WO2018070144A1 - Rebar corrosion promotion test method and test device using same - Google Patents

Rebar corrosion promotion test method and test device using same Download PDF

Info

Publication number
WO2018070144A1
WO2018070144A1 PCT/JP2017/032142 JP2017032142W WO2018070144A1 WO 2018070144 A1 WO2018070144 A1 WO 2018070144A1 JP 2017032142 W JP2017032142 W JP 2017032142W WO 2018070144 A1 WO2018070144 A1 WO 2018070144A1
Authority
WO
WIPO (PCT)
Prior art keywords
specimen
oxygen
concrete
mortar
cement paste
Prior art date
Application number
PCT/JP2017/032142
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 土井
廣本 祥子
英二 秋山
英樹 片山
土谷 浩一
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Publication of WO2018070144A1 publication Critical patent/WO2018070144A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Definitions

  • the present invention relates to a reinforcing bar corrosion acceleration test method for accelerating the reinforcing bar corrosion inside cement paste, mortar, or concrete, and a test apparatus used therefor.
  • Non-Patent Document 1 describes such a reinforcement corrosion diagnosis technique for concrete structures.
  • Patent Document 1 proposes a stainless steel corrosion test method suitable for offshore structures such as nuclear reactors, chemical plants, and subsea oil fields.
  • Patent Document 2 proposes a real environment simulated atmospheric corrosion test apparatus.
  • Patent Document 3 proposes a corrosion test method for a wire harness arranged in a living space of an automobile.
  • the concrete interior is an alkaline environment and iron is covered with a highly protective oxide film (passive film)
  • corrosion is extremely gradual. For this reason, it is said that it takes several decades or more for the progress of corrosion to such an extent that concrete peels in an actual environment.
  • Non-Patent Document 2 for example, accelerated test methods such as an electrolytic corrosion test method, a wet and dry repeated test method, and an autoclave method have been proposed in order to corrode an iron sample inside a concrete specimen in a short period of time.
  • electrolytic corrosion test method a wet and dry repeated test method
  • autoclave method a method for introduction of chloride ions, which are considered to be a main factor of corrosion
  • electrophoresis, salt (NaCl) kneading and the like are performed.
  • each test method has a problem.
  • the electrolytic corrosion test method is used to obtain a rebar corrosion weight loss that causes cracks in a short time.
  • iron rust iron oxide or iron hydroxide containing chloride ions
  • iron rust containing chlorides has a very different expansion rate from actual iron rust, it can be said that the exact relationship between the amount of rust and the occurrence of cracks in concrete has not been examined in the electrolytic corrosion test.
  • the present invention solves the above-mentioned problems, and a new method for promoting corrosion of reinforcing steel bars, which can generate iron rust having the same composition as iron rust generated in an actual environment without changing the properties of concrete, as easily and as quickly as possible.
  • the purpose is to provide.
  • the reinforcing bar corrosion promotion test apparatus of the present invention includes a pressurization chamber used for increasing the oxygen supply amount, and an oxygen supply device or an oxygen pressurization device for increasing the oxygen pressure in the pressurization chamber, and the pressurization chamber
  • a pressurization chamber used for increasing the oxygen supply amount
  • an oxygen supply device or an oxygen pressurization device for increasing the oxygen pressure in the pressurization chamber
  • the pressurization chamber A cement paste test specimen, a mortar test specimen, or a concrete test specimen is installed in the inside, and the oxygen pressure in the pressurized chamber is increased to enter the cement paste test specimen, the mortar test specimen, or the concrete test specimen.
  • the oxygen supply amount is increased.
  • the reinforcing bar corrosion acceleration test apparatus of the present invention it is preferable to have an aqueous NaCl solution accumulated in the pressurized chamber and immerse the cement paste specimen, mortar specimen, or concrete specimen in the NaCl aqueous solution.
  • the NaCl aqueous solution filled in the pressurized chamber is 8.2 ⁇ 10 ⁇ 5 kg / m 3 or more and 50 kg / m 3 or less in terms of concrete per unit volume.
  • the chloride ion concentration may be as follows.
  • the NaCl aqueous solution filled in the pressurized chamber may have a chloride ion concentration of 2 kg / m 3 or more and 10 kg / m 3 or less in terms of concrete per unit volume, particularly preferably seawater chlorination. It is good that it is 5 kg / m 3 corresponding to the physical ion concentration.
  • the concentration of the NaCl aqueous solution is adjusted to be the same as the NaCl concentration of water used for mixing the mortar or cement paste.
  • the reinforcing bar corrosion acceleration test apparatus of the present invention preferably, further comprising a humidity control unit for controlling the humidity in the pressurization chamber, and an oxygen pressure control unit for increasing the oxygen pressure in the pressurization chamber
  • the oxygen pressure control unit may increase the amount of oxygen supplied into the cement paste specimen, mortar specimen, or concrete specimen.
  • the humidity control unit humidifies a gas supplied by a humidifier and / or installs a saturated solution of a predetermined inorganic salt in a chamber, and pressurizes. It is good to control the humidity in the chamber.
  • the increase in oxygen pressure in the pressurization chamber is 2 to 200 times based on the oxygen partial pressure in the atmosphere. If it is less than 2 times, the increase in the amount of oxygen supplied into the cement paste specimen, mortar specimen, or concrete specimen is not sufficient, and the reinforcement of reinforcing steel bars is not sufficient. When it exceeds 200 times, excessive pressure resistance is required for the pressure chamber, and the equipment price increases. More preferably, the increase in the oxygen pressure in the pressurizing chamber is 15 times or more and 100 times or less based on the oxygen partial pressure in the atmosphere.
  • Reinforcing bar corrosion acceleration test method of the present invention a cement paste test body, a mortar test body, or a concrete test body is installed in a pressure chamber, the oxygen pressure in the pressure chamber is increased, the cement paste test body, This is a test method that increases the amount of oxygen supplied into the mortar test specimen or concrete test specimen and promotes corrosion of reinforcing bars embedded in the cement paste test specimen, mortar test specimen, or concrete test specimen.
  • a NaCl aqueous solution that adjusts to a predetermined chloride ion concentration in terms of concrete as a specimen is prepared, and the NaCl aqueous solution is filled in a pressurized chamber.
  • a cement paste specimen, a mortar specimen, or a concrete specimen is immersed in an aqueous NaCl solution, and the oxygen pressure in the pressurized chamber is increased to enter the cement paste specimen, the mortar specimen, or the concrete specimen.
  • This is a test method for increasing the amount of oxygen supplied to promote corrosion of reinforcing bars embedded in the cement paste specimen, mortar specimen, or concrete specimen.
  • the corrosion reaction of the iron sample embedded in the specimen can be promoted. More specifically, by promoting the oxygen reduction reaction, which is the cathodic reaction of the corrosion reaction, by increasing the oxygen supply amount, it is possible to promote the iron oxidation reaction, which is the anodic reaction that proceeds in a pair with the cathodic reaction.
  • FIG. 1A is a schematic view of a cement paste specimen or a mortar specimen according to one embodiment of the present invention.
  • FIG. 1B is an external appearance photograph of a cement paste specimen or a mortar specimen according to one embodiment of the present invention.
  • FIG. 2 is a conceptual configuration diagram of a pressurized chamber according to an embodiment of the present invention.
  • FIG. 3A is a diagram showing the relationship between the oxygen diffusion limit current density and the reciprocal of fog obtained from the cathode polarization curves of various fog cement pastes or iron samples inside mortar.
  • FIG. 3B is a graph showing the relationship between the oxygen diffusion limit current density and the reciprocal of the fog obtained from the cathode polarization curves of various fog cement pastes or iron samples inside the mortar, and a part of the fog range of FIG.
  • FIG. FIG. 4A is a view showing an optical microscope image of the surface of an iron sample when the corrosion acceleration test is performed in an aqueous NaCl solution embedded in a cement paste.
  • FIG. 4B is a diagram showing an optical microscope image of the surface of the iron sample when the corrosion acceleration test is performed in an aqueous NaCl solution embedded in mortar.
  • FIG. 4C is a diagram showing an optical microscope image of the surface of the iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in cement paste.
  • FIG. 4A is a view showing an optical microscope image of the surface of an iron sample when the corrosion acceleration test is performed in an aqueous NaCl solution embedded in a cement paste.
  • FIG. 4B is a diagram showing an optical microscope image of the surface of the iron sample when the corrosion acceleration test is performed in an aqueous NaCl solution embedded in mortar.
  • FIG. 4C is a diagram showing an optical microscope image of the surface of the iron sample
  • FIG. 4D is a diagram showing an optical microscope image of the surface of the iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under a 0.5 MPa pressurized oxygen, embedded in mortar.
  • FIG. 5A is a diagram showing a cross-sectional SEM reflected electron image of an iron sample when the corrosion acceleration test was performed in an aqueous NaCl solution embedded in cement paste.
  • FIG. 5B is a diagram showing a cross-sectional SEM backscattered electron image of an iron sample when the corrosion acceleration test was conducted in an aqueous NaCl solution embedded in mortar.
  • FIG. 5C is a diagram showing a cross-sectional SEM backscattered electron image of an iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in cement paste.
  • FIG. 5D is a diagram showing a cross-sectional SEM backscattered electron image of the iron sample when the corrosion acceleration test was conducted in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in mortar.
  • FIG. 5E is a diagram showing an elemental distribution of iron by EDS measurement of a cross section of an iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in mortar.
  • FIG. 5F is a diagram showing an oxygen element distribution by EDS measurement of a cross section of an iron sample when a corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in a mortar.
  • FIG. 6 is a Raman spectrum of a corrosion product on the surface of an iron sample when buried in a mortar and subjected to a corrosion acceleration test under a pressurized oxygen of 0.5 MPa.
  • FIG. 1A and 1B are explanatory diagrams of a cement paste test body or a mortar test body according to an embodiment of the present invention
  • FIG. 1A is a schematic view
  • FIG. 1B is an appearance photograph.
  • a cement paste test body or mortar test body 10 is composed of a cement paste or mortar 11 made of, for example, a cylindrical body having an outer diameter D of 30 mm and a height H of 25 mm, and an iron sample 12 accommodated therein.
  • the cement paste is a solidified cement paste obtained by mixing a cement material with water.
  • Mortar is a mixture of cement paste with sand (fine aggregate).
  • the cement material is limestone, clay, silica, iron oxide raw material, and gypsum. These raw materials are prepared, pulverized in a raw material mill, and baked in a rotary kiln at a high temperature of 1450 ° C. or higher to form a clinker that is a collection of hydraulic compounds.
  • the clinker is pulverized to produce Portland cement.
  • the cement material include blast furnace cement, fly ash cement, silica cement, ultrafast cement, and alumina cement in addition to Portland cement.
  • a concrete specimen may be used. Concrete means cement paste mixed with sand (fine aggregate), gravel (coarse aggregate), and other admixtures as required.
  • Admixture materials include AE materials that entrain closed cells, water-reducing materials that disperse cement, curing accelerators, rust inhibitors, adhesion mortar stabilizers, setting retarders, accelerators, quick setting agents, shrinkage reducing agents, and separation reduction. Agents, foaming agents, foaming agents, anti-freezing agents, cold resistance promoting agents and the like.
  • the bottom surface of the iron sample 12 is in contact with the cement paste or the mortar 11, and the surface and the peripheral side surface of the iron sample 12 are covered with a coating layer 15 of epoxy resin.
  • a conductive wire 14 is fixed to the surface of the iron sample 12 in contact with an insulating rod 13 made of vinyl chloride or the like.
  • the cement paste or fog 16 of the mortar 11 on the bottom surface of the iron sample 12 is appropriately selected within a range of 1 to 50 mm.
  • the conductive wire 14 is made of a conductive metal wire, such as a copper wire.
  • FIG. 2 is a conceptual configuration diagram of a pressurized chamber according to an embodiment of the present invention.
  • a reinforcing bar corrosion acceleration test apparatus 20 as a pressurized chamber includes a casing 21, a flange 22, a lid 23, an observation window 24, an oxygen supply valve 25, an oxygen release valve 26, a pressure gauge 27, a NaCl aqueous solution 28, and A test body support plate 29 is provided.
  • the housing 21 has a specification as a pressure vessel of 2 MPa or more, preferably 5 MPa or more. Since the atmospheric pressure is about 0.1 MPa, the pressure vessel material is preferably made of steel or titanium. Titanium is more resistant to local corrosion due to salt than steel.
  • a flange 22 is provided at the top opening of the housing 21, and the sealed state inside the housing 21 is maintained by a lid portion 23 and a sealing material (not shown).
  • the observation window 24 is provided on the lid portion 23 and is made of transparent glass or the like in order to visually observe the state inside the housing 21.
  • the oxygen supply valve 25 is a valve for supplying oxygen into the housing 21 and is configured as an oxygen supply device or an oxygen pressurization device, and is connected to, for example, an oxygen cylinder.
  • the oxygen release valve 26 is a valve for releasing oxygen from the inside of the housing 21 and is connected to, for example, a piping system for oxygen circulation.
  • the pressure gauge 27 is a pressure gauge for measuring the oxygen pressure inside the housing 21.
  • the reinforcing bar corrosion acceleration test apparatus 20 may further include an oxygen pressure control unit that controls the pressure of oxygen using the pressure gauge as described above as a meter.
  • the NaCl aqueous solution 28 is stored in the housing 21 and may be in a state in which the cement paste test body or mortar test body 10 is immersed, or in a state where the cement paste test body or mortar test body 10 is exposed.
  • the test body support plate 29 is a plate material that supports the cement paste test body or the mortar test body 10 provided in the housing 21.
  • the reinforcing bar corrosion acceleration test apparatus 20 may further include a humidity control unit that controls the humidity in the pressurized chamber.
  • the range of the humidity in the pressurized chamber is preferably 30% relative humidity (based on a saturated aqueous solution of MgCl 2 ) or more and 98% (based on a saturated aqueous solution of K 2 SO 4 ). This humidity range is appropriate as an experimental condition because it corresponds to changes in wet and dry conditions when concrete is usually placed outdoors.
  • the iron sample 12 was a 99.5% iron plate (Niraco Co., Ltd.) with a material / shape having a thickness of 1 mm.
  • the iron plate was cut to a sample area of 5 ⁇ 5 mm 2 , polished to # 800 with SiC water-resistant abrasive paper (Marumoto Struers Co., Ltd.), and ultrasonically washed with ethanol for 5 minutes. Thereafter, a conductive wire was soldered to the back surface, and the other surfaces were insulated with an epoxy resin (Shobond Construction Co., Ltd.).
  • the iron sample 12 produced above was embedded in a cement paste or mortar to obtain a cement paste specimen or mortar specimen 10.
  • the fog 16 was changed to 1 to 50 mm.
  • the test piece was enlarged so that the distance from the side surface or top surface to the iron sample surface was not smaller than the cover.
  • a 0.33M NaCl aqueous solution was kneaded.
  • standard cement for mechanical testing and standard sand provided by the Cement Association were used, and the water cement ratio was 60% and the cement fine aggregate ratio was 1: 3.
  • Each curing period was 28 days and was cured in water.
  • Table 1 shows the composition of cement paste and mortar used in each test and the chloride ion concentration of kneaded NaCl.
  • test body After curing the test body, it was immersed in the solution for 10 minutes, and polarization was started after confirming that the natural potential became steady.
  • the fog of the test specimen was 1, 2, 5, 10, 20, 50 mm for the cement paste specimen, and 3, 5, 10, 20, 50 mm for the mortar specimen.
  • a sample (covering 0 mm) that was not embedded in cement paste or mortar was prepared, and cathodic polarization measurement was performed in the same manner.
  • the oxygen supply in the atmosphere was increased by increasing the pressure.
  • the oxygen pressure in the chamber was 0.5 MPa (5 atm), and the oxygen supply amount into the cement paste or mortar was increased under an oxygen supply pressure 25 times the atmospheric pressure.
  • the test period was 30 days.
  • the fog of the used cement paste specimen or mortar specimen was 5 mm.
  • the cement paste specimen or mortar specimen is split and an iron sample is taken out.
  • the surface of the iron specimen is observed using an optical microscope (3D1shot, Keyence), and the specimen is observed using a scanning electron microscope (Quanta FEG, FEI). Cross-sectional observation was performed.
  • laser Raman spectroscopy measurement of the iron sample surface after the test was performed. (RAMAN plus, nanophoton) was used for laser Raman spectroscopy. The laser wavelength is 532 cm ⁇ 1 .
  • the iron sample embedded in the cement paste significantly reduced the oxygen reduction current density in the vicinity of the natural potential in any fog (1 mm to 50 mm) compared to the sample exposed to the solution (0 mm fog). Also, the oxygen reduction current density near the natural potential tended to decrease as the fogging increased.
  • the oxygen reduction current density near the natural potential was remarkably reduced as compared with the cover of 0 mm, and the value decreased as the cover increased.
  • the oxygen reduction current density inside the cement paste decreased with the same cover.
  • Dissolved oxygen is supplied to the water layer in the pores of the cement paste and mortar by diffusion. It is considered that the oxygen reduction current density of the cathode polarization curve decreased because the distance between the outside and the iron surface, that is, the fogging, increased the time required for oxygen diffusion.
  • the oxygen reduction current density of the cathode polarization curve decreased because the distance between the outside and the iron surface, that is, the fogging, increased the time required for oxygen diffusion.
  • there are larger pores in the mortar inside the cement-fine aggregate interface than in the cement paste and it has been reported that the larger the pores, the larger the oxygen diffusion coefficient. . From these results, it is considered that the oxygen reduction current density increased because water existing in relatively large pores inside the mortar became a path for oxygen diffusion.
  • the oxygen reduction current density in cathodic polarization is expressed as the oxygen diffusion current density. That is, it can be applied to a diffusion equation consisting of the oxygen diffusion current density and the diffusion layer thickness.
  • the oxygen diffusion equation is expressed by the following equation.
  • FIG. 3A and FIG. 3B are diagrams showing the relationship between the oxygen diffusion limit current density and the reciprocal of the fog obtained from the cathodic polarization curves of iron samples inside various cement pastes.
  • FIG. 3A shows a range of 1 mm to 50 mm of fog
  • FIG. 3B shows a range of 1 mm to 50 mm of fog
  • FIG. 3B shows an enlarged range of 10 mm to 50 mm of the cover of FIG. 3A.
  • the current density at a potential lower by 50 mV than the natural potential was adopted as the oxygen diffusion limit current density.
  • 4A to 4D show optical microscope images of the surface of the iron sample when the accelerated corrosion test is performed under each condition.
  • the fogging of the cement paste or the mortar at the time of performing the accelerated corrosion test was performed at 5 mm where it is estimated that the corrosion of iron is within the range of oxygen diffusion rate control.
  • 4A and 4B almost no corrosion was observed in the samples embedded in cement paste or mortar and tested in an aqueous NaCl solution in the atmosphere.
  • FIG. 4C more corrosion products were observed in the sample embedded in the cement paste and tested in an aqueous NaCl solution under 0.5 MPa pressurized oxygen than in the sample tested in the atmosphere.
  • the number of samples embedded in mortar and tested in a NaCl aqueous solution under 0.5 MPa pressurized oxygen was larger than that of samples embedded in the atmosphere and cement paste and tested under pressurized oxygen. The adhesion of corrosion products was observed.
  • FIG. 5A to 5F show cross-sectional SEM backscattered electron images of iron samples tested under various conditions. From FIG. 5A and FIG. 5B, in the sample embedded in cement paste or mortar and tested in an aqueous NaCl solution in the atmosphere, the presence of corrosion products was not confirmed from the cross-sectional images. From FIG. 5C and FIG. 5D, a corrosion product of several ⁇ m was generated in a sample embedded in a cement paste or mortar and tested in a NaCl aqueous solution under 0.5 MPa of pressurized oxygen. However, in the cross-sectional views of FIG. 5C and FIG.
  • FIGS. 5E and 5F portions where much corrosion was observed in FIG. 4C and FIG. 4D were photographed.
  • the distribution of iron and oxygen by EDS measurement at the same location as in FIG. 5D is shown in FIGS. 5E and 5F. From the result of EDS measurement, it was confirmed that the corrosion product obtained under oxygen pressure was iron oxide, that is, iron rust.
  • Table 2 shows the thickness of each iron rust determined from the cross-sectional SEM image.
  • the estimated iron rust thickness under each condition obtained from the oxygen-limited diffusion current obtained by cathodic polarization is also shown.
  • the iron rust expansion coefficient was calculated as 2.55.
  • the thickness of the iron rust obtained by SEM observation was 1 ⁇ m or less for a sample which was embedded in cement paste or mortar with a cover of 5 mm and tested in the atmosphere, and embedded in the cement paste with a cover of 5 mm and tested under oxygen pressure.
  • the sample was about 1.7 ⁇ m, and the sample embedded in mortar with a cover of 5 mm and tested under oxygen pressure was about 3.7 ⁇ m.
  • the thickness of each iron rust was taken as the average thickness of the iron oxide measured by taking a 5-point SEM image at random.
  • FIG. 6 shows a Raman spectrum of the corrosion product on the surface of the iron sample embedded in mortar with a cover of 5 mm and tested under pressurized oxygen of 0.5 MPa.
  • the corrosion product contains Fe 3 O 4 , ⁇ -FeOOH, and ⁇ -FeOOH indicated by symbols in the figure, and rust having the same composition as iron rust in the actual environment was generated. confirmed.
  • the iron rust on the sample surface tested in cement paste was too thin to obtain a Raman spectrum.
  • the oxygen pressurization test method of the present invention can produce iron rust similar to that in the actual environment than the electrolytic corrosion test method, is a simple method in a shorter time than the dry and wet repeated test method, and is more concrete than the autoclave method. Since this test method does not impair the mechanical properties, it is very effective as a new accelerated test method for concrete internal corrosion.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The purpose of the present invention is to provide a novel rebar corrosion promotion test device that can produce iron rust with a composition which is the same as that of iron rust produced in a real environment as simply and in as short a time as possible without altering the properties of concrete. This rebar corrosion promotion test device is characterized in that: the rebar corrosion promotion test device is provided with a pressurization chamber used for increasing oxygen supply quantity and an oxygen supply device or oxygen pressurization device for increasing oxygen pressure inside the pressurization chamber; a cement paste test body, a mortar test body, or a concrete test body is placed in the pressurization chamber; and the oxygen supply quantity to the interior of the cement paste test body, the mortar test body, or the concrete test body is increased by raising the oxygen pressure in the pressurization chamber.

Description

鉄筋腐食促進試験法およびこれに用いる試験装置Rebar corrosion acceleration test method and test apparatus used therefor
 本発明は、セメントペースト、モルタル、又はコンクリートの内部の鉄筋腐食を加速させる鉄筋腐食促進試験法およびこれに用いる試験装置に関する。 The present invention relates to a reinforcing bar corrosion acceleration test method for accelerating the reinforcing bar corrosion inside cement paste, mortar, or concrete, and a test apparatus used therefor.
 高速道路や鉄道の高架橋など大型で高耐荷重が要求される構造物の材料にはコンクリートが必要不可欠である。日本は1950年代から1970年代までに高度経済成長期を迎え、特に1964年に開催された東京オリンピックの際にインフラ設備の充実を図ったために、コンクリート構造物が多数建設された。それから約50年が経過し、これらの構造物の多くが経年劣化のために補修・建て直しを必要としている。コンクリート内部には引張強度向上のために鉄筋が埋設されている。コンクリート構造物の経年劣化によりコンクリートの剥離や崩落などの事故がしばしば報告されているが、その原因の大部分は鉄筋の腐食および生成した鉄さびによるものである。すなわち、安心・安全な構造物の補修や建設のためにはコンクリート内部の腐食挙動の検討が必須であるといえる。このようなコンクリート構造物の鉄筋腐食診断技術については、例えば、非特許文献1に解説がある。 Concrete is indispensable for the material of large structures that require high load capacity such as highways and railway viaducts. Japan entered a period of high economic growth from the 1950s to the 1970s, and a number of concrete structures were built, especially because of the enhancement of infrastructure facilities during the 1964 Tokyo Olympics. About 50 years have passed since then, and many of these structures require repair and rebuilding due to aging. Reinforcing bars are embedded inside the concrete to improve the tensile strength. Accidents such as delamination and collapse of concrete due to aging of concrete structures are often reported. Most of the causes are due to corrosion of reinforcing bars and generated iron rust. In other words, it can be said that it is essential to examine the corrosion behavior inside concrete for the repair and construction of safe and secure structures. For example, Non-Patent Document 1 describes such a reinforcement corrosion diagnosis technique for concrete structures.
 腐食挙動の検討は、鉄試料を腐食環境に置くことで行われる。例えば、特許文献1では、原子炉、化学プラント、海底油田のような海洋構造物に好適なステンレス鋼の腐食試験法を提案している。特許文献2では、実環境シミュレート大気腐食試験装置を提案している。さらに、特許文献3では、自動車の居住空間内に配置されたワイヤーハーネスについての腐食試験法を提案している。
 一方、コンクリート内部はアルカリ環境であり鉄は保護性の高い酸化皮膜(不働態皮膜)に覆われるため、腐食は極めて緩やかである。このため、実環境ではコンクリートが剥離するほどの腐食の進行には数十年以上を要するといわれている。新規開発された耐食鋼や耐候性鋼、補修剤を使用したコンクリートの劣化にはさらに長い期間がかかり、クラックなどの欠陥のないコンクリート内部の鉄筋の腐食を実環境で予測することはほぼ不可能である。そこで、鉄筋の腐食を促進させ短時間で鉄さびの生成が可能な腐食加速試験が必須である。
Corrosion behavior is examined by placing an iron sample in a corrosive environment. For example, Patent Document 1 proposes a stainless steel corrosion test method suitable for offshore structures such as nuclear reactors, chemical plants, and subsea oil fields. Patent Document 2 proposes a real environment simulated atmospheric corrosion test apparatus. Furthermore, Patent Document 3 proposes a corrosion test method for a wire harness arranged in a living space of an automobile.
On the other hand, since the concrete interior is an alkaline environment and iron is covered with a highly protective oxide film (passive film), corrosion is extremely gradual. For this reason, it is said that it takes several decades or more for the progress of corrosion to such an extent that concrete peels in an actual environment. Deterioration of concrete using newly developed corrosion-resistant steel, weather-resistant steel, and repair agents takes a longer period of time, and it is almost impossible to predict the corrosion of reinforcing steel inside concrete without cracks and other defects in the actual environment It is. Therefore, an accelerated corrosion test that accelerates corrosion of reinforcing bars and can generate iron rust in a short time is essential.
 現在、例えば非特許文献2に示すように、コンクリート試験体内部の鉄試料を短期間で腐食させるため、電食試験法、乾湿繰返し試験法、オートクレーブ法などの加速試験法が提案されている。また、腐食の主因子と考えられている塩化物イオン導入には、電気泳動法、塩(NaCl)練り込みなどが行われている。いずれの試験法においても、厳しい腐食環境に試験体をさらすことで比較的短時間で鉄試料を腐食させることが可能である。しかし、いずれの試験法にも課題が存在する。 At present, as shown in Non-Patent Document 2, for example, accelerated test methods such as an electrolytic corrosion test method, a wet and dry repeated test method, and an autoclave method have been proposed in order to corrode an iron sample inside a concrete specimen in a short period of time. For introduction of chloride ions, which are considered to be a main factor of corrosion, electrophoresis, salt (NaCl) kneading and the like are performed. In any of the test methods, it is possible to corrode an iron sample in a relatively short time by exposing the specimen to a severe corrosive environment. However, each test method has a problem.
 例えば電食試験法は、短時間でひび割れを起こす鉄筋腐食減量を得るのに用いられている。目的の厚さのさび(=腐食量)の生成を、定電流アノード分極により短時間で達成可能である。しかし、実環境での生成が希な鉄さび(塩化物イオンを含む鉄酸化物や鉄水酸化物)が生成する場合がある。塩化物を含む鉄さびは実際の鉄さびと膨張率が大きく異なるため、電食試験では、さび量とコンクリートのひび割れ発生の正確な関係を検討できていないといえる。
 乾湿繰り返し試験法では、実環境の乾燥環境と湿潤環境を模擬し、湿潤と乾燥を交互に繰り返すことで鉄試料を腐食させる。この方法では、実環境の鉄さびと同様のさびを生成することができるが、他の加速試験法と比較して多くの時間と手間がかかる。
For example, the electrolytic corrosion test method is used to obtain a rebar corrosion weight loss that causes cracks in a short time. The generation of the desired thickness of rust (= corrosion amount) can be achieved in a short time by constant current anodic polarization. However, there are cases where iron rust (iron oxide or iron hydroxide containing chloride ions) that is rarely generated in a real environment is generated. Since iron rust containing chlorides has a very different expansion rate from actual iron rust, it can be said that the exact relationship between the amount of rust and the occurrence of cracks in concrete has not been examined in the electrolytic corrosion test.
In the dry / wet repeat test method, an iron sample is corroded by simulating an actual dry environment and wet environment, and alternately repeating wet and dry. Although this method can generate a rust similar to an iron rust in a real environment, it takes a lot of time and labor compared to other accelerated test methods.
 オートクレーブ法では、高温高圧下に試験体を曝すことで腐食を加速させるが、コンクリートの組織が変化するおそれがある。このため、正確なコンクリートの強度評価を行えない。
 電気泳動および塩分練込みは、鉄試料表面の不働態皮膜を破壊する塩化物イオンをコンクリート内部に導入するために行うが、電気泳動では塩化物イオンの供給が継続するため、塩化物イオンを含んだ鉄さびができることが多い。また、塩分練込みではコンクリート試験体の力学特性を変化させるおそれがある。
 以上より、コンクリートの性質を変化させず、実環境で生成する鉄さびと同じ組成の鉄さびを可能な限り簡便かつ短時間で生成できる新規腐食促進試験法が必要である。
In the autoclave method, corrosion is accelerated by exposing the specimen to a high temperature and high pressure, but the concrete structure may change. For this reason, the concrete strength evaluation cannot be performed accurately.
Electrophoresis and salt kneading are performed in order to introduce chloride ions into the concrete that destroy the passive film on the surface of the iron sample. However, since electrophoresis continues to supply chloride ions, it contains chloride ions. Often iron rust can be produced. In addition, salt kneading may change the mechanical properties of the concrete specimen.
In view of the above, there is a need for a new corrosion acceleration test method that can generate iron rust having the same composition as iron rust generated in an actual environment without changing the properties of the concrete as easily and as quickly as possible.
WO03/073073 A2WO03 / 073073 A2 特開2006-258506号公報JP 2006-258506 A WO2010/016265 A1WO2010 / 016265 A1
 本発明は上述した課題を解決するもので、コンクリートの性質を変化させず、実環境で生成する鉄さびと同じ組成の鉄さびを、可能な限り簡便かつ短時間で生成できる新規な鉄筋腐食促進試験法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and a new method for promoting corrosion of reinforcing steel bars, which can generate iron rust having the same composition as iron rust generated in an actual environment without changing the properties of concrete, as easily and as quickly as possible. The purpose is to provide.
 本発明の鉄筋腐食促進試験装置は、酸素供給量増加のために用いる加圧チャンバーと、前記加圧チャンバー内の酸素圧力を上昇させる酸素供給装置又は酸素加圧装置とを備え、当該加圧チャンバー内にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を設置すると共に、前記加圧チャンバー内の酸素圧力を上昇させて当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させることを特徴とする。 The reinforcing bar corrosion promotion test apparatus of the present invention includes a pressurization chamber used for increasing the oxygen supply amount, and an oxygen supply device or an oxygen pressurization device for increasing the oxygen pressure in the pressurization chamber, and the pressurization chamber A cement paste test specimen, a mortar test specimen, or a concrete test specimen is installed in the inside, and the oxygen pressure in the pressurized chamber is increased to enter the cement paste test specimen, the mortar test specimen, or the concrete test specimen. The oxygen supply amount is increased.
 本発明の鉄筋腐食促進試験装置において、好ましくは、加圧チャンバー内に溜まるNaCl水溶液を有し、当該NaCl水溶液にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を浸漬させるとよい。
 本発明の鉄筋腐食促進試験装置において、好ましくは、加圧チャンバー内に充填されるNaCl水溶液は、単位体積当たりのコンクリート換算で8.2×10-5kg/m以上、50kg/m以下の塩化物イオン濃度を有するとよい。8.2×10-5kg/m(0.02mmol/L)は雨水の塩化物イオン濃度の代表的な値であり、内陸で使用されるコンクリート構造物にとって事実上の下限値である。50kg/mを超える塩化物イオン濃度は、海砂を粗骨材として用いた場合や直接NaClの粉末をコンクリートに混ぜ込んだ際に、飽和NaCl溶液の上限値を超える場合の、海洋コンクリートにおける実質上の上限値である。なお、飽和NaCl溶液を水セメント比50%で海洋コンクリートに練り込む場合は、例えばコンクリート換算で約39.3kg/mである(土木学会「コンクリート標準示方書〈施工編〉20章海洋コンクリート」の配合参照)。さらに好ましくは、加圧チャンバー内に充填されるNaCl水溶液は、単位体積当たりのコンクリート換算で2kg/m以上、10kg/m以下の塩化物イオン濃度を有するとよく、特に好ましくは海水の塩化物イオン濃度に相当する5kg/mであるとよい。
 本発明の鉄筋腐食促進試験装置において、好ましくは、当該NaCl水溶液の濃度はモルタルもしくはセメントペーストの練り混ぜに用いた水のNaCl濃度と同じになるように調整されているとよい。
In the reinforcing bar corrosion acceleration test apparatus of the present invention, it is preferable to have an aqueous NaCl solution accumulated in the pressurized chamber and immerse the cement paste specimen, mortar specimen, or concrete specimen in the NaCl aqueous solution.
In the reinforcing bar corrosion acceleration test apparatus of the present invention, preferably, the NaCl aqueous solution filled in the pressurized chamber is 8.2 × 10 −5 kg / m 3 or more and 50 kg / m 3 or less in terms of concrete per unit volume. The chloride ion concentration may be as follows. 8.2 × 10 −5 kg / m 3 (0.02 mmol / L) is a representative value of the chloride ion concentration of rainwater, and is a practical lower limit for concrete structures used inland. Chloride ion concentration exceeding 50 kg / m 3 is not possible in marine concrete when sea sand is used as coarse aggregate or when the upper limit of saturated NaCl solution is exceeded when NaCl powder is directly mixed into concrete. This is a practical upper limit. In addition, when the saturated NaCl solution is kneaded into marine concrete at a water cement ratio of 50%, for example, it is about 39.3 kg / m 3 in terms of concrete (Japan Society of Civil Engineers “Concrete Standard Specification <Construction> Chapter 20 Marine Concrete” (See formula for More preferably, the NaCl aqueous solution filled in the pressurized chamber may have a chloride ion concentration of 2 kg / m 3 or more and 10 kg / m 3 or less in terms of concrete per unit volume, particularly preferably seawater chlorination. It is good that it is 5 kg / m 3 corresponding to the physical ion concentration.
In the reinforcing bar corrosion acceleration test apparatus of the present invention, preferably, the concentration of the NaCl aqueous solution is adjusted to be the same as the NaCl concentration of water used for mixing the mortar or cement paste.
 本発明の鉄筋腐食促進試験装置において、好ましくは、さらに、前記加圧チャンバー内の湿度を制御する湿度制御部と、前記加圧チャンバー内の酸素圧力を上昇させる酸素圧力制御部とを備え、前記酸素圧力制御部によって、当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させるとよい。
 本発明の鉄筋腐食促進試験装置において、好ましくは、前記湿度制御部は、加湿器で供給するガスを加湿する、および/もしくはチャンバー内に所定の無機塩の飽和溶液を設置して、前記加圧チャンバー内の湿度を制御するとよい。
 本発明の鉄筋腐食促進試験装置において、好ましくは、前記加圧チャンバー内の酸素圧力の上昇は、大気の酸素分圧を基準として2倍以上200倍以下であるとよい。2倍未満では、当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量の増加が充分でなく、鉄筋腐食の促進が充分でない。200倍を超す場合は、加圧チャンバーに過度な耐圧性が必要となり、設備価格が高騰する。さらに好ましくは、前記加圧チャンバー内の酸素圧力の上昇は、大気の酸素分圧を基準として15倍以上100倍以下であるとよい。
In the reinforcing bar corrosion acceleration test apparatus of the present invention, preferably, further comprising a humidity control unit for controlling the humidity in the pressurization chamber, and an oxygen pressure control unit for increasing the oxygen pressure in the pressurization chamber, The oxygen pressure control unit may increase the amount of oxygen supplied into the cement paste specimen, mortar specimen, or concrete specimen.
In the reinforcing bar corrosion acceleration test apparatus according to the present invention, preferably, the humidity control unit humidifies a gas supplied by a humidifier and / or installs a saturated solution of a predetermined inorganic salt in a chamber, and pressurizes. It is good to control the humidity in the chamber.
In the reinforcing bar corrosion acceleration test apparatus of the present invention, preferably, the increase in oxygen pressure in the pressurization chamber is 2 to 200 times based on the oxygen partial pressure in the atmosphere. If it is less than 2 times, the increase in the amount of oxygen supplied into the cement paste specimen, mortar specimen, or concrete specimen is not sufficient, and the reinforcement of reinforcing steel bars is not sufficient. When it exceeds 200 times, excessive pressure resistance is required for the pressure chamber, and the equipment price increases. More preferably, the increase in the oxygen pressure in the pressurizing chamber is 15 times or more and 100 times or less based on the oxygen partial pressure in the atmosphere.
 本発明の鉄筋腐食促進試験法は、加圧チャンバー内にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を設置し、前記加圧チャンバー内の酸素圧力を上昇させて当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させ、当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体に埋設された鉄筋の腐食を促進する試験法である。
 本発明の鉄筋腐食促進試験法において、好ましくは、さらに加圧チャンバー内に所定の無機塩の飽和溶液を設置して前記加圧チャンバー内の湿度を調整する工程を有するとよい。
Reinforcing bar corrosion acceleration test method of the present invention, a cement paste test body, a mortar test body, or a concrete test body is installed in a pressure chamber, the oxygen pressure in the pressure chamber is increased, the cement paste test body, This is a test method that increases the amount of oxygen supplied into the mortar test specimen or concrete test specimen and promotes corrosion of reinforcing bars embedded in the cement paste test specimen, mortar test specimen, or concrete test specimen.
In the reinforcing bar corrosion acceleration test method of the present invention, it is preferable to further include a step of adjusting the humidity in the pressure chamber by installing a saturated solution of a predetermined inorganic salt in the pressure chamber.
 本発明の鉄筋腐食促進試験法は、供試体であるコンクリート換算で所定の塩化物イオン濃度となるようなNaCl水溶液を調整し、当該NaCl水溶液を加圧チャンバー内に充填し、当該加圧チャンバー内のNaCl水溶液にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を浸漬し、前記加圧チャンバー内の酸素圧力を上昇させて当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させ、当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体に埋設された鉄筋の腐食を促進させる試験法である。 In the reinforcing bar corrosion acceleration test method of the present invention, a NaCl aqueous solution that adjusts to a predetermined chloride ion concentration in terms of concrete as a specimen is prepared, and the NaCl aqueous solution is filled in a pressurized chamber. A cement paste specimen, a mortar specimen, or a concrete specimen is immersed in an aqueous NaCl solution, and the oxygen pressure in the pressurized chamber is increased to enter the cement paste specimen, the mortar specimen, or the concrete specimen. This is a test method for increasing the amount of oxygen supplied to promote corrosion of reinforcing bars embedded in the cement paste specimen, mortar specimen, or concrete specimen.
 本発明によれば、コンクリート、モルタルおよびセメントペースト試験体の内部への酸素供給量を増加することで、試験体に埋設した鉄試料の腐食反応を促進することができる。さらに詳しくは、酸素供給量の増加により腐食反応のカソード反応である酸素還元反応を促進することで、カソード反応と対になって進行するアノード反応である鉄の酸化反応を促進することができる。 According to the present invention, by increasing the amount of oxygen supplied into the concrete, mortar and cement paste specimens, the corrosion reaction of the iron sample embedded in the specimen can be promoted. More specifically, by promoting the oxygen reduction reaction, which is the cathodic reaction of the corrosion reaction, by increasing the oxygen supply amount, it is possible to promote the iron oxidation reaction, which is the anodic reaction that proceeds in a pair with the cathodic reaction.
図1Aは、本発明の一実施形態にかかるセメントペースト試験体又はモルタル試験体の概略図である。FIG. 1A is a schematic view of a cement paste specimen or a mortar specimen according to one embodiment of the present invention. 図1Bは、本発明の一実施形態にかかるセメントペースト試験体又はモルタル試験体の外観写真である。FIG. 1B is an external appearance photograph of a cement paste specimen or a mortar specimen according to one embodiment of the present invention. 図2は、本発明の一実施形態にかかる加圧チャンバーの概念的構成図である。FIG. 2 is a conceptual configuration diagram of a pressurized chamber according to an embodiment of the present invention. 図3Aは、様々なかぶりのセメントペースト又はモルタル内部の鉄試料のカソード分極曲線から得られた、酸素拡散限界電流密度とかぶりの逆数の関係を示す図である。FIG. 3A is a diagram showing the relationship between the oxygen diffusion limit current density and the reciprocal of fog obtained from the cathode polarization curves of various fog cement pastes or iron samples inside mortar. 図3Bは、様々なかぶりのセメントペースト又はモルタル内部の鉄試料のカソード分極曲線から得られた、酸素拡散限界電流密度とかぶりの逆数の関係を示す図であり、図3Aのかぶり範囲の一部を拡大した図である。FIG. 3B is a graph showing the relationship between the oxygen diffusion limit current density and the reciprocal of the fog obtained from the cathode polarization curves of various fog cement pastes or iron samples inside the mortar, and a part of the fog range of FIG. 3A. FIG. 図4Aは、セメントペーストに埋設し大気中のNaCl水溶液中で腐食加速試験を行った際の鉄試料表面の光学顕微鏡像を示す図である。FIG. 4A is a view showing an optical microscope image of the surface of an iron sample when the corrosion acceleration test is performed in an aqueous NaCl solution embedded in a cement paste. 図4Bは、モルタルに埋設し大気中のNaCl水溶液中で腐食加速試験を行った際の鉄試料表面の光学顕微鏡像を示す図である。FIG. 4B is a diagram showing an optical microscope image of the surface of the iron sample when the corrosion acceleration test is performed in an aqueous NaCl solution embedded in mortar. 図4Cは、セメントペーストに埋設し0.5MPa加圧酸素下のNaCl水溶液中で腐食加速試験を行った際の鉄試料表面の光学顕微鏡像を示す図である。FIG. 4C is a diagram showing an optical microscope image of the surface of the iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in cement paste. 図4Dは、モルタルに埋設し0.5MPa加圧酸素下のNaCl水溶液中で腐食加速試験を行った際の鉄試料表面の光学顕微鏡像を示す図である。FIG. 4D is a diagram showing an optical microscope image of the surface of the iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under a 0.5 MPa pressurized oxygen, embedded in mortar. 図5Aは、セメントペーストに埋設し大気中のNaCl水溶液中で腐食加速試験を行った際の鉄試料の断面SEM反射電子像を示す図である。FIG. 5A is a diagram showing a cross-sectional SEM reflected electron image of an iron sample when the corrosion acceleration test was performed in an aqueous NaCl solution embedded in cement paste. 図5Bは、モルタルに埋設し大気中のNaCl水溶液中で腐食加速試験を行った際の鉄試料の断面SEM反射電子像を示す図である。FIG. 5B is a diagram showing a cross-sectional SEM backscattered electron image of an iron sample when the corrosion acceleration test was conducted in an aqueous NaCl solution embedded in mortar. 図5Cは、セメントペーストに埋設し0.5MPa加圧酸素下のNaCl水溶液中で腐食加速試験を行った際の鉄試料の断面SEM反射電子像を示す図である。FIG. 5C is a diagram showing a cross-sectional SEM backscattered electron image of an iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in cement paste. 図5Dは、モルタルに埋設し0.5MPa加圧酸素下のNaCl水溶液中で腐食加速試験を行った際の鉄試料の断面SEM反射電子像を示す図である。FIG. 5D is a diagram showing a cross-sectional SEM backscattered electron image of the iron sample when the corrosion acceleration test was conducted in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in mortar. 図5Eは、モルタルに埋設し0.5MPa加圧酸素下のNaCl水溶液中で腐食加速試験を行った際の鉄試料の断面のEDS測定による鉄の元素分布を示す図である。FIG. 5E is a diagram showing an elemental distribution of iron by EDS measurement of a cross section of an iron sample when the corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in mortar. 図5Fは、モルタルに埋設し0.5MPa加圧酸素下のNaCl水溶液中で腐食加速試験を行った際の鉄試料の断面のEDS測定による酸素の元素分布を示す図である。FIG. 5F is a diagram showing an oxygen element distribution by EDS measurement of a cross section of an iron sample when a corrosion acceleration test is performed in a NaCl aqueous solution under 0.5 MPa pressurized oxygen embedded in a mortar. 図6は、モルタルに埋設し0.5MPaの加圧酸素下で腐食加速試験を行った際の鉄試料表面の腐食生成物のラマンスペクトルである。FIG. 6 is a Raman spectrum of a corrosion product on the surface of an iron sample when buried in a mortar and subjected to a corrosion acceleration test under a pressurized oxygen of 0.5 MPa.
 以下、図面を用いて本発明を説明する。
 図1A及び図1Bは、本発明の一実施形態にかかるセメントペースト試験体又はモルタル試験体の説明図で、図1Aは概略図、図1Bは外観写真である。
 図において、セメントペースト試験体又はモルタル試験体10は、例えば外径Dが30mm、高さHが25mmの円筒体よりなるセメントペースト又はモルタル11と、この内部に収容された鉄試料12で構成されている。ここで、セメントペーストとは、セメント材料を水で練混ぜたセメントペーストを固化させたものをいう。モルタルとは、セメントペーストに砂(細骨材)を練混ぜたものをいう。セメント材料は、ポルトランドセメントの場合は、石灰石、粘土、けい石、酸化鉄原料、せっこうである。これらの原料を調合し、原料ミルで粉砕し、ロータリーキルンで1450℃以上の高温で焼成され、水硬性をもった化合物の集まりであるクリンカとなり、このクリンカを粉砕してポルトランドセメントが製造される。セメント材料には、ポルトランドセメントに加えて、高炉セメント、フライアッシュセメント、シリカセメント、超速硬セメント、アルミナセメント等がある。セメントペースト試験体又はモルタル試験体10に代えて、コンクリート試験体を用いても良い。コンクリートとは、セメントペーストに砂(細骨材)、砂利(粗骨材)、並びに必要に応じて他の混和材料を練混ぜたものをいう。混和材料には、独立気泡を連行するAE材、セメントを分散する減水材、硬化促進剤、防錆剤、付着モルタル安定剤、凝結遅延剤、促進剤、急結剤、収縮低減剤、分離低減剤、起泡剤、発泡剤、防凍剤、耐寒促進剤等がある。
Hereinafter, the present invention will be described with reference to the drawings.
1A and 1B are explanatory diagrams of a cement paste test body or a mortar test body according to an embodiment of the present invention, FIG. 1A is a schematic view, and FIG. 1B is an appearance photograph.
In the figure, a cement paste test body or mortar test body 10 is composed of a cement paste or mortar 11 made of, for example, a cylindrical body having an outer diameter D of 30 mm and a height H of 25 mm, and an iron sample 12 accommodated therein. ing. Here, the cement paste is a solidified cement paste obtained by mixing a cement material with water. Mortar is a mixture of cement paste with sand (fine aggregate). In the case of Portland cement, the cement material is limestone, clay, silica, iron oxide raw material, and gypsum. These raw materials are prepared, pulverized in a raw material mill, and baked in a rotary kiln at a high temperature of 1450 ° C. or higher to form a clinker that is a collection of hydraulic compounds. The clinker is pulverized to produce Portland cement. Examples of the cement material include blast furnace cement, fly ash cement, silica cement, ultrafast cement, and alumina cement in addition to Portland cement. Instead of the cement paste specimen or the mortar specimen 10, a concrete specimen may be used. Concrete means cement paste mixed with sand (fine aggregate), gravel (coarse aggregate), and other admixtures as required. Admixture materials include AE materials that entrain closed cells, water-reducing materials that disperse cement, curing accelerators, rust inhibitors, adhesion mortar stabilizers, setting retarders, accelerators, quick setting agents, shrinkage reducing agents, and separation reduction. Agents, foaming agents, foaming agents, anti-freezing agents, cold resistance promoting agents and the like.
 鉄試料12は、鉄試料12の底面がセメントペースト又はモルタル11と接触していると共に、鉄試料12の表面および周側面はエポキシ樹脂の被覆層15で覆われている。鉄試料12の表面には、塩化ビニル製等の絶縁性棒材13を用いて、導線14が接触した状態で固定されている。鉄試料12の底面でのセメントペースト又はモルタル11のかぶり16は、1~50mmの範囲で適宜に選定されている。導線14には、導電性のある金属製の線材、例えば銅線が用いられている。 In the iron sample 12, the bottom surface of the iron sample 12 is in contact with the cement paste or the mortar 11, and the surface and the peripheral side surface of the iron sample 12 are covered with a coating layer 15 of epoxy resin. A conductive wire 14 is fixed to the surface of the iron sample 12 in contact with an insulating rod 13 made of vinyl chloride or the like. The cement paste or fog 16 of the mortar 11 on the bottom surface of the iron sample 12 is appropriately selected within a range of 1 to 50 mm. The conductive wire 14 is made of a conductive metal wire, such as a copper wire.
 図2は、本発明の一実施形態にかかる加圧チャンバーの概念的構成図である。
 図において、加圧チャンバーとしての鉄筋腐食促進試験装置20は、筐体21、フランジ22、蓋部23、観察窓24、酸素供給弁25、酸素放出弁26、圧力ゲージ27、NaCl水溶液28、並びに試験体支持板29を有している。
FIG. 2 is a conceptual configuration diagram of a pressurized chamber according to an embodiment of the present invention.
In the figure, a reinforcing bar corrosion acceleration test apparatus 20 as a pressurized chamber includes a casing 21, a flange 22, a lid 23, an observation window 24, an oxygen supply valve 25, an oxygen release valve 26, a pressure gauge 27, a NaCl aqueous solution 28, and A test body support plate 29 is provided.
 筐体21は、耐圧容器としての仕様として2MPa以上がよく、好ましくは5MPa以上であるとよい。大気圧は約0.1MPaであるため、耐圧容器材料としては鋼製やチタン製が好ましい。チタン製は、鋼製と比較すると、塩による局部腐食に強い。筐体21の頂部開口部にはフランジ22が設けられていると共に、蓋部23とシール材(図示せず)によって筐体21内部の密封状態を保持する。観察窓24は、蓋部23に設けられたもので、筐体21内部の状態を目視するために、透明なガラス等で構成されている。酸素供給弁25は、筐体21内部に酸素を供給するための弁であり、酸素供給装置又は酸素加圧装置として構成され、例えば酸素ボンベと接続されている。酸素放出弁26は、筐体21内部から酸素を外部に放出するための弁であり、例えば酸素循環用の配管系に接続されている。圧力ゲージ27は、筐体21内部の酸素圧力を測定する為の圧力計である。鉄筋腐食促進試験装置20は、上記のような圧力ゲージを計器として酸素の圧力を制御する酸素圧力制御部を更に有していてもよい。 The housing 21 has a specification as a pressure vessel of 2 MPa or more, preferably 5 MPa or more. Since the atmospheric pressure is about 0.1 MPa, the pressure vessel material is preferably made of steel or titanium. Titanium is more resistant to local corrosion due to salt than steel. A flange 22 is provided at the top opening of the housing 21, and the sealed state inside the housing 21 is maintained by a lid portion 23 and a sealing material (not shown). The observation window 24 is provided on the lid portion 23 and is made of transparent glass or the like in order to visually observe the state inside the housing 21. The oxygen supply valve 25 is a valve for supplying oxygen into the housing 21 and is configured as an oxygen supply device or an oxygen pressurization device, and is connected to, for example, an oxygen cylinder. The oxygen release valve 26 is a valve for releasing oxygen from the inside of the housing 21 and is connected to, for example, a piping system for oxygen circulation. The pressure gauge 27 is a pressure gauge for measuring the oxygen pressure inside the housing 21. The reinforcing bar corrosion acceleration test apparatus 20 may further include an oxygen pressure control unit that controls the pressure of oxygen using the pressure gauge as described above as a meter.
 NaCl水溶液28は、筐体21内部に蓄えられるもので、セメントペースト試験体又はモルタル試験体10を浸した状態でも良く、またセメントペースト試験体又はモルタル試験体10が露出した状態の水量でも良い。試験体支持板29は、筐体21内部に設けられたセメントペースト試験体又はモルタル試験体10を支持する板材である。
 鉄筋腐食促進試験装置20は、加圧チャンバー内の湿度を制御する湿度制御部を更に有していてもよい。
 加圧チャンバー内の湿度の範囲は、相対湿度30%(MgCl飽和水溶液による)以上98%(KSO飽和水溶液による)以下がよい。この湿度範囲は、通常屋外にコンクリートを設置した際の乾湿変化に対応しているので実験条件として妥当である。
The NaCl aqueous solution 28 is stored in the housing 21 and may be in a state in which the cement paste test body or mortar test body 10 is immersed, or in a state where the cement paste test body or mortar test body 10 is exposed. The test body support plate 29 is a plate material that supports the cement paste test body or the mortar test body 10 provided in the housing 21.
The reinforcing bar corrosion acceleration test apparatus 20 may further include a humidity control unit that controls the humidity in the pressurized chamber.
The range of the humidity in the pressurized chamber is preferably 30% relative humidity (based on a saturated aqueous solution of MgCl 2 ) or more and 98% (based on a saturated aqueous solution of K 2 SO 4 ). This humidity range is appropriate as an experimental condition because it corresponds to changes in wet and dry conditions when concrete is usually placed outdoors.
 次に、実施例におけるセメントペースト試験体又はモルタル試験体10の各構成要素について、さらに詳細に説明する。
 鉄試料12には、99.5%鉄板(株式会社ニラコ)、厚さ1mmの材質・形状とした。この鉄板を試料面積5×5mm2となるように切断した後、SiC耐水研磨紙(丸本ストルアス株式会社)で#800まで研磨し、エタノールで5分間超音波洗浄した。その後、裏面に導線をはんだ付けし、おもて面以外をエポキシ樹脂(ショーボンド建設株式会社)で絶縁被覆した。
Next, each component of the cement paste specimen or mortar specimen 10 in the examples will be described in more detail.
The iron sample 12 was a 99.5% iron plate (Niraco Co., Ltd.) with a material / shape having a thickness of 1 mm. The iron plate was cut to a sample area of 5 × 5 mm 2 , polished to # 800 with SiC water-resistant abrasive paper (Marumoto Struers Co., Ltd.), and ultrasonically washed with ethanol for 5 minutes. Thereafter, a conductive wire was soldered to the back surface, and the other surfaces were insulated with an epoxy resin (Shobond Construction Co., Ltd.).
 続いて、上記で作製した鉄試料12を、セメントペースト又はモルタルに埋設し、セメントペースト試験体又はモルタル試験体10とした。図1Aに示した通り、セメントペースト試験体又はモルタル試験体10ではかぶり16を1~50mmに変化させた。ただし、かぶり20mm以上の試験体に関しては側面や上面から鉄試料表面までの距離がかぶりよりも小さくならないよう試験体を大きくした。動電位カソード分極試験に用いた試験体にはNaClを練り込まず、酸素供給増加による腐食加速試験に供した試験体には[Cl]=5kg/m(コンクリート換算)となるように1.03MのNaCl水溶液を練り込んだ。セメントペースト又はモルタルを打設する際にはセメント協会が提供している力学試験用標準セメントと標準砂を用い、水セメント比は60%、セメント細骨材比は1:3とした。それぞれの養生期間は28日とし、水中で養生した。 Subsequently, the iron sample 12 produced above was embedded in a cement paste or mortar to obtain a cement paste specimen or mortar specimen 10. As shown in FIG. 1A, in the cement paste specimen or mortar specimen 10, the fog 16 was changed to 1 to 50 mm. However, for a test piece with a cover of 20 mm or more, the test piece was enlarged so that the distance from the side surface or top surface to the iron sample surface was not smaller than the cover. NaCl is not kneaded into the specimen used for the potentiodynamic cathode polarization test, and [Cl ] = 5 kg / m 3 (in terms of concrete) is applied to the specimen subjected to the accelerated corrosion test by increasing oxygen supply. A 0.33M NaCl aqueous solution was kneaded. When placing cement paste or mortar, standard cement for mechanical testing and standard sand provided by the Cement Association were used, and the water cement ratio was 60% and the cement fine aggregate ratio was 1: 3. Each curing period was 28 days and was cured in water.
 各試験で用いたセメントペーストとモルタルの組成および練り込んだNaClの塩化物イオン濃度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the composition of cement paste and mortar used in each test and the chloride ion concentration of kneaded NaCl.
Figure JPOXMLDOC01-appb-T000001
 続いて、動電位カソード分極曲線測定について説明する。
 セメントペースト試験体又はモルタル試験体内に埋設した鉄試料表面における酸素還元反応を検討するため、動電位カソード分極曲線測定を行った。参照電極にはHg/HgO電極を用い(-0.098V vs.SHE(1M NaOH))、対極には白金線を用いた。電位掃引速度は20mV/minとし、自然電位から-1V(vs.Hg/HgO)まで分極測定を行った。溶液には室温の飽和Ca(OH)を用いた。試験体を養生した後、溶液中に10分間浸漬し、自然電位が定常になったことを確認してから分極を開始した。試験体のかぶりはセメントペースト試験体では1,2,5,10,20,50mm、モルタル試験体では3,5,10,20,50mmとした。比較としてセメントペースト又はモルタルに埋設していない試料(かぶり0mm)を用意し、同様にカソード分極測定を行った。
Subsequently, the measurement of the potentiodynamic cathode polarization curve will be described.
In order to examine the oxygen reduction reaction on the surface of an iron sample embedded in a cement paste specimen or a mortar specimen, a dynamic potential cathodic polarization curve was measured. A Hg / HgO electrode was used as a reference electrode (−0.098 V vs. SHE (1M NaOH)), and a platinum wire was used as a counter electrode. The potential sweep rate was 20 mV / min, and the polarization was measured from the natural potential to -1 V (vs. Hg / HgO). The solution was saturated Ca (OH) 2 at room temperature. After curing the test body, it was immersed in the solution for 10 minutes, and polarization was started after confirming that the natural potential became steady. The fog of the test specimen was 1, 2, 5, 10, 20, 50 mm for the cement paste specimen, and 3, 5, 10, 20, 50 mm for the mortar specimen. As a comparison, a sample (covering 0 mm) that was not embedded in cement paste or mortar was prepared, and cathodic polarization measurement was performed in the same manner.
 次に、酸素加圧による腐食加速試験について説明する。
 コンクリート内部の鉄筋の腐食がアルカリ水溶液中と比較して著しく抑制されるのは、コンクリート内部での酸素拡散が非常に遅いためであるという仮説から、鉄試料表面への酸素供給量を増加させ腐食を促進させる腐食加速試験を着想した。
Next, the corrosion acceleration test by oxygen pressurization will be described.
Corrosion of reinforcing steel inside the concrete is remarkably suppressed compared to that in an alkaline aqueous solution because the oxygen diffusion inside the concrete is very slow. Inspired by the accelerated corrosion test.
 この加圧チャンバー内に、単位体積当たりのコンクリート換算で[Cl]=5kg/mとなるように調整したNaCl水溶液に浸漬したセメントペースト試験体又はモルタル試験体を設置し、チャンバー内の酸素圧力を上昇させることで大気中の酸素供給量を増加させた。チャンバー内の酸素圧は0.5MPa(5気圧)とし、大気圧の25倍の酸素供給圧下でセメントペースト又はモルタル内部への酸素供給量を増加した。試験期間は30日間とした。比較として、同様に作製したセメントペースト又はモルタル試験体を[Cl]=5kg/m(コンクリート換算、1.03mol/L)のNaCl水溶液に大気中で30日間浸漬した。用いたセメントペースト試験体又はモルタル試験体のかぶりは5mmとした。 In this pressurized chamber, a cement paste specimen or a mortar specimen immersed in a NaCl aqueous solution adjusted so that [Cl ] = 5 kg / m 3 in terms of concrete per unit volume is installed, and oxygen in the chamber The oxygen supply in the atmosphere was increased by increasing the pressure. The oxygen pressure in the chamber was 0.5 MPa (5 atm), and the oxygen supply amount into the cement paste or mortar was increased under an oxygen supply pressure 25 times the atmospheric pressure. The test period was 30 days. For comparison, a cement paste or a mortar specimen prepared in the same manner was immersed in an aqueous NaCl solution of [Cl ] = 5 kg / m 3 (concrete conversion, 1.03 mol / L) in the air for 30 days. The fog of the used cement paste specimen or mortar specimen was 5 mm.
 腐食加速試験後、セメントペースト試験体又はモルタル試験体を割裂して鉄試料を取り出し、光学顕微鏡(3D1shot、キーエンス)用いて鉄試料表面観察を、走査電子顕微鏡(Quanta FEG,FEI)を用いて試料断面観察を行った。さらに、鉄試料表面に生成した鉄さびの結晶構造の分析を行うため、試験後の鉄試料表面のレーザーラマン分光測定を行った。レーザーラマン分光測定には(RAMAN plus、ナノフォトン)を使用した。レーザー波長は532 cm-1である。鉄試料の取り出しから分析まで時間が空く際には、鉄試料はシリカゲルを敷き詰めた真空デシケーター内で保管した。 After the accelerated corrosion test, the cement paste specimen or mortar specimen is split and an iron sample is taken out. The surface of the iron specimen is observed using an optical microscope (3D1shot, Keyence), and the specimen is observed using a scanning electron microscope (Quanta FEG, FEI). Cross-sectional observation was performed. Furthermore, in order to analyze the crystal structure of the iron rust generated on the iron sample surface, laser Raman spectroscopy measurement of the iron sample surface after the test was performed. (RAMAN plus, nanophoton) was used for laser Raman spectroscopy. The laser wavelength is 532 cm −1 . When time was required from the removal of the iron sample to the analysis, the iron sample was stored in a vacuum desiccator with silica gel.
 続いて、セメントペースト又はモルタル内部の鉄表面における酸素還元反応について説明する。セメントペーストに埋設した鉄試料ではいずれのかぶり(1mm~50mm)においても溶液に暴露した試料(かぶり0mm)と比較して自然電位付近の酸素還元電流密度が著しく減少した。また、自然電位付近の酸素還元電流密度はかぶりが大きくなるほど減少する傾向にあった。 Subsequently, the oxygen reduction reaction on the iron surface inside the cement paste or mortar will be described. The iron sample embedded in the cement paste significantly reduced the oxygen reduction current density in the vicinity of the natural potential in any fog (1 mm to 50 mm) compared to the sample exposed to the solution (0 mm fog). Also, the oxygen reduction current density near the natural potential tended to decrease as the fogging increased.
 モルタル内部においても、セメントペースト内部と同様に、かぶり0mmと比較して自然電位付近の酸素還元電流密度が著しく減少し、その値はかぶりが大きくなるほど減少した。セメントペースト内部又はモルタル内部を比較すると、同じかぶりではセメントペースト内部の酸素還元電流密度が低くなる傾向が得られた。溶存酸素は拡散によりセメントペースト・モルタル細孔内の水層に供給される。外部と鉄表面の距離、すなわちかぶりが大きいほど酸素拡散に要する時間が増加するためカソード分極曲線の酸素還元電流密度が減少したと考えられる。モルタル内部においてはセメント‐細骨材界面においてセメントペースト内部よりも大きな細孔が存在することが知られており、より大きな細孔が存在することで酸素拡散係数が大きくなることが報告されている。これらの結果から、モルタル内部においては比較的大きな細孔内部に存在する水が酸素拡散のパスとなるために酸素還元電流密度が増加したと考えられる。 Also in the inside of the mortar, the oxygen reduction current density near the natural potential was remarkably reduced as compared with the cover of 0 mm, and the value decreased as the cover increased. When the inside of the cement paste or the inside of the mortar was compared, there was a tendency that the oxygen reduction current density inside the cement paste decreased with the same cover. Dissolved oxygen is supplied to the water layer in the pores of the cement paste and mortar by diffusion. It is considered that the oxygen reduction current density of the cathode polarization curve decreased because the distance between the outside and the iron surface, that is, the fogging, increased the time required for oxygen diffusion. It is known that there are larger pores in the mortar inside the cement-fine aggregate interface than in the cement paste, and it has been reported that the larger the pores, the larger the oxygen diffusion coefficient. . From these results, it is considered that the oxygen reduction current density increased because water existing in relatively large pores inside the mortar became a path for oxygen diffusion.
 セメントペースト又はモルタル内部の酸素還元反応が酸素拡散に律速されていると仮定すると、カソード分極における酸素還元電流密度は酸素拡散電流密度として表される。すなわち、酸素拡散電流密度と拡散層厚さからなる拡散方程式に当てはめることが可能である。酸素の拡散方程式は次式で表される。
Figure JPOXMLDOC01-appb-M000002
Assuming that the oxygen reduction reaction inside the cement paste or mortar is limited by oxygen diffusion, the oxygen reduction current density in cathodic polarization is expressed as the oxygen diffusion current density. That is, it can be applied to a diffusion equation consisting of the oxygen diffusion current density and the diffusion layer thickness. The oxygen diffusion equation is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
 ここでiは酸素拡散限界電流密度(A/m)、zは荷電子数、Fはファラデー定数(C/mol)、Dは溶存酸素拡散定数(m/s)、Cは溶存酸素沖合濃度(mol/m)、δは拡散層の厚さ(m)である。ここでは、かぶり全てが拡散層となっていると仮定した。
 図3A及び図3Bは、様々なかぶりのセメントペースト内部の鉄試料のカソード分極曲線から得られた、酸素拡散限界電流密度とかぶりの逆数の関係を示す図である。図3Aにはかぶり1mmから50mmの範囲を、図3Bには図3Aを拡大してかぶり10mmから50mmの範囲を示した。なお、セメントペースト又はモルタル内部におけるカソード分極では電流の定常状態が認められなかったため、自然電位より50mV卑な電位における電流密度を酸素拡散限界電流密度として採用した。
Where i L is the oxygen diffusion limit current density (A / m 2 ), z is the valence number, F is the Faraday constant (C / mol), D is the dissolved oxygen diffusion constant (m 2 / s), and C is the dissolved oxygen. Offshore concentration (mol / m 3 ), δ is the thickness (m) of the diffusion layer. Here, it was assumed that all the fog was a diffusion layer.
FIG. 3A and FIG. 3B are diagrams showing the relationship between the oxygen diffusion limit current density and the reciprocal of the fog obtained from the cathodic polarization curves of iron samples inside various cement pastes. FIG. 3A shows a range of 1 mm to 50 mm of fog, and FIG. 3B shows an enlarged range of 10 mm to 50 mm of the cover of FIG. 3A. In addition, since the steady state of the electric current was not recognized by the cathode polarization inside cement paste or mortar, the current density at a potential lower by 50 mV than the natural potential was adopted as the oxygen diffusion limit current density.
 図3Aより、かぶり1mmから10mmの範囲では、酸素拡散限界電流密度とかぶりの逆数には直線的な比例関係が認められた。よって、この範囲ではセメントペースト又はモルタル内部は巨視的には一様な拡散層であるとみなせる。
 図3Bより、20mmから50mmの範囲では限界拡散電流密度とかぶりの逆数は直線関係から外れた。これらの結果から、かぶり内部での酸素拡散層の厚さは10mm以上20mm未満であることが示され、かぶり10mm以下であれば鉄筋の腐食は酸素の還元律速であり、鉄表面への酸素の供給を増加させることで鉄の腐食を促進できることが示された。
From FIG. 3A, a linear proportional relationship was recognized between the oxygen diffusion limit current density and the reciprocal of the fog in the range from 1 mm to 10 mm. Therefore, in this range, the cement paste or the inside of the mortar can be regarded as a macroscopically uniform diffusion layer.
From FIG. 3B, in the range of 20 mm to 50 mm, the critical diffusion current density and the reciprocal of the fog deviate from the linear relationship. From these results, it is shown that the thickness of the oxygen diffusion layer inside the cover is 10 mm or more and less than 20 mm. If the cover is 10 mm or less, the corrosion of the reinforcing bars is the rate of oxygen reduction, and oxygen on the iron surface It has been shown that increasing the supply can promote iron corrosion.
 次に、酸素加圧下におけるセメントペースト又はモルタル内部の鉄さびの加速生成について説明する。
 図4A~図4Dに各条件で腐食加速試験を行った際の鉄試料表面の光学顕微鏡像を示す。ここで腐食加速試験を行った際のセメントペースト又はモルタルのかぶりは、鉄の腐食が酸素拡散律速の範囲内であると推察される5mmで行った。図4Aおよび図4Bより、セメントペースト又はモルタルに埋設し大気中のNaCl水溶液中で試験を行った試料では腐食はほとんど認められなかった。図4Cより、セメントペーストに埋設し0.5MPa加圧酸素下のNaCl水溶液中で試験を行った試料では大気中で試験した試料よりも多くの腐食生成物が認められた。図4Dより、モルタルに埋設し0.5MPa加圧酸素下のNaCl水溶液中で試験を行った試料では、大気中およびセメントペーストに埋設し加圧酸素下で試験を行った試料よりもさらに多くの腐食生成物の付着が認められた。
Next, accelerated generation of iron rust inside cement paste or mortar under oxygen pressure will be described.
4A to 4D show optical microscope images of the surface of the iron sample when the accelerated corrosion test is performed under each condition. Here, the fogging of the cement paste or the mortar at the time of performing the accelerated corrosion test was performed at 5 mm where it is estimated that the corrosion of iron is within the range of oxygen diffusion rate control. 4A and 4B, almost no corrosion was observed in the samples embedded in cement paste or mortar and tested in an aqueous NaCl solution in the atmosphere. From FIG. 4C, more corrosion products were observed in the sample embedded in the cement paste and tested in an aqueous NaCl solution under 0.5 MPa pressurized oxygen than in the sample tested in the atmosphere. From FIG. 4D, the number of samples embedded in mortar and tested in a NaCl aqueous solution under 0.5 MPa pressurized oxygen was larger than that of samples embedded in the atmosphere and cement paste and tested under pressurized oxygen. The adhesion of corrosion products was observed.
 腐食加速試験により生成した鉄さびの厚さを検討するため、試料の断面SEM観察を行った。図5A~図5Fに各条件で試験を行った鉄試料の断面SEM反射電子像を示す。図5Aおよび図5Bより、セメントペースト又はモルタルに埋設し大気中のNaCl水溶液中で試験を行った試料では、断面像からも腐食生成物の存在は確認されなかった。図5Cおよび図5Dより、セメントペースト又はモルタルに埋設して0.5MPaの加圧酸素下のNaCl水溶液中で試験を行った試料では数μmの腐食生成物が生成していた。ただし、図5C、図5Dの断面図は、図4C、図4Dで多くの腐食が認められた箇所を撮影した。図5Dと同じ箇所のEDS測定による鉄と酸素の分布を図5Eおよび図5Fに示す。EDS測定の結果より、酸素加圧下で得られた腐食生成物は鉄酸化物、すなわち鉄さびであることが確かめられた。断面SEM像より求めた各鉄さびの厚さを表2に示す。
Figure JPOXMLDOC01-appb-T000003
In order to examine the thickness of the iron rust generated by the accelerated corrosion test, a cross-sectional SEM observation of the sample was performed. 5A to 5F show cross-sectional SEM backscattered electron images of iron samples tested under various conditions. From FIG. 5A and FIG. 5B, in the sample embedded in cement paste or mortar and tested in an aqueous NaCl solution in the atmosphere, the presence of corrosion products was not confirmed from the cross-sectional images. From FIG. 5C and FIG. 5D, a corrosion product of several μm was generated in a sample embedded in a cement paste or mortar and tested in a NaCl aqueous solution under 0.5 MPa of pressurized oxygen. However, in the cross-sectional views of FIG. 5C and FIG. 5D, portions where much corrosion was observed in FIG. 4C and FIG. 4D were photographed. The distribution of iron and oxygen by EDS measurement at the same location as in FIG. 5D is shown in FIGS. 5E and 5F. From the result of EDS measurement, it was confirmed that the corrosion product obtained under oxygen pressure was iron oxide, that is, iron rust. Table 2 shows the thickness of each iron rust determined from the cross-sectional SEM image.
Figure JPOXMLDOC01-appb-T000003
 さらに、カソード分極より得られた酸素限界拡散電流より求められる各条件の鉄さび予想厚さも示す。ここで鉄さびの膨張率は2.55であるとして計算した。SEM観察により得られた鉄さびの厚さは、セメントペースト又はモルタルにかぶり5mmで埋設し大気中で試験を行った試料では1μm以下、セメントペーストにかぶり5mmで埋設し酸素加圧下で試験を行った試料では約1.7μm、モルタルにかぶり5mmで埋設し酸素加圧下で試験を行った試料では約3.7μmであった。それぞれの鉄さびの厚さは、無作為に5点SEM像を撮影し、計測した鉄酸化物の平均厚さとした。いずれも酸素限界拡散電流密度より求められた鉄さびの予想厚さと近い値となった。これらの結果から、セメントペースト又はモルタル内部の鉄さび生成には酸素供給量が大きな影響を与えており、酸素加圧が鉄さびの生成加速に有効であることが明らかとなった。 Furthermore, the estimated iron rust thickness under each condition obtained from the oxygen-limited diffusion current obtained by cathodic polarization is also shown. Here, the iron rust expansion coefficient was calculated as 2.55. The thickness of the iron rust obtained by SEM observation was 1 μm or less for a sample which was embedded in cement paste or mortar with a cover of 5 mm and tested in the atmosphere, and embedded in the cement paste with a cover of 5 mm and tested under oxygen pressure. The sample was about 1.7 μm, and the sample embedded in mortar with a cover of 5 mm and tested under oxygen pressure was about 3.7 μm. The thickness of each iron rust was taken as the average thickness of the iron oxide measured by taking a 5-point SEM image at random. Both values were close to the expected thickness of iron rust obtained from the oxygen limit diffusion current density. From these results, it was clarified that the amount of oxygen supply has a great influence on the generation of iron rust inside the cement paste or mortar, and that oxygen pressurization is effective in accelerating the generation of iron rust.
 続いて、酸素加圧下で生成した鉄さびの構造分析について説明する。
 上述したように、加速生成した鉄さびには実環境で何十年かけて生成した鉄さびと同様の組成であることが求められる。酸素加圧下で生成した鉄さびの構造をレーザーラマン分光法を用いて検討した。高谷らは、アルカリ環境であるコンクリート内部で生成する鉄さびはFe(magnetite)とオキソ水酸化鉄(α-FeOOH(goethite)、γ-FeOOH(lepidocrocite))であると報告している(高谷哲、外4名,「コンクリート中における鉄筋の腐食生成物の生成プロセスおよび電気化学特性」,土木学会論文集 E2(材料・コンクリート構造),2015年,Vol.71,No.3,p.235-247)。モルタルにかぶり5mmで埋設し、0.5MPaの加圧酸素下で試験を行った鉄試料表面の腐食生成物のラマンスペクトルを図6に示す。図6より、上記腐食生成物は図中の各記号により示すFe、α-FeOOH、及びγ-FeOOHを含んでおり、実環境の鉄さびと同様の組成のさびが生成されたことが確認された。一方、セメントペースト中で試験を行った試料表面の鉄さびは薄すぎたためラマンスペクトルを得ることができなかった。
Next, the structural analysis of iron rust generated under oxygen pressure will be described.
As described above, the accelerated iron rust is required to have the same composition as the iron rust generated over decades in the actual environment. The structure of iron rust produced under oxygen pressure was investigated using laser Raman spectroscopy. Takatani et al. Reported that the iron rust generated inside the concrete in an alkaline environment is Fe 3 O 4 (magnetite) and iron oxohydroxide (α-FeOOH (goethite), γ-FeOOH (lepidocrocite)). Satoshi Takatani, 4 others, “Production process and electrochemical properties of corrosion products of reinforcing bars in concrete”, JSCE Proceedings E2 (Materials / Concrete Structure), 2015, Vol. 71, No. 3, p. 235-247). FIG. 6 shows a Raman spectrum of the corrosion product on the surface of the iron sample embedded in mortar with a cover of 5 mm and tested under pressurized oxygen of 0.5 MPa. As shown in FIG. 6, the corrosion product contains Fe 3 O 4 , α-FeOOH, and γ-FeOOH indicated by symbols in the figure, and rust having the same composition as iron rust in the actual environment was generated. confirmed. On the other hand, the iron rust on the sample surface tested in cement paste was too thin to obtain a Raman spectrum.
 本発明の酸素加圧試験法は電食試験法よりも実環境と同様の鉄さびが生成可能であり、乾湿繰返し試験法よりも短時間で簡便な方法であり、オートクレーブ法よりもコンクリート試験体の力学特性を損なわない試験法であるため、コンクリート内部鉄筋腐食の新規加速試験法として非常に有効である。 The oxygen pressurization test method of the present invention can produce iron rust similar to that in the actual environment than the electrolytic corrosion test method, is a simple method in a shorter time than the dry and wet repeated test method, and is more concrete than the autoclave method. Since this test method does not impair the mechanical properties, it is very effective as a new accelerated test method for concrete internal corrosion.
10 セメントペースト試験体、モルタル試験体、又はコンクリート試験体
11 セメントペースト又はモルタル
12 鉄試料
13 絶縁性棒材
14 導線
15 被覆層
16 かぶり
20 鉄筋腐食促進試験装置(加圧チャンバー)
21 筐体
22 フランジ
23 蓋部
24 観察窓
25 酸素供給弁
26 酸素放出弁
27 圧力ゲージ
28 NaCl水溶液
29 試験体支持板
DESCRIPTION OF SYMBOLS 10 Cement paste test body, mortar test body, or concrete test body 11 Cement paste or mortar 12 Iron sample 13 Insulating bar 14 Conductor 15 Cover layer 16 Cover 20 Reinforcing bar corrosion acceleration test apparatus (pressure chamber)
21 Housing 22 Flange 23 Lid 24 Observation window 25 Oxygen supply valve 26 Oxygen release valve 27 Pressure gauge 28 NaCl aqueous solution 29 Specimen support plate

Claims (10)

  1.  酸素供給量増加のために用いる加圧チャンバーと、
     前記加圧チャンバー内の酸素圧力を上昇させる酸素供給装置又は酸素加圧装置とを備え、
     当該加圧チャンバー内にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を設置すると共に、前記加圧チャンバー内の酸素圧力を上昇させて当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させることを特徴とする鉄筋腐食促進試験装置。
    A pressurized chamber used to increase oxygen supply;
    An oxygen supply device or an oxygen pressurization device for increasing the oxygen pressure in the pressurization chamber,
    A cement paste specimen, a mortar specimen, or a concrete specimen is installed in the pressurized chamber, and the oxygen pressure in the pressurized chamber is increased to increase the cement paste specimen, mortar specimen, or concrete specimen. Reinforcing bar corrosion promotion test device characterized by increasing the amount of oxygen supplied to the interior of the steel.
  2.  さらに、前記加圧チャンバー内に溜まるNaCl水溶液を有し、
     当該NaCl水溶液にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を浸漬させることを特徴とする請求項1に記載の鉄筋腐食促進試験装置。
    Furthermore, it has a NaCl aqueous solution that accumulates in the pressure chamber,
    The reinforcing corrosion test apparatus according to claim 1, wherein a cement paste specimen, a mortar specimen, or a concrete specimen is immersed in the NaCl aqueous solution.
  3.  前記NaCl水溶液での塩化物イオン濃度は、単位体積当たりのコンクリート換算で8.2×10-5kg/m以上、50kg/m以下であることを特徴とする請求項2に記載の鉄筋腐食促進試験装置。 3. The reinforcing bar according to claim 2, wherein a chloride ion concentration in the NaCl aqueous solution is 8.2 × 10 −5 kg / m 3 or more and 50 kg / m 3 or less in terms of concrete per unit volume. Corrosion acceleration test equipment.
  4.  前記NaCl水溶液の濃度はモルタル、セメントペースト、又はコンクリートの練り混ぜに用いた水のNaCl濃度と同じになるように調整されていることを特徴とする請求項1乃至3の何れか1項に記載の鉄筋腐食促進試験装置。 The density | concentration of the said NaCl aqueous solution is adjusted so that it may become the same as the NaCl density | concentration of the water used for kneading mortar, a cement paste, or concrete. Rebar corrosion acceleration test equipment.
  5.  請求項1乃至4の何れか1項に記載の鉄筋腐食促進試験装置において、
     さらに、前記加圧チャンバー内の湿度を制御する湿度制御部と、
     前記加圧チャンバー内の酸素圧力を上昇させる酸素圧力制御部とを備え、
     前記酸素圧力制御部によって、当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させることを特徴とする鉄筋腐食促進試験装置。
    In the reinforcing bar corrosion promotion test apparatus according to any one of claims 1 to 4,
    Furthermore, a humidity controller that controls the humidity in the pressurizing chamber;
    An oxygen pressure controller that raises the oxygen pressure in the pressurizing chamber;
    Reinforcing bar corrosion acceleration test device characterized in that oxygen supply amount to the inside of the cement paste test body, mortar test body, or concrete test body is increased by the oxygen pressure control unit.
  6.  前記湿度制御部は、加湿器で供給するガスを加湿する、および/もしくはチャンバー内に所定の無機塩の飽和溶液を設置して、前記加圧チャンバー内の湿度を制御することを特徴とする請求項5に記載の鉄筋腐食促進試験装置。 The humidity controller controls humidity in the pressurized chamber by humidifying a gas supplied by a humidifier and / or installing a saturated solution of a predetermined inorganic salt in the chamber. Item 6. The reinforcing bar corrosion acceleration test apparatus according to Item 5.
  7.  前記加圧チャンバー内の酸素圧力の上昇は、大気の酸素分圧を基準として2倍以上200倍以下であることを特徴とする請求項1乃至6の何れか1項に記載の鉄筋腐食促進試験装置。 7. The reinforcing bar corrosion acceleration test according to claim 1, wherein the increase in the oxygen pressure in the pressurizing chamber is not less than 2 times and not more than 200 times based on the oxygen partial pressure in the atmosphere. apparatus.
  8.  加圧チャンバー内にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を設置し、
     前記加圧チャンバー内の酸素圧力を上昇させて当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させ、
     当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体に埋設された鉄筋の腐食を促進する試験法。
    Install a cement paste specimen, mortar specimen, or concrete specimen in the pressure chamber,
    Increasing the oxygen pressure in the pressurized chamber to increase the amount of oxygen supplied into the cement paste specimen, mortar specimen, or concrete specimen,
    A test method for promoting the corrosion of reinforcing bars embedded in the cement paste specimen, mortar specimen, or concrete specimen.
  9.  さらに前記加圧チャンバー内に所定の無機塩の飽和溶液を設置して、前記加圧チャンバー内の湿度を調整することを特徴とする請求項8記載の鉄筋腐食促進試験法。 Further, the reinforcing corrosion test method according to claim 8, wherein a saturated solution of a predetermined inorganic salt is installed in the pressurized chamber to adjust the humidity in the pressurized chamber.
  10.  供試体であるコンクリート換算で所定の塩化物イオン濃度となるようなNaCl水溶液を調整し、
     当該NaCl水溶液を加圧チャンバー内に充填し、
     当該加圧チャンバー内のNaCl水溶液にセメントペースト試験体、モルタル試験体、又はコンクリート試験体を浸漬し、
     前記加圧チャンバー内の酸素圧力を上昇させて当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体の内部への酸素供給量を増加させ、
     当該セメントペースト試験体、モルタル試験体、又はコンクリート試験体に埋設された鉄筋の腐食を促進する試験法。
    Adjust the NaCl aqueous solution so as to have a predetermined chloride ion concentration in terms of concrete as the specimen,
    Fill the pressurized chamber with the NaCl aqueous solution,
    Immerse the cement paste specimen, mortar specimen, or concrete specimen in the NaCl aqueous solution in the pressurized chamber,
    Increasing the oxygen pressure in the pressurized chamber to increase the amount of oxygen supplied into the cement paste specimen, mortar specimen, or concrete specimen,
    A test method for promoting the corrosion of reinforcing bars embedded in the cement paste specimen, mortar specimen, or concrete specimen.
PCT/JP2017/032142 2016-10-13 2017-09-06 Rebar corrosion promotion test method and test device using same WO2018070144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-201580 2016-10-13
JP2016201580A JP6744629B2 (en) 2016-10-13 2016-10-13 Reinforcement corrosion acceleration test method and test equipment used therefor

Publications (1)

Publication Number Publication Date
WO2018070144A1 true WO2018070144A1 (en) 2018-04-19

Family

ID=61906338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032142 WO2018070144A1 (en) 2016-10-13 2017-09-06 Rebar corrosion promotion test method and test device using same

Country Status (2)

Country Link
JP (1) JP6744629B2 (en)
WO (1) WO2018070144A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337320A (en) * 2020-02-28 2020-06-26 浙江工业大学 Test device and test method capable of automatically preparing specific saturation test piece
CN111504895A (en) * 2020-06-08 2020-08-07 华侨大学 Outdoor simulated reinforced concrete member corrosion test device and test method
CN112147062A (en) * 2020-09-28 2020-12-29 辽宁工程技术大学 Reinforced concrete test piece corrosion test device and test method
WO2024045324A1 (en) * 2022-08-29 2024-03-07 中国路桥工程有限责任公司 Durability test system for reinforced concrete structure under marine multi-factor coupling erosion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593533B (en) * 2018-05-03 2019-03-08 东北石油大学 Simulate the experimental provision and experimental method of cementing concrete ring corrosion process in the earth formation
US11065859B2 (en) 2019-02-01 2021-07-20 Korea Institute Of Energy Research Device and method for disassembling solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191541A (en) * 1984-10-12 1986-05-09 Nippon Steel Corp Test method and apparatus for promoting corrosion undercover
US5425867A (en) * 1991-03-23 1995-06-20 Capcis March Limited Method and apparatus for producing electrochemical impedance spectra
JP2008082749A (en) * 2006-09-26 2008-04-10 Shikoku Electric Power Co Inc Advance estimating method of corrosive deterioration of reinforced concrete structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191541A (en) * 1984-10-12 1986-05-09 Nippon Steel Corp Test method and apparatus for promoting corrosion undercover
US5425867A (en) * 1991-03-23 1995-06-20 Capcis March Limited Method and apparatus for producing electrochemical impedance spectra
JP2008082749A (en) * 2006-09-26 2008-04-10 Shikoku Electric Power Co Inc Advance estimating method of corrosive deterioration of reinforced concrete structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOI, KOTARO ET AL.: "Acceleration of Fe Corrosion in Cement Paste and Mortar by Enhancing Oxygen Supply", PROCEEDINGS OF THE 63RD JAPAN CONFERENCE ON MATERIALS AND ENVIRONMENTS, vol. 63, 30 September 2016 (2016-09-30), pages 303 - 304 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337320A (en) * 2020-02-28 2020-06-26 浙江工业大学 Test device and test method capable of automatically preparing specific saturation test piece
CN111504895A (en) * 2020-06-08 2020-08-07 华侨大学 Outdoor simulated reinforced concrete member corrosion test device and test method
CN112147062A (en) * 2020-09-28 2020-12-29 辽宁工程技术大学 Reinforced concrete test piece corrosion test device and test method
WO2024045324A1 (en) * 2022-08-29 2024-03-07 中国路桥工程有限责任公司 Durability test system for reinforced concrete structure under marine multi-factor coupling erosion

Also Published As

Publication number Publication date
JP6744629B2 (en) 2020-08-19
JP2018063176A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2018070144A1 (en) Rebar corrosion promotion test method and test device using same
Xia et al. Numerical simulation of steel corrosion in chloride contaminated concrete
Liu et al. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress
Huet et al. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution
Criado et al. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel
Wong et al. On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion
Garces et al. Mechanical properties and corrosion of CAC mortars with carbon fibers
Song et al. Corrosion of reinforcing steel in concrete sewers
Roventi et al. Corrosion resistance of galvanized steel reinforcements in carbonated concrete: Effect of wet–dry cycles in tap water and in chloride solution on the passivating layer
Aveldaño et al. Characterization of concrete cracking due to corrosion of reinforcements in different environments
Chalhoub et al. Determination of chloride threshold initiating corrosion: A new set-up taking the localized aspect of corrosion into account
Fajardo et al. Innovative application of silicon nanoparticles (SN): Improvement of the barrier effect in hardened Portland cement-based materials
Nahali et al. Effect of Na3PO4 addition in mortar on steel reinforcement corrosion behavior in 3% NaCl solution
González et al. Electrochemical realkalisation of carbonated concrete: An alternative approach to prevention of reinforcing steel corrosion
Hay et al. Acidification at rebar-concrete interface induced by accelerated corrosion test in aggressive chloride environment
Román et al. Effect of chloride ions on the corrosion of galvanized steel embedded in concrete prepared with cements of different composition
Ashadi et al. Effects of steel slag substitution in geopolymer concrete on compressive strength and corrosion rate of steel reinforcement in seawater and an acid rain environment
Tian et al. Marine field test for steel reinforcement embedded in mortar: Coupled influence of the environmental conditions on corrosion
Saraswathy et al. Comparative study of strength and corrosion resistant properties of plain and blended cement concrete types
Farina et al. Corrosion of zinc in simulated carbonated concrete pore solutions
Bernal et al. Durability and testing–degradation via mass transport
Wang et al. Inhibition resistance and mechanism of migrating corrosion inhibitor on reinforced concrete under coupled carbonation and chloride attack
JP6945854B2 (en) Concrete neutralization promotion test method and test equipment used for this
Jin et al. Research on the Influence of Distance Between the Improved Ag/AgCl RE and the steel on the Corrosion Evaluation in Concrete
Liu et al. Effects of carbonation on micro structures of hardened cement paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860132

Country of ref document: EP

Kind code of ref document: A1