食媒体とは、たとえば純水、淡水、水道水、海水、
塩類・酸・アルコールなどを含有する水溶液、或いはこ
れらの液を、シャワー状、霧状、蒸気相としたものなど
を総称するものであって、被覆金属材に該媒体を接触さ
せるには、破壊金属材を媒体中に設置し、或いは媒体を
流しかけるといつだ手段を、被覆金属材の使用されるべ
き環境に応じて、適宜選択することができる。
Next, in the present invention, the test is carried out by exposing the coated metal material in a corrosive medium, and the corrosive medium referred to here may be, for example, pure water, fresh water, tap water, or seawater. ,
A general term for aqueous solutions containing salts, acids, alcohols, etc., or those in the form of a shower, mist, or vapor phase. The means for placing the metal material in the medium or pouring the medium over it can be selected as appropriate depending on the environment in which the coated metal material is to be used.

さて、本発明においては、被覆金属材をはくるする腐食
媒体は、昇温し且大気より高い2m分圧と平衡させるこ
とを最大の骨子とするものであるが、これは適切な昇温
と、平衡雰囲気の酸素分圧の増加によって、被覆工腐食
を所望の倍率で促進しうるという知見に基くものである
Now, in the present invention, the main point is to raise the temperature of the corrosive medium that strips the coated metal material and to balance it with a partial pressure of 2m higher than that of the atmosphere. , based on the finding that coating corrosion can be accelerated by a desired factor by increasing the oxygen partial pressure of the equilibrium atmosphere.

このような知見は、次のような実験によって得られた。Such knowledge was obtained through the following experiment.

即ち、第1図は、代表的な被覆材の一つである粉本エポ
キシ塗料から作成した0、4 M厚さの硬化膜の酸素透
過特性を同圧法によって測定し、温度に対して図示した
ものである。同図から判るように、被覆材の酸素透過速
度は、系の温度を常温から50℃に昇温することによっ
て4倍になっている。
In other words, Figure 1 shows the oxygen permeability characteristics of a 0.4 M thick cured film made from powdered epoxy paint, one of the typical coating materials, measured by the isobaric method and plotted against temperature. It is something. As can be seen from the figure, the oxygen permeation rate of the coating material quadrupled by raising the temperature of the system from room temperature to 50°C.

こ\で、樹脂膜の酸素透過速度は、入側と出側の酸素分
圧に概ね比例することが既に知られているので、被覆金
属材をとりまく環境の平衡雰囲気を、通常大気(酸素分
圧0.2 at、m )から純酸素(酸素分圧1 at
m )に変更すると、被覆の酸素透過速度は約5倍にな
る。これに昇温による4倍を積算すると、計20倍の被
覆工腐食促進が見込まれることになる。
Since it is already known that the oxygen permeation rate through a resin membrane is roughly proportional to the oxygen partial pressure on the inlet and outlet sides, the equilibrium atmosphere surrounding the coated metal material is normally atmospheric (oxygen content). pressure 0.2 at, m ) to pure oxygen (oxygen partial pressure 1 at
m), the oxygen permeation rate of the coating increases approximately five times. If this is multiplied by 4 times due to temperature rise, it is expected that coating corrosion will be accelerated by a total of 20 times.

こ5では特定の昇温及び特定の酸素分圧に関する例を述
べたが、昇温の程度や酸素分圧を変更すれば、促進培率
は如何様にも設定できることになる。即ち、適切な昇温
を行なうと共に、平衡雰囲気の酸素分圧を増加させるこ
とによって、被覆工腐食を所望の倍率で促進することが
可能となるものである。
In this section 5, an example regarding a specific temperature increase and a specific oxygen partial pressure was described, but by changing the degree of temperature increase and the oxygen partial pressure, the promotion rate can be set in any manner. That is, by raising the temperature appropriately and increasing the oxygen partial pressure in the equilibrium atmosphere, coating corrosion can be accelerated to a desired rate.

なお、被覆下に腐食を生じるためには、酸素の池に水分
の供給が必要である。前述したように、環境中の水分が
被覆材を透過することによって、この供給が行なわれる
。このためには環境中の水分条件を適切に設定せねばな
らない。たとえば海中に浸漬して使用される用途に対し
ては、腐食媒体として食塩水或いは人工海水に試験片を
浸漬し、水道管内面に関しては、腐食媒体として上水に
試験片を浸漬し、これらの液を昇温した上で、筒い酸素
分圧を有する雰囲気ガスを平衡させる。
In addition, in order to cause corrosion under the coating, it is necessary to supply moisture to the oxygen pond. As previously discussed, this provision is accomplished by the passage of environmental moisture through the coating. For this purpose, the moisture conditions in the environment must be appropriately set. For example, for applications where the test piece is immersed in the sea, the test piece is immersed in saline water or artificial seawater as a corrosive medium, and for the inner surface of a water pipe, the test piece is immersed in tap water as a corrosive medium. After raising the temperature of the liquid, the atmospheric gas having the partial pressure of oxygen is equilibrated.

又、高酸素分圧の雰囲気ガスと平衡させた人工海水、或
いは淡水を画状に噴射したものを腐食媒体とし、この中
に試験片をばくろすれば、海洋に於ける飛沫帯或いは陸
上の多雨環境に対応する促進試験となる。
In addition, if artificial seawater or fresh water equilibrated with atmospheric gas with high oxygen partial pressure is sprayed in a pattern as a corrosive medium, and the test piece is exposed in this medium, it can be used as a spray zone in the ocean or on land. This is an accelerated test that corresponds to a rainy environment.

まだ、腐食環境がたとえばグリコールなどを含む時は、
その液を腐食媒体として用いるとよい。
However, when the corrosive environment contains, for example, glycol,
The liquid may be used as a corrosive medium.

そうすれば実情に応じた飽和水蒸気圧に降下した環境で
の促進試験となる。さらに、たとえば寡雨地帯の大気中
に於ける耐久性を促進評価するためには、その地の環境
を代表する相対湿度の雰囲気を作9、この雰囲気の酸素
分圧を高め、これを腐食媒体としてこの中に試験片をば
くろする。
This will allow accelerated testing in an environment where the saturated water vapor pressure has dropped to suit the actual situation. Furthermore, in order to promote and evaluate durability in the atmosphere of a region with little rainfall, for example, an atmosphere with relative humidity representative of the local environment is created9, the oxygen partial pressure of this atmosphere is increased, and this is used as a corrosive medium. Expose the test piece in this.

なお、腐食媒体を高い酸素分圧の雰囲気ガスと平衡させ
るためには、たとえば腐食媒体が水溶液の場合液中に当
該雰囲気ガスをバブリングさせ、望壕しくは更に水流と
ガス流を向流させる方策を加えるとよい。
In order to equilibrate the corrosive medium with the atmospheric gas having a high oxygen partial pressure, for example, if the corrosive medium is an aqueous solution, it is desirable to bubble the atmospheric gas into the liquid and, preferably, to countercurrent the water flow and the gas flow. It is a good idea to add

また、酸素分圧を高めた恒湿雰囲気を作るには、たとえ
ば溶質を加えて飽和水蒸気圧を降下させた水溶液、或い
は温度を下げて、飽和水蒸気圧を試験槽温度のそれより
も降下させた真水中に、高酸素分圧雰囲気ガスをバブリ
ングなどの方法で接触させ、この雰囲気ガスを試験槽に
導けばよい。また、試験槽内の昇温或いは温度制御は通
常の恒温槽と同様に行なうことができる。
In addition, in order to create a constant humidity atmosphere with a high oxygen partial pressure, for example, a solute may be added to an aqueous solution to lower the saturated water vapor pressure, or the temperature may be lowered so that the saturated water vapor pressure is lower than that of the test chamber temperature. A high oxygen partial pressure atmospheric gas may be brought into contact with fresh water by a method such as bubbling, and this atmospheric gas may be introduced into the test chamber. Furthermore, the temperature within the test chamber can be increased or controlled in the same manner as in a normal thermostat.

第2図は本発明装置の一実施態様例を示す正面図である
FIG. 2 is a front view showing an embodiment of the device of the present invention.

図に於て1は試験片であって、腐食媒体2を収容した媒
体槽3内に、試験片支持手段4によって支持されている
。媒体槽3は、腐食媒体2を一定温度とするだめの恒温
槽5内に設置され、腐食媒体2と雰囲気ガス6は向流装
置7において互に接触し、腐食媒体中に雰囲気ガスが平
衡溶解させられる。
In the figure, reference numeral 1 denotes a test piece, which is supported by a test piece support means 4 in a medium tank 3 containing a corrosive medium 2. The medium tank 3 is installed in a constant temperature bath 5 that keeps the corrosive medium 2 at a constant temperature, and the corrosive medium 2 and the atmospheric gas 6 come into contact with each other in the countercurrent device 7, so that the atmospheric gas is dissolved in equilibrium in the corrosive medium. I am made to do so.

該向流装置7は、たとえばポンプの如き環流手段8を介
して、媒体槽3内に設けた媒体吐出管9から、媒体2を
媒体槽3内に送給する。なおこの他、図示しないが、媒
体温度を測定するための測温装置、該温度変化に応じて
、恒温槽の温度を制御するための温度制御機構などの諸
機構を適宜付加しうるものであることは云うまでもない
The countercurrent device 7 feeds the medium 2 into the medium tank 3 from a medium discharge pipe 9 provided in the medium tank 3 via a circulation means 8 such as a pump, for example. In addition, although not shown, various mechanisms such as a temperature measuring device for measuring the temperature of the medium and a temperature control mechanism for controlling the temperature of the constant temperature bath according to the temperature change can be added as appropriate. Needless to say.

以上の説明は、媒体2が液状のものである場合について
述べたが、媒体2が、画状或いは蒸気状の場合には、媒
体の性状に応じて向流手段を適亘変化せしめればよい。
The above explanation has been made regarding the case where the medium 2 is liquid, but if the medium 2 is in the form of a picture or vapor, the countercurrent means may be changed appropriately depending on the properties of the medium. .

なお雰囲気ガス6としては、酸素分圧を制御したガスを
用いるものであり、純酸素の他、酸素と窒素を所望の割
合で、混合ガスなどを適宜用いることができる。又試験
片支持手段4としては、図示した様な架台或いは吊下げ
機構などを、適宜採用することができる。
As the atmospheric gas 6, a gas with a controlled oxygen partial pressure is used, and in addition to pure oxygen, a mixed gas of oxygen and nitrogen in a desired ratio can be used as appropriate. Further, as the test piece supporting means 4, a pedestal or a hanging mechanism as shown in the figure can be appropriately employed.

以下、実施例により、本発明の効果を更に具体的に示す
EXAMPLES Hereinafter, the effects of the present invention will be illustrated in more detail with reference to Examples.

(実施例) 第2図に示す装置を用い、腐食媒体として、3チ食塩水
を用いて循環させ、系の温度を50℃とし、更に平衡雰
囲気ガスとして250m1/min  の純酸素を流し
た。
(Example) Using the apparatus shown in FIG. 2, trichloride was circulated as a corrosive medium, the system temperature was set at 50° C., and pure oxygen was flowed at 250 ml/min as an equilibrium atmosphere gas.

次に、この媒体槽に試験片として2.3 t X 50
X I OO(rxs )の鋼板に対して、グリッドプ
ラスチングの後、下記A、B、C,Dの4種の被覆を全
面て施したものを1.5ケ月浸漬した。
Next, a test piece of 2.3 t x 50 was placed in this medium tank.
After grid plasting, a steel plate of X I OO (rxs) was coated with the following four types of coatings A, B, C, and D, and then immersed for 1.5 months.

Aニガラスフレーク人ポリエステル   1.3UB 
:エポキシ系レジンモルタル     3.2゜C:ポ
リエステル系レジンモルタル   32闘D :ポリウ
レタン塗料         4.6u又、これらの試
験片を、実際の、海中にも30ケ月浸漬した。
A Nigaras flake polyester 1.3UB
: Epoxy resin mortar 3.2°C: Polyester resin mortar 32°C: Polyurethane paint 4.6u These test pieces were also immersed in actual seawater for 30 months.

以上の両条件に浸漬した試験片を撤収し、被覆下の酸素
量を分析し、腐食生成物がFe2O3・H2Oであると
して、鋼板腐食厚さに換算した上、促進試験1.5ケ月
と、海中試験30ケ月の被覆工腐食量を比較したところ
、第3図のようになり、実際の海中に浸漬した試験にく
らべ、はソ20倍の促進が可能であることが認められた
The test piece immersed in both of the above conditions was withdrawn, the amount of oxygen under the coating was analyzed, and the corrosion product was determined to be Fe2O3/H2O, which was converted to the corrosion thickness of the steel plate, and the accelerated test was conducted for 1.5 months. A comparison of the amount of corrosion of the coating after 30 months of underwater testing resulted in the results shown in Figure 3, and it was recognized that corrosion could be accelerated by 20 times compared to actual underwater testing.

(発明の効果) 以上の実施例からも明らかな如く、本発明方法及び装置
によって、被覆工腐食を所望の倍率で促進することが可
能である。この結果新規或いは改良された防食被覆の長
期耐久性を、実情に近い信頼性をもって予測することが
可能となった。
(Effects of the Invention) As is clear from the above examples, the method and apparatus of the present invention make it possible to accelerate coating corrosion at a desired rate. As a result, it has become possible to predict the long-term durability of new or improved anticorrosive coatings with a reliability close to the actual situation.

又、防食被覆を施された金属材の腐食疲労問題のように
、長期間を要するが故に、データの蓄積が進まない分野
に対しても、多大の貢献をなすところとなり、産業上の
効果は極めて顕著である。
In addition, it will make a great contribution to fields where data accumulation is slow, such as the corrosion fatigue problem of metal materials coated with anti-corrosion coatings, because it takes a long time, and the industrial effect will be greatly improved. Very noticeable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は樹脂膜の酸素透過特注列を示す図表、第2図は
本発明装置の一実施態様例を示す正面図、第3図は本発
明方法と海中浸漬試、験との相関を示す図表である。 1:試験片      2:腐食媒体 3:媒体槽      4:試験片支持手段5:恒温槽
      6:雰囲気ガス7:向流装置     8
:還流手段 9:媒体吐出管 第1図 丙4 度  C′Cン 103/T(l/k)
Fig. 1 is a diagram showing a custom-made oxygen permeation row of resin membranes, Fig. 2 is a front view showing an embodiment of the device of the present invention, and Fig. 3 shows the correlation between the method of the present invention and the underwater immersion test. This is a diagram. 1: Test piece 2: Corrosive medium 3: Medium bath 4: Test piece support means 5: Constant temperature chamber 6: Atmospheric gas 7: Countercurrent device 8
: Reflux means 9: Medium discharge pipe Fig. 1 C'Cn 103/T (l/k)

Claims (1)

【特許請求の範囲】 1 大気より高い酸素分圧を有する雰囲気ガスと平衡さ
せた昇温腐食媒体中に被覆金属材をばくろすることを特
徴とする被覆下腐食促進試験方法。 2 腐食液に大気より高い酸素分圧を有する雰囲気ガス
を平衡させるための向流装置、該向流装置に接続された
腐食液槽、該腐食液槽を囲む恒温槽、腐食液槽の液を上
記向流装置に送るための還流装置を構成要素とする被覆
下腐食促進試験装置。
[Scope of Claims] 1. An under-coating corrosion acceleration test method characterized by exposing a coated metal material in a heated corrosive medium equilibrated with an atmospheric gas having an oxygen partial pressure higher than that of the atmosphere. 2. A countercurrent device for equilibrating the corrosive liquid with an atmospheric gas having a higher partial pressure of oxygen than the atmosphere, a corrosive liquid tank connected to the countercurrent device, a constant temperature bath surrounding the corrosive liquid tank, and a liquid in the corrosive liquid tank. An under-coating corrosion acceleration test device comprising a reflux device for sending the flow to the countercurrent device.
JP21272084A 1984-10-12 1984-10-12 Test method and apparatus for promoting corrosion undercover Pending JPS6191541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21272084A JPS6191541A (en) 1984-10-12 1984-10-12 Test method and apparatus for promoting corrosion undercover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21272084A JPS6191541A (en) 1984-10-12 1984-10-12 Test method and apparatus for promoting corrosion undercover

Publications (1)

Publication Number Publication Date
JPS6191541A true JPS6191541A (en) 1986-05-09

Family

ID=16627313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21272084A Pending JPS6191541A (en) 1984-10-12 1984-10-12 Test method and apparatus for promoting corrosion undercover

Country Status (1)

Country Link
JP (1) JPS6191541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706537B1 (en) 2006-09-05 2007-04-13 삼성물산 주식회사 Artificial promoting test apparatus for microbiological corrosion of concrete and evaluation method for microbiological anti-corrosion using the same
JP2012163554A (en) * 2011-01-17 2012-08-30 Kobe Steel Ltd Corrosion measuring method and corrosion environment gauge
JP2017090304A (en) * 2015-11-12 2017-05-25 日本電信電話株式会社 Corrosion test method and corrosion test device
WO2018070144A1 (en) * 2016-10-13 2018-04-19 国立研究開発法人物質・材料研究機構 Rebar corrosion promotion test method and test device using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706537B1 (en) 2006-09-05 2007-04-13 삼성물산 주식회사 Artificial promoting test apparatus for microbiological corrosion of concrete and evaluation method for microbiological anti-corrosion using the same
JP2012163554A (en) * 2011-01-17 2012-08-30 Kobe Steel Ltd Corrosion measuring method and corrosion environment gauge
JP2017090304A (en) * 2015-11-12 2017-05-25 日本電信電話株式会社 Corrosion test method and corrosion test device
WO2018070144A1 (en) * 2016-10-13 2018-04-19 国立研究開発法人物質・材料研究機構 Rebar corrosion promotion test method and test device using same
JP2018063176A (en) * 2016-10-13 2018-04-19 国立研究開発法人物質・材料研究機構 Rebar corrosion promotion test method and test equipment used for the same

Similar Documents

Publication Publication Date Title
Robinson et al. Oxygen absorption in stirred tanks: A correlation for ionic strength effects
CN101525514B (en) Resin anti-corrosive paint
Yang et al. Atmospheric corrosion protection method for corroded steel members using sacrificial anode of Al-based alloy
Dugstad et al. Corrosion testing of steel armour wires in flexible pipes–A parametric study
JPS6191541A (en) Test method and apparatus for promoting corrosion undercover
Maahn et al. The influence of microstructure on the corrosion properties of hot-dip galvanized reinforcement in concrete
Arunkumar et al. Effect of polyurea coating on corrosion resistance over mild steel and aluminium substrates for liquid storage applications
CN111208056A (en) Corrosion inhibition performance evaluation method of vapor phase corrosion inhibitor
US8820155B2 (en) Coated metallic sample peel test
BR112016024677B1 (en) COMPOSITION OF A CURABLE COATING, AND, USE OF A COATING ON A HEAT RELEASE SURFACE
JPS58139049A (en) Immersion testing method and device thereof
JPS61283381A (en) Corrosion-proof process for environmental structure in water
US4106906A (en) Method for suppressing water evaporation using a polybutadiene film
Mastronardi et al. The effect of the transport properties of epoxy based coatings on metallic substrate corrosion
CN108535177A (en) A kind of accelerated test method that simulation hot-galvanized steel corrodes under the industrial atmosphere of inland
Skar Cathodic disbonding of and transport of charge through paint films.
Manner et al. Corrosion studies under conditions of thermal desalination I. Pilot test loops for the simulation of plant conditions
Nakayama et al. Corrosion countermeasures for LNG storage tanks made of series 5083 aluminum–magnesium alloy
Dexter Localized corrosion of aluminum alloys for OTEC heat exchangers
JPS58213231A (en) Device for detecting change of material in composite environment
JPS6117265B2 (en)
CN115808386A (en) Concrete sewage pool biological corrosion simulation device and method
Palacios Mechanisms of CO (2) corrosion related to velocity in two-phase flow systems
Vu et al. HIGH PROTECTION PERFORMANCE OF COATING SYSTEMS BASED ON ZINC RICH PRIMER AND FLUOROPOLYMER COATING
Mutchler et al. Salt Spray Test