JPS6191323A - Formation of particle-dispersed surface coating layer - Google Patents

Formation of particle-dispersed surface coating layer

Info

Publication number
JPS6191323A
JPS6191323A JP59214996A JP21499684A JPS6191323A JP S6191323 A JPS6191323 A JP S6191323A JP 59214996 A JP59214996 A JP 59214996A JP 21499684 A JP21499684 A JP 21499684A JP S6191323 A JPS6191323 A JP S6191323A
Authority
JP
Japan
Prior art keywords
particle
dispersed
coating layer
surface coating
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59214996A
Other languages
Japanese (ja)
Inventor
Takaaki Kanazawa
孝明 金沢
Takashi Tomota
隆司 友田
Haratsugu Koyama
原嗣 小山
Shinji Oishi
大石 真治
Joji Miyake
譲治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59214996A priority Critical patent/JPS6191323A/en
Publication of JPS6191323A publication Critical patent/JPS6191323A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Abstract

PURPOSE:To form a particle-dispersed surface coating layer having an excellent surface friction and wear characteristic to a member to be subjected to surface coating by irradiating high-density energy to the surface of said member to heat and melt the surface and projecting and injecting fine hard particles into the molten pool formed in such a manner. CONSTITUTION:The fine hard particles 4 are projected and injected by a thermal spraying method such as plasma spraying of a high particle speed of thermal spraying into the molten pool 3 formed by irradiating the high-density energy 2 such as laser beam, TIG arc, plasma arc or electron beam to the surface of the member 1 to be subjected to surface coating to heat and melt said surface. The member 1 is moved toward an arrow A direction simultaneously with the above-mentioned operation to cool the pool 3, by which the fine hard particles 5b are dispersed uniformly into the material 5a constituting the base structure with good bondability. The particle-dispersed surface coating layer 5 is thus formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕、一 本発明は、粒子分散表面波ri屓の形成方法に関し、詳
しくは、表面被覆層の基地組織□中に微細硬質粒子を均
一に分散させるとともに、被表面被覆部材との結合力に
優れた粒子分散表面−fij! litを形成させる粒
子分散表面被覆層の形成方法にかかる。
DETAILED DESCRIPTION OF THE INVENTION [Field of industrial application] The present invention relates to a method for forming particle-dispersed surface waves, and more particularly, to a method for uniformly dispersing fine hard particles in the matrix structure □ of a surface coating layer. A particle-dispersed surface with excellent bonding strength with the surface-coated member - fij! The present invention relates to a method for forming a particle-dispersed surface coating layer that forms lit.

(従莱の技術〕      ゛ ―動車部品等の構造部材においては、構造部材i面にお
ける耐摩耗性等の表面摩擦摩耗特性要改善するために、
構造部材表面にセラミックス等の微細硬質粒子を分゛散
させた表面被覆層を形成する° 粒子分散表面被覆1i
t(71)形成方法に関する研究開発が*藻的に行われ
ている。
(Jourai's technology) - In structural members such as automobile parts, in order to improve surface friction and wear characteristics such as wear resistance on the i-plane of the structural member,
Forming a surface coating layer in which fine hard particles such as ceramics are dispersed on the surface of a structural member. Particle-dispersed surface coating 1i
Research and development on the method for forming t(71) is currently being carried out.

そして、このような粒子分散表面被覆層においては、゛
最近Jレーザビーム、TIGアーク、プラ女マアーク、
電子ビーム等の高密iエネルギの照射を11用して、 ■被表面被覆部材と同一成分の材料をコーティングした
微細硬質粒子を、被表面被覆部材の表面にバインダを用
いて被覆・固定した後、レーザビーム、T[Gア゛−り
、プラズマアーク、電子ビーム等の高密度エネルギを照
射して、表面被覆層を合金化させる方法(例えば、特願
昭59−115908号)。
In such a particle-dispersed surface coating layer, recently, J laser beam, TIG arc, plasma arc,
Using high-density i-energy irradiation such as an electron beam (11), fine hard particles coated with a material having the same composition as the surface-coated member are coated and fixed on the surface of the surface-coated member using a binder, and then A method of alloying the surface coating layer by irradiating it with high-density energy such as a laser beam, T[G-ray, plasma arc, or electron beam (for example, Japanese Patent Application No. 115908/1982).

■被表面被覆部材の表面を、レーザビーム、TIGアー
ク、プラズマアーク、電子ビーム等の高密度エネルギの
照射により加熱溶融して形成した溶融プール中に、ガス
の吹き付けを利用して微細硬質粒子を強制注入させる方
法(例えば、Th1nSolid  Films  7
3(1980)  P2O1〜207 rPaticu
−1ate  Tic−hardened  5tee
l   5urfaces  bylaser  me
lt  1njection 、 J等)。
■The surface of the surface-coated member is heated and melted by irradiation with high-density energy such as a laser beam, TIG arc, plasma arc, electron beam, etc., and fine hard particles are added into the molten pool by using gas blowing. Forced injection method (for example, Th1nSolid Films 7
3 (1980) P2O1~207 rPaticu
-1ate Tic-hardened 5tee
l 5 surfaces bylaser me
lt 1 njection, J, etc.).

■被表面被覆部材の表面に微細硬質粒子を主体とした被
覆剤を被覆した後、レーザビーム、TIGアーク、プラ
ズマアーク、電子ビーム等の高密度エネルギの照射によ
って、微細硬質粒子を溶融させることなく被表面被覆部
材の表面被覆層の基地組織材料のみを溶融させて、微細
硬質粒子を表面被覆層内に分散させる方法(例えば、R
apidlysolidfied  a+*o’rph
ous  crystal  alloysP 463
〜483 (82) r 5urface allay
ing ’ofiron  alloys  by  
1aser beam  melting 。
■After coating the surface of the surface-coated member with a coating material consisting mainly of fine hard particles, irradiation with high-density energy such as a laser beam, TIG arc, plasma arc, or electron beam is performed without melting the fine hard particles. A method of dispersing fine hard particles in the surface coating layer by melting only the matrix material of the surface coating layer of the surface-coated member (for example, R
a+*o'rph
ous crystal alloysP 463
~483 (82) r 5 surface array
ing 'ofiron alloys by
1aser beam melting.

j等)。j etc.).

■微細硬質粒子と基地組織を構成する粉末からなる混合
粉末の被覆剤を被表面被覆部材の表面に被覆した後、レ
ーザビーム、TIGアーク、プラズマアーク、電子ビー
ム等の高密度エネルギの照射により加熱して、合金化さ
れた粒子分散表面被覆層を形成させる方法。
■After coating the surface of the surface-coated member with a mixed powder coating agent consisting of fine hard particles and powder constituting the base structure, it is heated by irradiation with high-density energy such as a laser beam, TIG arc, plasma arc, or electron beam. to form an alloyed particle-dispersed surface coating layer.

等、種々の粒子分散表面被覆層の形成方法が試みられて
いる。
Various methods of forming a particle-dispersed surface coating layer have been attempted.

しかし、上述のような方法により製造された粒子分散表
面被覆層の形成された部材には、それぞれ、後述のよう
な問題点があることから、上述の、方法が必ずしも満足
すべき粒子分散表面被覆層の形成方法となっていないの
が現状である。
However, the members on which particle-dispersed surface coating layers are formed using the methods described above each have problems as described below. Currently, there is no method for forming layers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような従来の技術の現状に−み、本発明が解決し
ようとする問題点は、■の方法においては溶融プール内
に均一に微細硬質粒子を拡散させ□ることが困難であり
、■、■の方法においては、被表面被覆部材の表面の溶
融プール中に微細硬質粒子を均一な分散状態で混入させ
ることが困難であり、とりわけ、■の方法のように強制
注入により微細硬質粒子を注入させる場合、その溶融ブ
ー′ ル中に微細硬質粒子を均一な分散状態で混入させ
るには極めて高度な技術を必要とし、工業的な規模で微
細硬質粒子が均一に分散された粒子分散表面被覆層を安
定的に形成させることは、呻ど不可能に近いということ
である。         、また、■の方法において
は、被覆剤に表面被覆層の基地組織を構成すべき粉末力
4<混合されている。
In view of the current state of the conventional technology as described above, the problems that the present invention attempts to solve are that in the method (1), it is difficult to uniformly diffuse fine hard particles in the molten pool; In the method (2), it is difficult to mix the fine hard particles in a uniformly dispersed state into the molten pool on the surface of the surface-coated member. When injecting, extremely advanced technology is required to mix fine hard particles in a uniformly dispersed state into the molten bottle, and it is necessary to use extremely advanced technology to mix fine hard particles into the melting bottle in a uniformly dispersed state. It is almost impossible to form a layer stably. In addition, in the method (2), powder particles which form the matrix structure of the surface coating layer are mixed into the coating material.

ため、微細硬質粒子の周辺部の基地組織を構傅すべき粉
末をも溶融すること、牟でき、さらに、被表面被覆部材
の表面と表面被覆層とを合金化処理する場合には、被表
面被覆部材における表面被覆層の微細硬質粒子と基地組
織構成材料とが同時に被覆材中に混入されていることか
ら、粒子分散表面被覆層を形成させることが■、■の不
法に比較して容易となるという利点はあるものの、この
方法においては、微細硬質粒子と基地組織構成材料粉末
を混合した被覆剤を被表面被覆部材の表面に被覆するこ
ととしているため、微細粒子粉末の混合状態(混合時に
おける混合状態、混合後の被覆時における微細硬質粒子
の分散状態等)によっては、粒子分散表面被覆層におけ
る微細硬質粒子の分散状態の均一性、もしくは、基地組
織と微細硬質粒子との結合性が充分でなく、構造部材に
対して表面被覆処理の目的に応じた耐摩耗性、耐焼付性
等の表面摩擦摩耗特性を充分に確保させることかできな
いという、ことである。
Therefore, it is possible to melt the powder that should take care of the matrix structure around the fine hard particles.Furthermore, when alloying the surface of the surface-coated member and the surface coating layer, Since the fine hard particles of the surface coating layer of the coating member and the material constituting the base structure are mixed into the coating material at the same time, it is easier to form a particle-dispersed surface coating layer than in the illegal methods described in (1) and (2). However, in this method, the surface of the surface-coated member is coated with a coating agent that is a mixture of fine hard particles and matrix structure constituent material powder. (mixing state during coating, dispersion state of fine hard particles during coating after mixing, etc.), the uniformity of the dispersion state of fine hard particles in the particle-dispersed surface coating layer, or the bonding between the matrix structure and fine hard particles. This means that it is not possible to ensure sufficient surface friction and abrasion characteristics such as abrasion resistance and seizure resistance for the structural member according to the purpose of the surface coating treatment.

従って、本発明の技術的課題とするところは、被表面被
覆部材の表面を、レーザビーム、TIGアーク、プラズ
マアーク、電子ビーム等の高密度エネルギの照射により
加熱・溶融して形成された溶融プール内に、プラズマ溶
射法等の溶射粒子速度の速い溶射法、により前記微細硬
質粒子を投射・注入することによって、表面被覆部材の
表面被覆層における基地組織と微細分散粒子の結合性、
及      ゛び、粒子分散表面被覆層における基地
組織中への分散粒子の優れた分散状態を確保して、優れ
た表面摩擦摩耗特性と劣ることにある。
Therefore, the technical problem of the present invention is to form a molten pool by heating and melting the surface of a surface-coated member by irradiating it with high-density energy such as a laser beam, TIG arc, plasma arc, or electron beam. By projecting and injecting the fine hard particles by a thermal spraying method with a high spray particle velocity such as a plasma spraying method, the bond between the matrix structure and the finely dispersed particles in the surface coating layer of the surface coating member is improved.
Furthermore, by ensuring an excellent dispersion state of the dispersed particles in the matrix structure in the particle dispersion surface coating layer, excellent surface friction and wear properties are achieved.

〔問題点を解決するための手段〕[Means for solving problems]

このような従来の技術における問題点に鑑み1、本発明
における従来の技術の問題点を解決するための手段は、
基地組織中に微細硬質粒子の分散された表面波5i層を
、部材表面に形成させる粒子分散表面被覆層の形成方法
であって、 被表面被覆部材の表面を、レーザビーム、TIGアーク
、プラズマアーク、電子ビーム等の高密度エネルギの照
射により加熱・溶融して形成された溶融プール内に、プ
ラズマ溶射等の溶射粒子速度の速い溶射法によって、前
記微細硬質粒子を投射・注入した後冷却することを特徴
とする粒子分散表面被覆層の形成方法からなっている。
In view of the problems in the conventional technology, the present invention provides the following means for solving the problems in the conventional technology:
A method for forming a particle-dispersed surface coating layer in which a surface wave 5i layer in which fine hard particles are dispersed in a matrix structure is formed on the surface of a member, the surface of the member to be surface-coated being coated with a laser beam, a TIG arc, or a plasma arc. The fine hard particles are projected and injected into a molten pool formed by heating and melting by irradiation with high-density energy such as an electron beam, using a thermal spraying method such as plasma spraying that has a high spray particle velocity, and then cooling. The method consists of a method for forming a particle-dispersed surface coating layer characterized by the following.

〔作用〕[Effect]

以下、添付図面に基づいて、本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図は、本発明法により被表面被覆部材の表面に粒子
分散表面波’a、層を形成している状態を示す説明図で
ある。
FIG. 1 is an explanatory view showing a state in which a particle-dispersed surface wave 'a layer is formed on the surface of a surface-coated member by the method of the present invention.

この図において、まず、被表面被覆部材1の表面を、レ
ーザビーム、TIGアーク、プラズマアーク、電子ビー
ム等の高密度エネルギ2の照射により溶融プール3を形
成する。
In this figure, first, a molten pool 3 is formed on the surface of a surface-coated member 1 by irradiation with high-density energy 2 such as a laser beam, TIG arc, plasma arc, or electron beam.

この溶融プール3にプラズマ溶射等の溶射粒子速度の速
い溶射法により、微細硬質粒子4を投射・注入するので
ある。
Fine hard particles 4 are projected and injected into this molten pool 3 by a thermal spraying method such as plasma spraying that has a high spray particle velocity.

なお、溶融プール3に投射・注入させるための溶射法は
、微細硬質粒子4の溶射粒子速度が300  m/se
c程度となる溶射法であればよく、特にプラズマ溶射に
限定されるものではない。
In addition, the thermal spraying method for projecting and injecting into the molten pool 3 is such that the thermal spraying particle velocity of the fine hard particles 4 is 300 m/sec.
Any thermal spraying method can be used as long as the thermal spraying method is about c, and is not particularly limited to plasma spraying.

そして、溶融プール3へのこのような微細硬質粒子4の
投射・注入方法においては、微細硬質粒子4は溶射ガン
によって高温に加熱されていることから(例えば、プラ
ズマ溶射においては約1×10’℃)、溶融プール3内
に微細硬質粒子4が拡散され易すく、しかも、微細硬質
粒子4が高温であることから溶融した被表面被覆部材1
との“ぬれ性”にも優れており、形成された粒子分散表
面波ri屓5と被表面被覆部材1との結合力も優れたも
のとなるのである。
In this method of projecting and injecting the fine hard particles 4 into the molten pool 3, since the fine hard particles 4 are heated to a high temperature by a thermal spray gun (for example, in plasma spraying, the °C), the fine hard particles 4 are easily diffused into the molten pool 3, and since the fine hard particles 4 are at a high temperature, the surface coating member 1 is melted.
It also has excellent "wettability" with the particles, and the bonding force between the formed particle-dispersed surface waves 5 and the surface-coated member 1 is also excellent.

上述の操作を高密度エネルギ2もしくは被表面被覆部材
lの移動により、相対的に被表面被覆部材1を矢、印A
Φ方向に移動させながら粒子分散表面被覆層5を形成さ
せるのである。
The above operation is performed by moving the surface-coated member 1 using high-density energy 2 or moving the surface-coated member 1, so that the surface-coated member 1 is moved by the arrow or mark A.
The particle-dispersed surface coating layer 5 is formed while moving in the Φ direction.

そして、被表面被覆部材lの熱容量に比較して高密度エ
ネルギ2により加熱溶融させて形成される溶融プール3
の熱容量が著しく小さいことから、溶融プール3は被表
面被覆部材lの自己冷却作用により速やかに凝固し、被
表面被覆部材lの表面に微細硬質粒子4の均一に分散さ
れた粒子分散表面被覆N5が形成されるのである。
A molten pool 3 is formed by heating and melting with energy 2 that is higher in density than the heat capacity of the surface-coated member 1.
Since the heat capacity of is extremely small, the molten pool 3 quickly solidifies due to the self-cooling effect of the surface-coated member 1, and the particle-dispersed surface coating N5 with fine hard particles 4 uniformly dispersed on the surface of the surface-coated member 1 is formed. is formed.

なお、分散させる微細硬質粒子4には、本発明法により
製造される粒子分散表面被覆層5の使用目的に応じて、
種々の微細硬質粒子4を適用することが可能であり、硬
質のセラミック粒子(例えば、Al 20z、ZrO2
,TiO2,Cr 20、等の酸化物、TiC,WC,
NbC,Cr 、C2等の炭化物、TiN、CrN、S
i 3N4等の窒化物、CrB、TiB、FeB等の硼
化物)等を好適に適用可能である。
The fine hard particles 4 to be dispersed may include, depending on the purpose of use of the particle-dispersed surface coating layer 5 manufactured by the method of the present invention.
It is possible to apply various fine hard particles 4, including hard ceramic particles (e.g. Al 20z, ZrO2
, TiO2, Cr 20, etc., TiC, WC,
Carbides such as NbC, Cr, C2, TiN, CrN, S
Nitrides such as i3N4, borides such as CrB, TiB, FeB, etc.) can be suitably applied.

また、本発明法に使用する微細硬質粒子4の粒径も、種
々の粒径のものが適用可能である。
Moreover, various particle sizes can be applied to the fine hard particles 4 used in the method of the present invention.

次に、粒子分散表面被覆層5の基地組織構成材料5aは
、本発明法により形成された粒子分散表面波Q5の基地
組織構成材料5aとして適した材質であれば任意に選定
することができ、例えば、N i* Co +  F 
e、 A 1等の金属及びそれらの合金を好適に適用す
ることができることはもちろんのこと、熱可塑性樹脂等
の非金属材料を通用することも可能である。
Next, the base structure constituent material 5a of the particle-dispersed surface coating layer 5 can be arbitrarily selected as long as it is suitable as the base structure constituent material 5a of the particle-dispersed surface wave Q5 formed by the method of the present invention. For example, N i * Co + F
Not only can metals such as E and A1 and their alloys be suitably used, but also non-metallic materials such as thermoplastic resins can also be used.

いずれにしても、上述のレーザビーム、TIGアーク、
プラズマアーク、電子ビーム等の高密度エネルギ2の照
射により形成された被表面被覆部材lの表面の溶融プー
ル3内に、プラズマ溶射法等の溶射粒子速度の速い溶射
法により微細硬質粒子4を投射・注入することによって
、微細硬質粒子4を粒子分散表面被覆層5内に均一に分
散させるとともに、基地組織との結合性に優れた状態と
することができるのである。
In any case, the above-mentioned laser beam, TIG arc,
Fine hard particles 4 are projected into a molten pool 3 on the surface of the surface-coated member l formed by irradiation with high-density energy 2 such as a plasma arc or an electron beam by a thermal spraying method with a high spray particle velocity such as a plasma spraying method. - By injecting, the fine hard particles 4 can be uniformly dispersed within the particle-dispersed surface coating layer 5 and can be brought into a state with excellent bonding properties with the base tissue.

〔実施例〕〔Example〕

以下、添付図面に基づいて、本発明の1実施例を説明す
る。
Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

被表面被覆部材1としてA1合金鋳物(JIS規格AC
ZC相当材)の板状試験片に、高密度エネルギ2として
TIGアークを用いて第1図に示すような要領で被表面
被覆部材lの表面を加熱溶融して溶融プール3を形成し
、微細硬質粒子4としてT i C粉末を用いてプラズ
マ溶射法により微細−質粒子4を投射・注入した。
A1 alloy casting (JIS standard AC
Using a TIG arc as high-density energy 2, the surface of the surface-coated member 1 is heated and melted on a plate-shaped test piece of ZC equivalent material) in the manner shown in Fig. 1 to form a molten pool 3. Fine particles 4 were projected and injected by plasma spraying using T i C powder as the hard particles 4 .

なお、この時のTIGアーク処理条件は、電圧i13.
5Vとし、ピーク電流Tp;150A、ベース電流Tb
;125Aを交互に各2  m5ec通電するパルスT
IGアークにより、被表面被覆部材lの矢印A方向への
移動速度を3 mm/ secとして、被表面被覆部材
lの表面をTIGアーク照射した。
Note that the TIG arc processing conditions at this time are voltage i13.
5V, peak current Tp: 150A, base current Tb
; Pulse T that alternately supplies 125A for 2 m5ec each
The surface of the surface-coated member 1 was irradiated with a TIG arc using an IG arc at a moving speed of 3 mm/sec in the direction of arrow A.

そして、上記溶融プール3への微細硬質粒子4の投射・
注入は、プラズマ溶射ガン(M E T C07M)を
用いて、溶射ガスとしてAr及びH7を用い、電流;5
00A、溶射距離;50龍、溶射粉末供給速度; 25
 g/minの条件にてプラズマ溶射を行った。
Then, the fine hard particles 4 are projected onto the molten pool 3.
The injection was carried out using a plasma spray gun (MET C07M), using Ar and H7 as the spray gas, and a current of 5
00A, spray distance; 50 dragon, spray powder supply rate; 25
Plasma spraying was performed under conditions of g/min.

上述の条件により本発明法の粒子分散表面被覆層5の形
成方法により形成された粒子分散表面被覆層5の金属組
織の顕微鏡組織写真を第2図に示している。
FIG. 2 shows a micrograph of the metal structure of the particle-dispersed surface coating layer 5 formed by the method of forming the particle-dispersed surface coating layer 5 of the present invention under the above-mentioned conditions.

この図により明らかなように、粒子分散表面被覆層5の
中にはプラズマ溶射法によって投射・注入されたTiC
粉末粒子(微細硬質粒子5b)が均一に分散されている
ことを確認することができる。
As is clear from this figure, the particle-dispersed surface coating layer 5 contains TiC which has been projected and injected by plasma spraying.
It can be confirmed that the powder particles (fine hard particles 5b) are uniformly dispersed.

〔発明の効果〕〔Effect of the invention〕

以上により明らかなように、本発明にかかる粒子分散表
面被覆層の形成方法によれば、被表面被覆部材の表面を
、レーザビーム、TIGアーク。
As is clear from the above, according to the method for forming a particle-dispersed surface coating layer according to the present invention, the surface of the surface-coated member is coated with a laser beam or a TIG arc.

プラズマアーク、電子ビーム等の高密度エネルギの照射
により加熱・溶融して形成された溶融プール内に、プラ
ズマ溶射等の溶射粒子速度の速い溶射法により前記微細
硬質粒子を投射・注入することによって、表面被覆部材
の表面被覆層における基地組織と微細分散粒子の結合性
、及び、粒子分散表面被覆層における基地組織中への分
散粒子の優れた分散状態を確保して、優れた表面摩擦摩
耗特性とすることができる利点がある。
By projecting and injecting the fine hard particles into a molten pool formed by heating and melting by irradiation with high-density energy such as plasma arc or electron beam, using a thermal spraying method with a high spray particle velocity such as plasma spraying, The excellent surface friction and wear properties are achieved by ensuring the bond between the matrix structure and finely dispersed particles in the surface coating layer of the surface coating member and the excellent dispersion state of the dispersed particles in the matrix structure in the particle dispersion surface coating layer. There are advantages to being able to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明法により粒子分散表面被覆層を形成し
ている状態を示す説明図。 第2図は、本発明法により形成された粒子分散表面被覆
層の金属組織の顕微鏡写真を示す図である。 1−−−−・−被表面被覆部材。 2−・・・高密度エネルギ(照射領域)。 3・・・−溶融プール。 4−・・−微細硬質粒子。 5−一−−・−粒子分散表面被覆層。 5 a −−−−・・基地組織構成材料。 5b−−・−・TiC粉末(微細硬質粒子)。 A・・−・被表面被覆部材の移動方向。
FIG. 1 is an explanatory diagram showing the state in which a particle-dispersed surface coating layer is formed by the method of the present invention. FIG. 2 is a diagram showing a microscopic photograph of the metal structure of the particle-dispersed surface coating layer formed by the method of the present invention. 1-----.-Surface coated member. 2-...High density energy (irradiation area). 3...-Melting pool. 4-...-Fine hard particles. 5-1-- Particle-dispersed surface coating layer. 5 a ----- Base tissue constituent material. 5b---TiC powder (fine hard particles). A: Movement direction of the surface-coated member.

Claims (1)

【特許請求の範囲】 1、基地組織中に微細硬質粒子の分散された表面被覆層
を、部材表面に形成させる粒子分散表面被覆層の形成方
法であって、 被表面被覆部材の表面を、レーザビーム、TIGアーク
、プラズマアーク、電子ビーム等の高密度エネルギの照
射により加熱・溶融して形成された溶融プール内に、プ
ラズマ溶射等の溶射粒子速度の速い溶射法によって、前
記微細硬質粒子を投射・注入した後冷却することを特徴
とする粒子分散表面被覆層の形成方法。
[Claims] 1. A method for forming a particle-dispersed surface coating layer in which a surface coating layer in which fine hard particles are dispersed in a matrix structure is formed on the surface of a member, the method comprising: coating the surface of the member to be coated with a laser beam; The fine hard particles are projected into a molten pool formed by heating and melting by irradiation with high-density energy such as beam, TIG arc, plasma arc, electron beam, etc. using a thermal spraying method with a high spray particle velocity such as plasma spraying. - A method for forming a particle-dispersed surface coating layer, which is characterized by cooling after injection.
JP59214996A 1984-10-12 1984-10-12 Formation of particle-dispersed surface coating layer Pending JPS6191323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214996A JPS6191323A (en) 1984-10-12 1984-10-12 Formation of particle-dispersed surface coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214996A JPS6191323A (en) 1984-10-12 1984-10-12 Formation of particle-dispersed surface coating layer

Publications (1)

Publication Number Publication Date
JPS6191323A true JPS6191323A (en) 1986-05-09

Family

ID=16664970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214996A Pending JPS6191323A (en) 1984-10-12 1984-10-12 Formation of particle-dispersed surface coating layer

Country Status (1)

Country Link
JP (1) JPS6191323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004593A1 (en) * 1986-12-15 1988-06-30 Kabushiki Kaisha Komatsu Seisakusho Laser padding material and method for laser padding using same
US6197386B1 (en) * 1997-09-12 2001-03-06 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for applying a coating by means of plasma spraying while simultaneously applying a continuous laser beam
JP2013199665A (en) * 2012-03-23 2013-10-03 Ngk Insulators Ltd Cu SHEET TREATMENT METHOD AND Cu SHEET
JP2013234382A (en) * 2012-05-10 2013-11-21 Korea Atomic Energy Research Inst Oxide dispersion reinforcing method of metal raw material using laser
US20130344348A1 (en) * 2012-06-25 2013-12-26 Korea Hydro And Nuclear Power Co., Ltd. Zirconium alloy with coating layer containing mixed layer formed on surface, and preparation method thereof
WO2017186207A3 (en) * 2016-04-28 2018-01-18 Gühring KG Method for producing a tool module and tool module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004593A1 (en) * 1986-12-15 1988-06-30 Kabushiki Kaisha Komatsu Seisakusho Laser padding material and method for laser padding using same
US6197386B1 (en) * 1997-09-12 2001-03-06 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for applying a coating by means of plasma spraying while simultaneously applying a continuous laser beam
JP2013199665A (en) * 2012-03-23 2013-10-03 Ngk Insulators Ltd Cu SHEET TREATMENT METHOD AND Cu SHEET
JP2013234382A (en) * 2012-05-10 2013-11-21 Korea Atomic Energy Research Inst Oxide dispersion reinforcing method of metal raw material using laser
US9346125B2 (en) 2012-05-10 2016-05-24 Korea Atomic Energy Research Institute Method for oxide dispersion strengthening of metallic material using laser
US20130344348A1 (en) * 2012-06-25 2013-12-26 Korea Hydro And Nuclear Power Co., Ltd. Zirconium alloy with coating layer containing mixed layer formed on surface, and preparation method thereof
WO2017186207A3 (en) * 2016-04-28 2018-01-18 Gühring KG Method for producing a tool module and tool module

Similar Documents

Publication Publication Date Title
CN107460423B (en) A kind of preparation method of graphene/metal composite conductive coating
Oberländer et al. Comparison of properties of coatings produced by laser cladding and conventional methods
US4532191A (en) MCrAlY cladding layers and method for making same
US6221175B1 (en) Method for the production of a ceramic layer on a metallic base material
US10131969B2 (en) Method to form oxide dispersion strengthended (ODS) alloys
JPH02225598A (en) Covered object having improved wearability and manufacture thereof
JPS6191323A (en) Formation of particle-dispersed surface coating layer
JPH0313303B2 (en)
JPH04228501A (en) Hot sprayed powder
KR20120075178A (en) Thermal spray coating method using laser and thermal spray coating layer using the same
JP4424913B2 (en) Antibacterial treatment method by thermal spraying of plastic products
JP2769339B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
Shiva et al. Evolution in additive manufacturing techniques of metals as net-shaped products
JPS63250450A (en) Production of ceramic particle dispersed surface coating layer
JPH04276058A (en) Manufacture of dispersion plated steel sheet and torch to be used
JPH0199775A (en) Base treatment method in melt joining
JPH05503249A (en) Low-temperature method for applying high-strength metal coatings to substrates and products manufactured using the method
JPS61231151A (en) Surface hardening treatment for titanium or titanium alloy
JPH11350107A (en) Method for forming high-temperature wear-resistant film
JP3295357B2 (en) Method of forming magnetic layer on aluminum material and method of manufacturing aluminum material having magnetic layer
JPS6179783A (en) Formation of graphitized layer onto member surface
JPH02217458A (en) Method for flame-spraying ceramics-plastics mixture
Viswanadham et al. Laser Melt Injection of TiC Particles into Aluminium Bronze.
JP2769338B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JPH024981A (en) Ceramic coating method