JPS619125A - Method of controlling stationary reactive power compensator - Google Patents
Method of controlling stationary reactive power compensatorInfo
- Publication number
- JPS619125A JPS619125A JP59125318A JP12531884A JPS619125A JP S619125 A JPS619125 A JP S619125A JP 59125318 A JP59125318 A JP 59125318A JP 12531884 A JP12531884 A JP 12531884A JP S619125 A JPS619125 A JP S619125A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- control
- circuit
- static var
- compensator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は電力系統に接続され、系統電圧を維持する静止
形無効電力補償装置の制御方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for controlling a static var power compensator connected to a power grid and maintaining grid voltage.
電力系統の電圧変動を抑制するには、電圧変動の最も大
きな原因とな゛る無効電力を制御することが必要である
。このため一般に静止形無効電力補償装置によ多負荷の
遅相の無効電力にほぼ等しい進相の無効電力を供給し、
電圧変動の抑制がなされている。In order to suppress voltage fluctuations in power systems, it is necessary to control reactive power, which is the largest cause of voltage fluctuations. For this reason, generally, a static reactive power compensator is supplied with advanced reactive power that is approximately equal to the delayed reactive power of the multi-load.
Voltage fluctuations are suppressed.
ここで従来の静止形無効電力補償装置の単線結線図と制
御ブロック図を第3図に示す。図において、1は電力系
統、2は電圧変成器、3は変流器、4は静止形無効電力
補償装置の制御装置、5は補償リアクトル、6は補償コ
ンデンサ、7,8はサイリスタ、41は整流回路、42
はローパスフィルタ、43は電圧基準回路、村と45は
加算点、46は伝達関数回路、47はQ−α関数発生回
路、招は点弧パルス発生回路、49は整流回路、50は
・ローパスフィルタである。FIG. 3 shows a single line diagram and a control block diagram of a conventional static var power compensator. In the figure, 1 is a power system, 2 is a voltage transformer, 3 is a current transformer, 4 is a control device for a static var power compensator, 5 is a compensation reactor, 6 is a compensation capacitor, 7 and 8 are thyristors, and 41 is a Rectifier circuit, 42
43 is a low-pass filter, 43 is a voltage reference circuit, 45 is a summing point, 46 is a transfer function circuit, 47 is a Q-α function generation circuit, 49 is a ignition pulse generation circuit, 49 is a rectifier circuit, 50 is a low-pass filter It is.
次に動作について説明する。静止形無効電力補償装置は
電力系統に進相無効電力又は遅相無効電力を供給するこ
とによシ系統電圧の保持をする。Next, the operation will be explained. Static reactive power compensators maintain system voltage by supplying phase leading reactive power or lagging reactive power to the power system.
電圧変成器2によυ系統電圧を検出し、この電圧は整流
回路41とローパスフィルタ42によシリラブルの小さ
な直流電圧に変換する。さらに加算点材にローパスフィ
ルタからの出力と電圧基準回路おからの出力が入力され
、比較される。ローパスフィルタ42からの電圧信号が
基準電圧信号招からの基準電圧より低い時には静止形無
効電力補償装置は、進相無効電力を供給するが高い場合
には静止形無効電力補償装置は遅相無効電力を供給し、
系統電圧を基準電圧に維持する。加算点材の出力は加算
点45を経由し、伝達関数回路46に入力される。The voltage transformer 2 detects the υ system voltage, and the rectifier circuit 41 and the low-pass filter 42 convert this voltage into a small syllable DC voltage. Furthermore, the output from the low-pass filter and the output from the voltage reference circuit Okara are input to the addition point material and compared. When the voltage signal from the low-pass filter 42 is lower than the reference voltage from the reference voltage signal, the static reactive power compensator supplies leading phase reactive power, but when it is higher, the static reactive power compensator supplies lagging reactive power. supply,
Maintain grid voltage at reference voltage. The output of the summing point material passes through the summing point 45 and is input to the transfer function circuit 46 .
伝達関数回路46では、比例積分回路などから構成され
静止形無効電力補償装置が安定、高速応答などによシ回
路構成が決定される。伝達関数回路46の出力はQ−α
関数発生回路47に入力される。ここではサイリスタ7
.8の位相制御(制御遅れ角α)で決まる無効電力特性
Qを関数近似している。The transfer function circuit 46 is composed of a proportional-integral circuit, etc., and the circuit configuration is determined so that the static var power compensator is stable and has a high-speed response. The output of the transfer function circuit 46 is Q-α
The signal is input to the function generating circuit 47. Here, thyristor 7
.. The reactive power characteristic Q determined by the phase control (control delay angle α) of 8 is approximated as a function.
Q−α関数発生回路47の出力は点弧パルス発生回路化
に入力され、ここではサイリスタ7と8へ与えるゲート
パルスを発生する回路で構成される。The output of the Q-α function generating circuit 47 is input to an ignition pulse generating circuit, which is comprised of a circuit for generating gate pulses to be applied to the thyristors 7 and 8.
さらに補償リアクトル5と補償コンデンサ6に流れる電
流を変流器3忙よシ検出し、整流回路49に入力する。Furthermore, the current flowing through the compensation reactor 5 and the compensation capacitor 6 is detected by the current transformer 3 and is inputted to the rectifier circuit 49.
整流回路49の出力はローパスフィルタ50に入力され
、ローパスフィルタ42と同様にしてリップルを抑える
。さらにローパスフィルタ5oの出力は、加算点45に
入力されフィードバックループを形成している。このよ
うにして静止形無効電力補償装置は系統電圧の基準電圧
からの偏差分を抑制するように動作する。The output of the rectifier circuit 49 is input to a low-pass filter 50, which suppresses ripples in the same manner as the low-pass filter 42. Further, the output of the low-pass filter 5o is input to an addition point 45 to form a feedback loop. In this manner, the static var compensator operates to suppress the deviation of the system voltage from the reference voltage.
さらに電圧制御の動作を第4図を用いて説明する。この
図(a)は静止形無効電力補償装置の制御特性である。Furthermore, the operation of voltage control will be explained using FIG. This figure (a) shows the control characteristics of the static var power compensator.
第4図(a)においてO−A間は補償リアクトル5がサ
イリスタ7と8により開放されておシ、補償コンデンサ
6のみ接続され、電圧に比例して進相無効電流の変わる
領域、A−B間はサイリスタ7.8の制御によシ定電圧
特性が保持され、1.、、、 B−Cエウィ!1X77
、!:8よ2、あ ヤリアクドル5の電流を最大限の状
態にしたときで電圧に比例して連相無効電流の変わる領
域である。In FIG. 4(a), between O and A, the compensation reactor 5 is opened by the thyristors 7 and 8, and only the compensation capacitor 6 is connected, and the area where the phase-advanced reactive current changes in proportion to the voltage, A-B. The constant voltage characteristics are maintained by the control of the thyristor 7.8 during the period 1. ,,, B-C Ewi! 1X77
,! :8 yo 2, ah This is the region where the continuous reactive current changes in proportion to the voltage when the current of the Yariakudle 5 is maximized.
A−B間の傾斜は基準電圧信号と系統電圧との偏差信号
と伝達関数回路46の制御ゲインによシきまるもので、
通常1〜5チ程度の電圧変動で静止形無効電力補償装置
容量の100%が制御できるように選定される。■。点
は系統電圧の基準点である。第4図(a)OA−B間の
特性式を
I:=に+(V−v。) ・・・・・・・・・・・・・
・・・・・(1)で表わすと、この特性の傾きは1/に
1 で与えられる。K、は系統電圧■と基準電圧v0(
設定値)の差分、即ち設定値からの変化分に対して静止
形無効電力補償装置の出力を何倍にするかを定める量で
、制御系のゲインと呼ばれる。このため第4図(alの
A−B間の特性はゲインに1を大きくする程、傾きは小
さく水平に近い特性となり、ゲインを小さく゛すると傾
きは大きくなる。The slope between A and B is determined by the deviation signal between the reference voltage signal and the grid voltage and the control gain of the transfer function circuit 46.
Usually, it is selected so that 100% of the capacity of the static var compensator can be controlled with a voltage fluctuation of about 1 to 5 inches. ■. The point is the reference point of the grid voltage. Figure 4 (a) OA-B characteristic equation I:=+(V-v.) ・・・・・・・・・・・・・・・
...When expressed as (1), the slope of this characteristic is given by 1/1. K, is the system voltage ■ and the reference voltage v0 (
This is the amount that determines how many times the output of the static var power compensator should be increased relative to the difference between the set value (set value), that is, the change from the set value, and is called the gain of the control system. Therefore, in the characteristic between A and B of FIG. 4 (al), as the gain is increased by 1, the slope becomes smaller and the characteristic becomes closer to the horizontal, and as the gain is decreased, the slope becomes larger.
次に、このような静特性をもつ静止形無効電力補償装置
が系統に接続された時の応動について説明する。系統を
簡易化して第4図(b)のように表わすと系統の電圧−
電流特性は(2)式で表わされる。Next, a description will be given of the response when a static var compensator having such static characteristics is connected to a grid. If the system is simplified and expressed as shown in Figure 4 (b), the system voltage -
The current characteristics are expressed by equation (2).
V = B、 −Z 、 I ・・・・・・・・・
・・・・・・・・(2)この特性と静止形無効電力補償
装置の特性とを重ねて表わすとN4図(C)となり、系
!電圧の変動に対する応動が理解できる。第4図(C)
において、電源電圧E。が変動した時の側止形無効電力
補償装置の応動は次のようになる。今電源電圧がEoの
時、静止形無効電力補償装置の端子電圧がVoで出力は
零であるとする。この状態から系統電圧が+ΔE。V = B, -Z, I ・・・・・・・・・
・・・・・・・・・(2) When this characteristic and the characteristic of the static var compensator are superimposed, it becomes N4 diagram (C), and the system! Understand the response to voltage fluctuations. Figure 4 (C)
, the power supply voltage E. The response of the side-stop type reactive power compensator when the value fluctuates is as follows. Assume that when the power supply voltage is Eo, the terminal voltage of the static var compensator is Vo and the output is zero. From this state, the system voltage increases to +ΔE.
変化すると系統の電圧電流特性は
V =(Eo + Δbo ) Z 、Iとなり、静
止形無効電力補償装置の電圧電流特性との交点は右に移
動する。このため静止形無効電力補償装置は系統の電圧
電流特性との交点に相当する遅れ電流I、を出力しその
結果静止形無効電力補償装置の端子電圧を■1まで引き
下げる。静止形無効電力補償装置がない場合の端子電圧
Hv。十△EoであるからV。十△E0− V、だけ電
圧を抑制したことになる。When this changes, the voltage-current characteristics of the system become V = (Eo + Δbo) Z, I, and the intersection with the voltage-current characteristics of the static var compensator moves to the right. Therefore, the static var compensator outputs a delayed current I corresponding to the point of intersection with the voltage-current characteristic of the system, and as a result, the terminal voltage of the static var compensator is lowered to 1. Terminal voltage Hv when there is no static reactive power compensator. V because it is ten△Eo. This means that the voltage is suppressed by 10△E0-V.
電力系統に電車のような単相負荷が接続されている場合
には、三相アンバランス負荷であるため静止形無効電力
補償装置は三相個別に制御する必要がある。このような
負荷の場合には第4図(d)のa、b、c点、またはa
′、b′、07点で示すように、三相のうちの一相分の
制御が定電圧領域の末端になることがある。即ち第4図
(d)のA点(γリミットと呼ぶ)にa相の制御が、B
点(αリミットと呼ぶ)にa′相の制御が定電圧制御領
域の末端(リミット)に到達することがある。乙のとき
に従来の方式ではa相又はa′相は定電圧の制御能力が
全くなくなり、小外乱的な電圧変動に対して抑制効果が
なかった。When a single-phase load such as a train is connected to the power system, the load is a three-phase unbalanced load, so the static var power compensator needs to control each of the three phases individually. In the case of such a load, points a, b, c or a in Figure 4(d)
As shown by points ', b' and 07, control of one of the three phases may be at the end of the constant voltage region. That is, at point A (referred to as γ limit) in FIG. 4(d), the control of phase a is
The control of the a' phase may reach the end (limit) of the constant voltage control region at a point (referred to as the α limit). In the case of (B), in the conventional system, the a-phase or a' phase has no ability to control constant voltage at all, and has no suppressing effect on small disturbance voltage fluctuations.
本発明は前述の点に鑑みなされたものであって、小外乱
的な電圧変動に対しても抑制効果を発揮出来る静止形無
効電力補償装置の制御方法を提供することを目的とする
。The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a control method for a static var power compensator that can exert a suppressing effect even on small disturbance voltage fluctuations.
本発明はこの目的を達成するために、各相の割り 御
蓋を監視し、定電圧制御領域の末端に到達した相は他相
の制御量との相加平均値に制御量を変更し、定電圧制御
領域に引き込み/」−外乱の電圧変動に対しても抑制効
果を発揮させることを特徴とするものである。In order to achieve this objective, the present invention monitors the ratio of each phase, changes the control amount of the phase that has reached the end of the constant voltage control region to the arithmetic average value of the control amounts of other phases, and This is characterized by the ability to suppress voltage fluctuations caused by disturbances by drawing into a constant voltage control region.
以下に本発明の実施について説明する。 The implementation of the present invention will be described below.
第1図は本発明の制御方法を説明するための静止形無効
電力補償装置の単線結線図と制御ブロック図である。第
3図と同一の番号のものは同一のものを示し、411は
相加平均算出回路、414はαすiット検出回路、41
5はrリミット検出回路、416は論理和回路、417
は切換スイッチ回路を示す。FIG. 1 is a single line diagram and a control block diagram of a static var power compensator for explaining the control method of the present invention. The same numbers as in FIG. 3 indicate the same things, 411 is the arithmetic mean calculation circuit, 414 is the α seat detection circuit, 41
5 is an r limit detection circuit, 416 is an OR circuit, 417
indicates a changeover switch circuit.
第1図は線間R−8の定電圧制御の場合について示した
ものであり、他の線間についても同様である。電圧変成
器2によシ線間電圧VR8を検出し、整流回路41とフ
ィルタ42とで直流の信号電圧を作る。!圧基準回路4
3.21D算点材、45、伝達関数回路は第3図の説明
のものと同様であり、他相の線間について同様にして行
なえる。相方ロ平均算出回 し路411は(h
s+Qsy±9卦の演算を行い、平均値制御の制御量と
して使用する。またαリミット検出回路414及びγリ
ミット検出回路415では、伝達関数回路46からの出
力値が定電圧制御領域の末端(リミット)にあるかどう
かを判断し、末端に到達した場合には論理和回路4】6
を経由して、切換スイッチ417をA(個別)からB(
平均)に切換えるように動作する。切換スイッチ417
は通、常人の個別制御側に投入されていて、論理和回路
416゜からの出力があるとBの平均値制御に切換ゎる
。FIG. 1 shows the case of constant voltage control for the line R-8, and the same applies to the other lines. The line voltage VR8 is detected by the voltage transformer 2, and a DC signal voltage is generated by the rectifier circuit 41 and filter 42. ! Pressure reference circuit 4
3.21D calculation point material, 45, and transfer function circuit are similar to those explained in FIG. 3, and can be performed in the same manner between lines of other phases. The partner loop average calculation circuit 411 is (h
A calculation of s+Qsy±9 trigrams is performed and used as a control amount for average value control. In addition, the α limit detection circuit 414 and the γ limit detection circuit 415 determine whether the output value from the transfer function circuit 46 is at the end (limit) of the constant voltage control region, and if it reaches the end, the OR circuit 4]6
via the selector switch 417 from A (individual) to B (
average). Changeover switch 417
is normally input to the individual control side of ordinary people, and when there is an output from the OR circuit 416°, the control is switched to the average value control of B.
相加平均をとることは制御リミットに到達している相に
対して制御ゲインを元のゲインよシ下げることになる。Taking the arithmetic mean reduces the control gain to the original gain for the phase that has reached the control limit.
これにより静止形無効電力補償装置の電圧電流特性の傾
きが大きくなシ、定電圧制御領域に引き込むことになる
。これを第2図を用いて説明する。(イ)の特性は従来
方式の特性の例で系統の特性とのクロスするところがリ
ミットになっているため、リミットより下の電圧変動に
対しては抑制効果がない。峻)の特性は本発明による実
施例のもので制御ゲインが不さくなシ傾きが大きくなυ
、定電圧領域に引き込まれていることが分かる。As a result, the voltage-current characteristics of the static var-power compensator have a large slope, and are brought into the constant voltage control region. This will be explained using FIG. Characteristic (a) is an example of the characteristics of the conventional method, and the limit is where it crosses the grid characteristics, so it has no suppressing effect on voltage fluctuations below the limit. The characteristics of υ are those of the embodiment according to the present invention, where the control gain is low and the slope is large.
, it can be seen that the voltage is drawn into the constant voltage region.
以上説明したように負荷にアンバランスが生じ、各線間
の制御が定電圧制御領域から外れようとしたときに、個
別制御から平均値制御に切換わるため小外乱的な電圧変
動に対して制御能力が継続して残るため、制御能力の向
上を図ることが出来る。As explained above, when an unbalance occurs in the load and the control between each line is about to deviate from the constant voltage control area, the control is switched from individual control to average value control, which increases the control ability against small disturbance voltage fluctuations. remains, so it is possible to improve the control ability.
第1図は本発明の一実施例を示す静止形無効電力補償装
置の制御ブロック図、第2図は本発明の詳細な説明する
ための電圧電流特性図、第3図は従来の静止形無効電力
補償装置の制御ブロック図、第4図は静止形無効電力補
償装置の制御特性図である。
1・・・電力系統 2・電圧変成器3・・・変
流器
4−静止形無効電力補償装置の制御装置5・補償リアク
トル 6・・・補償コンデンサ7.8 サイリスタ
41.49・整流回路42.50・・ローパスフ
ィルタ 招・・電圧基準回路材、45・・加算点
46・・・伝達関数回路47−Q−α関数発生回路
48・・・点弧パルス発生回路414・・αリミット
検出回路 415・・・γリミット検出回路416・・
・論理和回路 417・・切換スイッチ回路(7
317) 代理人 弁理士側 近 憲 佑 (ほか1
名)シFig. 1 is a control block diagram of a static var compensator showing one embodiment of the present invention, Fig. 2 is a voltage-current characteristic diagram for explaining the present invention in detail, and Fig. 3 is a control block diagram of a static var compensator according to an embodiment of the present invention. FIG. 4 is a control block diagram of the power compensator, and FIG. 4 is a control characteristic diagram of the static var power compensator. 1... Power system 2. Voltage transformer 3... Current transformer 4 - Control device 5 for static var power compensator 6. Compensation reactor 6. Compensation capacitor 7.8 Thyristor 41.49. Rectifier circuit 42 .50...Low pass filter Invitation...Voltage reference circuit material, 45...Additional point
46...Transfer function circuit 47-Q-α function generation circuit 48...Ignition pulse generation circuit 414...α limit detection circuit 415...γ limit detection circuit 416...
・OR circuit 417...changeover switch circuit (7
317) Agent: Kensuke Chika, patent attorney (and 1 other person)
name) shi
Claims (1)
補償リアクトルと補償コンデンサを並列に設け、前記補
償リアクトルに流れる電流をサイリスタにより制御する
静止形無効電力補償装置において、各線間毎に個別に前
記静止形無効電力補償装置を設け、各線間毎に無効電力
補償を行なうようにすると共に、各線間毎に制御量を監
視し、その制御量が該静止形無効電力補償装置の制御領
域の限界に到達したときにその限界に達した線間の制御
を、各線間毎の制御量の相加平均値により制御を行なう
ように切換えることを特徴とした静止形無効電力補償装
置の制御方法。In order to stabilize the system voltage, a compensation reactor and a compensation capacitor are installed in parallel between the power system and the load, and in a static var compensator that controls the current flowing through the compensation reactor with a thyristor, The static var power compensator is individually provided to perform reactive power compensation for each line, and the control amount is monitored for each line, and the control amount is within the control area of the static var power compensator. A control method for a static var power compensator, characterized in that when a limit is reached, the control between the lines that has reached the limit is switched to be controlled by the arithmetic average value of the control amount for each line. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59125318A JPS619125A (en) | 1984-06-20 | 1984-06-20 | Method of controlling stationary reactive power compensator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59125318A JPS619125A (en) | 1984-06-20 | 1984-06-20 | Method of controlling stationary reactive power compensator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS619125A true JPS619125A (en) | 1986-01-16 |
Family
ID=14907137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59125318A Pending JPS619125A (en) | 1984-06-20 | 1984-06-20 | Method of controlling stationary reactive power compensator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS619125A (en) |
-
1984
- 1984-06-20 JP JP59125318A patent/JPS619125A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3896348A (en) | Circuit for supplying a dc load from an ac source through a rectifier | |
US4545002A (en) | Thyristor voltage limiter for current source inverter | |
US5077517A (en) | Voltage fluctuation and higher harmonics suppressor | |
JPH02131329A (en) | Reactive power compensator for power system | |
US6404656B1 (en) | Control equipment for thyristor-controlled series capacitor equipment, and a method for control thereof | |
EP0278491B1 (en) | Power converter | |
US4339705A (en) | Thyristor switched inductor circuit for regulating voltage | |
US6984962B2 (en) | Device and a method for voltage control in an electric transmission network | |
JPS619125A (en) | Method of controlling stationary reactive power compensator | |
JP3343711B2 (en) | Static var compensator | |
JPS6362985B2 (en) | ||
JPS6132915B2 (en) | ||
JPS6152721A (en) | Control method of static reactive power compensating device | |
JP3328039B2 (en) | Static var compensator | |
JPS61156320A (en) | Static reactive power compensator | |
JPS6154823A (en) | Controller of power system stabilizer | |
JPS61241812A (en) | Control system for compensating device of reactive electric power | |
JP3228033B2 (en) | Control method of DC intermediate voltage of reactive power compensator | |
JPH08214459A (en) | Controller of reactive power compensating equipment | |
JPS629414A (en) | Instantaneous reactive and effective power compensating device | |
JPH03113521A (en) | Static reactive power controller | |
JP3264706B2 (en) | Superconducting power controller | |
JPH04265631A (en) | Reactive power compensator | |
JPS6263322A (en) | Reactive power compensator | |
JPH07107669A (en) | Restraining method for higher harmonic of capacitor for power factor improvement |