JPS6152721A - Control method of static reactive power compensating device - Google Patents

Control method of static reactive power compensating device

Info

Publication number
JPS6152721A
JPS6152721A JP59173361A JP17336184A JPS6152721A JP S6152721 A JPS6152721 A JP S6152721A JP 59173361 A JP59173361 A JP 59173361A JP 17336184 A JP17336184 A JP 17336184A JP S6152721 A JPS6152721 A JP S6152721A
Authority
JP
Japan
Prior art keywords
voltage
circuit
static
control region
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59173361A
Other languages
Japanese (ja)
Inventor
Tadashi Nishikawa
正 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59173361A priority Critical patent/JPS6152721A/en
Publication of JPS6152721A publication Critical patent/JPS6152721A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To obtain the suppressing effect even for the voltage variance of a small disturbance by monitoring a controlled variable and increasing the angle of the gradient of the characteristic of a static reactive power compensating device to lead the controlled variable into a constant voltage control region when it reaches the terminal of the constant voltage control region. CONSTITUTION:A system voltage is detected by a voltage transformer 2 and a rectifying circuit 42 and is compared with the voltage of a reference circuit 43, and the current flowed to a compensating reactor 5 and a compensating capacitor 6 is detected to output a voltage through a slope gain circuit 51, and this voltage and said differential voltage are added. Thyristors 7 and 8 are controlled by a transmission function circuit 46, a Q-alpha function generating circuit 47, and an igniting pulse generating circuit 48 to hold down the system voltage within a constant voltage control region A-B. When the controlled variable approaches a point A or B, this approach is detected by a gamma limit detecting circuit 415 or an alpha limit detecting circuit 414, and the slope gain circuit 51 is controlled to increase the gradient [from (a) to (b)], and the control point is approximated to the center.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電力系統に接続され、系統電圧安定を維持する
静止形馴効電力補償装置の開明1方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a first method of a static adaptive power compensator that is connected to a power grid and maintains grid voltage stability.

[gi’i’す1の技術的背景とその間頂点〕電力系統
の′電圧変動を抑制するには、電圧変動の最も大きな原
因となる無効電力を制御することが必要でるる。このた
め一般に静止形無効電力補償装置によ〕負荷の遅相の無
効電力にほぼ等しい進相の無効電力針供給し、電圧変動
の抑制がなされている。
[Technical background of gi'i' 1 and its highlights] In order to suppress voltage fluctuations in the power system, it is necessary to control reactive power, which is the largest cause of voltage fluctuations. For this reason, voltage fluctuations are generally suppressed by using a static reactive power compensator to supply an advanced reactive power needle that is approximately equal to the delayed reactive power of the load.

ここで従来の静止形無効電力補償装置の単線結線図と制
御ブロック図を第3図に示す。□□□において、1は電
力系統、2は電圧変成器、3は変流器、4は静止形無動
電力補償↓゛装置の制御装置、5は補償リアクトル、6
は補償コンデンサ、7と8はサイリスタ、41 Fi 
M 流回路、42けローパスフィルタ、43は電圧基1
い回路、44と45は加算点、46は伝達関数回路、4
7はQ−α関ジごξ発生回路、48は点弧パルス発生回
路、49は整流回路、50はローパスフィルタ、51は
スロープゲイン回ト°18でらる。
FIG. 3 shows a single line diagram and a control block diagram of a conventional static var power compensator. In □□□, 1 is a power system, 2 is a voltage transformer, 3 is a current transformer, 4 is a control device for the stationary non-active power compensation↓゛ device, 5 is a compensation reactor, 6
is a compensation capacitor, 7 and 8 are thyristors, 41 Fi
M flow circuit, 42-digit low-pass filter, 43 is voltage base 1
44 and 45 are addition points, 46 is a transfer function circuit, 4
Reference numeral 7 denotes a Q-α relation ξ generation circuit, 48 an ignition pulse generation circuit, 49 a rectifier circuit, 50 a low-pass filter, and 51 a slope gain circuit 18.

次に動作について説明する。砕土形無効電力補償装置は
電力系統に進相無効電力又は遅相無効電力を供給するこ
とにより系統電圧の安定化をはかる。電圧変成器2によ
シ系統′電圧を検出し、この電圧は整流回路41とロー
パスフィルタ42によりリップルの小さな直流TEEE
て変換する。さらに力n算点44ニローパスフィルタか
らの出力と電圧基博回路・13からの出力が入力され、
比較さゴ′する。ローパスフィルタ42からの電圧信号
が基準IL圧回路43からの基・fi’j ’!i1.
圧より低い時には静止形無効1し;力補償装置は進相無
効電力を供給するが、高い場合V7:、は静止形無効1
a力袖(、lY AA置は辞相無効′エカを供給し、亭
統市圧を基準電圧又は基準電圧に近い匝て維持する。加
算点44の出力は加算点45を経由し、伝達間数回;I
′11611こ入力される。伝達関数回路46で+d比
倒潰分回路などから(IIl;成され俵止形無効電力袖
償装置が安定、高速応答などにより回路溝成が決定さ1
1.る。伝達量;攻回路46の出力はQ−α関数発生回
路4 ’7に入力される。ここではサイリスタ7.8の
位相:li!I脚(制御卸遅れ角α)で決咬る無効′心
力特性Q、c関数近似している。Q−α関数発生回路4
7の出力は点弧パルス発生回路48に入力され、ここで
はサイリスタ7と8へ与えるゲートパルスを発生する回
路で招電される。さらに補償リアクトル5と補償コンデ
ンサ6に流れる電流を変流器3により検出し、整流回路
49に入力する。整流回路49ノ出力はローパスフィル
タ50に入力され、ローパスフィルタ42と同様にして
リップルを抑える。さラニローパスフィルタ50の出力
はスロープゲイン回路51全通して加算点45ニ入力す
る。このスロープゲイン回路51は第4図を用いて後で
説明する。
Next, the operation will be explained. The crushed earth type reactive power compensator stabilizes the grid voltage by supplying phase leading reactive power or lagging reactive power to the power grid. The voltage transformer 2 detects the system voltage, and this voltage is converted into a DC TEEE with small ripple by the rectifier circuit 41 and the low-pass filter 42.
Convert. In addition, the output from the power n calculation point 44 low-pass filter and the output from the voltage reference circuit 13 are input,
Let's compare. The voltage signal from the low-pass filter 42 is the base signal from the reference IL pressure circuit 43. i1.
When it is lower than V7, it is a static invalid 1; the force compensator supplies phase-advanced reactive power, but when it is higher than V7, it is a static invalid 1.
The output of the summing point 44 is passed through the summing point 45, and the voltage is maintained at or near the reference voltage. several times;I
'11611 is input. In the transfer function circuit 46, the circuit configuration is determined by the +d ratio crushing circuit etc.
1. Ru. Transmission amount: The output of the attack circuit 46 is input to the Q-α function generation circuit 4'7. Here the phase of thyristor 7.8: li! The invalid force characteristic Q, which is determined by the I leg (control delay angle α), approximates the c function. Q-α function generation circuit 4
The output of thyristors 7 and 8 is inputted to an ignition pulse generation circuit 48, where it is generated by a circuit that generates gate pulses to be applied to thyristors 7 and 8. Further, the current flowing through the compensation reactor 5 and the compensation capacitor 6 is detected by the current transformer 3 and input to the rectifier circuit 49. The output of the rectifier circuit 49 is input to a low-pass filter 50, which suppresses ripples in the same manner as the low-pass filter 42. The output of the low-pass filter 50 passes through the entire slope gain circuit 51 and is input to the addition point 45. This slope gain circuit 51 will be explained later using FIG.

このようにして静屯形無効電力補償装置は系統電圧の基
準電圧からの偏差分を抑制するようl/′c動作する。
In this way, the static reactive power compensator operates l/'c so as to suppress the deviation of the system voltage from the reference voltage.

さらに電圧制御の動作を第4図を用いて説明する。この
図(a)は静止形無効電力補償装置の制御特性でらる。
Furthermore, the operation of voltage control will be explained using FIG. This diagram (a) shows the control characteristics of the static var power compensator.

第4図1alにおいてO−A間は補償リアクトル5がサ
イリスタ7と8により開放されておシ、補償コンデ/す
6のみ接続され、電圧に比例して進相無効電流の変わる
領域、A−8間はサイリスタ7.8の制御により定′シ
圧特性が保持ざね   Iる領域、B−0間はサイリス
タ7と8YCより補償リアクトル5の電流を最大限の状
態にしたときで電圧に比例して遅相無効電流の変わる領
域でらる。
In Fig. 4 1al, the compensation reactor 5 is opened by the thyristors 7 and 8 between O and A, and only the compensation capacitor 6 is connected, and the area where the phase-advanced reactive current changes in proportion to the voltage is A-8. Between B and 0, the constant pressure characteristics are maintained by the control of thyristors 7 and 8, and between B and 0, when the current of compensation reactor 5 is maximized by thyristors 7 and 8YC, the current is proportional to the voltage. In the region where the slow phase reactive current changes.

A−8間の傾斜はスロープゲイン回路51のゲインによ
りまさるもので、通常1〜5el)程度の電圧変動で静
止形無効電力補償装置容量の100%が制御できるよう
に選定される。v。点は系統電圧の基準点でちる。第4
図(alのA、 −8間の特性式をI = Kt (V
−Vo )    ・=−(1)で表わすと、この特性
の傾きは1/に1で与えられる。Klは系統電圧Vと基
準電圧V。(設定値)の差分、即ち設定値からの変化分
に対して静止形無効′μ力補償装置の出力を何倍にする
かを定める量でちる。このためd34[り1(a)のA
−8間の特性はゲイン!(1を大きくする程、顕きは小
さく水平に近い特性となシ、ゲインを小さくすると傾き
は大きくなる0 次に、このような静特性をもつ静市形無効電力補償装置
が系統に接続された時の応動について説明する。系統を
ft)易化して第4図(1))のように表わすと系統の
rIf圧−電流特性は(2)式で表わされる。
The slope between A-8 is exceeded by the gain of the slope gain circuit 51, and is selected so that 100% of the static var power compensator capacity can be controlled with a voltage fluctuation of about 1 to 5 el. v. The point is the reference point of the grid voltage. Fourth
The characteristic equation between A and -8 in Figure (al) is I = Kt (V
-Vo ) .=-(1), the slope of this characteristic is given by 1/1. Kl is the system voltage V and the reference voltage V. (set value), that is, the amount that determines how many times the output of the static reactive force compensator should be multiplied by the amount of change from the set value. Therefore, d34 [A of 1(a)]
The characteristic between -8 is gain! (The larger the value of 1 is, the smaller the magnitude is and the characteristic is close to horizontal. The smaller the gain is, the larger the slope is.) Next, when a static static type var compensator with such static characteristics is connected to the grid, When the system is simplified to ft) and expressed as shown in FIG. 4 (1), the rIf pressure-current characteristic of the system is expressed by equation (2).

V = Eo−Z −I     、、 、、、−(2
1この特性と静止形無効電力補償装置の特性とを爪ねて
表わすと第4図(c)となり、系統電圧の変動に対する
応動が理解できる。第4図(c)において電源電圧E0
が変動した時の静止形無効電力補償装置の応動は次のよ
うになる。今、電源電圧がB。の時、静止形無効′aカ
補償装置の端子電圧がVoで出力は零であるとする。こ
の状態から系統電圧が+ΔE。
V = Eo-Z -I , , , , -(2
1. If this characteristic and the characteristic of the static var compensator are combined together, the result is shown in FIG. 4(c), and the response to fluctuations in the system voltage can be understood. In Fig. 4(c), the power supply voltage E0
The response of the static var compensator when the value fluctuates is as follows. The power supply voltage is now B. Assume that when , the terminal voltage of the static type reactive force compensator is Vo and the output is zero. From this state, the system voltage increases to +ΔE.

変化すると系統の電圧電流特性は V=(Eo+ΔEo)−Z−I となり、静止形無効電力補償装置の電圧・底流特性との
交点は右に移動する。このため静止形無効電力補償装置
は系統の電圧電流特性との交点に相当する遅れ電流11
を出力し、その結果静止形無効電力補償装置の端子電圧
をV、まで引き下げる。静止形無効電力補償装置がない
場合の端子電圧はE、 +ΔE0でらるからE0+ΔE
0−V、  だけ電圧を抑制したことになる。逆に系統
電圧が−ΔEo変化すると系統の電圧電流特性は V=(Bo−ΔE0)−Z・工 となジ、静止形無効電力補償装置の電圧電流特性との交
点は左に移動する。これにより静止形無効電力補償装置
はその交点に和尚する遅れ電流■2を出力し、その結果
V2まで引き上げる。静止形無動電力補fl’を装置が
ない場合の1”萱子電圧はE6−ΔEoであるからV2
(Eo−ΔEo)だけ電圧を抑制したことになる。
When this changes, the voltage/current characteristics of the system become V=(Eo+ΔEo)−Z−I, and the intersection with the voltage/undercurrent characteristics of the static var power compensator moves to the right. Therefore, the static reactive power compensator uses a lagging current 11 corresponding to the intersection with the voltage-current characteristics of the grid.
As a result, the terminal voltage of the static var compensator is lowered to V. If there is no static reactive power compensator, the terminal voltage is E, +ΔE0, so E0 + ΔE
This means that the voltage is suppressed by 0-V. Conversely, when the system voltage changes by -ΔEo, the voltage-current characteristic of the system becomes V=(Bo-ΔE0)-Z·min, and the intersection with the voltage-current characteristic of the static var power compensator moves to the left. As a result, the static var compensator outputs a delayed current (2) to the intersection point, and as a result, the current is raised to V2. Since the 1" voltage when there is no device for static passive power compensation fl' is E6 - ΔEo, V2
This means that the voltage is suppressed by (Eo - ΔEo).

ところで系統電圧が犬きぐ変化して、系統の電圧電流特
性が第4図(a)のA−B間と交差がなされなV−,3
’?j、合を第4図(d)に示す。この図の系統′厄圧
特性(イ)は電圧が上昇した場合でちり、(ロ)は電圧
が低下した場合でちる。このときには静止形無効η1′
、力補憤甚置は系統電圧の特性(イ)でαリミットと呼
ばわる位相制御の末端に位置し、特性(ロ)でγリミッ
トと呼ばれる位相制御の末端に位置する。これらのいず
れの場合も定電圧制御領域を外ハている。
By the way, the grid voltage changes rapidly, and the voltage-current characteristics of the grid become V-, 3, which does not intersect with the line A-B in Fig. 4(a).
'? j, combination is shown in FIG. 4(d). In this figure, the system's negative pressure characteristics (a) will break when the voltage increases, and (b) will break when the voltage drops. In this case, the static form is invalid η1′
, force reinforcement and resistance are located at the end of phase control called α limit in characteristic (a) of the system voltage, and at the end of phase control called gamma limit in characteristic (b). In any of these cases, the voltage is outside the constant voltage control region.

このように従来の制御方法では系統電圧特性がA−B間
と交差しない状態となると定朗、圧の制征i)能力が全
くなくなることがらった。
As described above, it has been found that in the conventional control method, when the system voltage characteristics do not intersect between A and B, the ability to control the voltage is completely lost.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前述の点に鑑みなされたものであって、
定電圧制御領域を外れだ場合領域内に引き込み定電圧1
ull 1ill+能力を回復出来る静止形無効′d力
補償装置の制御方法を提供することにある。
The object of the present invention was made in view of the above points, and
If it is out of the constant voltage control area, it will be pulled into the constant voltage control area and the constant voltage 1 will be applied.
It is an object of the present invention to provide a control method for a static reactive force compensator capable of recovering the 1ill+ capability.

〔発明の概要〕[Summary of the invention]

本発明は静止形無効電力補償装置の制御量を監視し、定
電圧制御領域の末端に到達したときには静止形無効電力
補償装置の特性の・匝斜角度を太きくシ、定電圧制御領
域に引き込み、小外乱の電圧変動に対しても抑制効果を
発揮させるようにし、たものである。
The present invention monitors the control amount of the static var power compensator, and when it reaches the end of the constant voltage control region, increases the slope angle of the characteristic of the static var power compensator and draws it into the constant voltage control region. , it is designed to exert a suppressing effect even on voltage fluctuations caused by small disturbances.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1図は本発明の制御方法を説明するための静止形無効
電力補償装置の単線結線図と制御ブロック図である。第
3図と同一の番号のものは同一のものを示し、414は
αリミット検出回路、415はγリミット検出回路、4
16は論理和回路、417は切換スイッチ回路、418
はレベル検出回路でらる。 1第1図で電圧変成詣2に
より系統電圧を低圧の電圧信号とし整流回路41、フィ
ルタ42とで電流の信号電圧を作る。電圧基準回路43
、加算点44,44、伝達関数回路は第3図の説明のも
のと同様である。
FIG. 1 is a single line diagram and a control block diagram of a static var power compensator for explaining the control method of the present invention. The same numbers as in FIG. 3 indicate the same parts, 414 is an α limit detection circuit, 415 is a γ limit detection circuit, 4
16 is an OR circuit, 417 is a changeover switch circuit, 418
is detected by the level detection circuit. 1 In FIG. 1, the system voltage is converted into a low voltage signal by voltage transformation circuit 2, and a current signal voltage is generated by a rectifier circuit 41 and a filter 42. Voltage reference circuit 43
, the addition points 44, 44, and the transfer function circuit are similar to those described in FIG.

寸たαリミット検出回路414及びrリミット検出回路
415ではに連関数回路46からの出力値が定電圧制−
11領域の末女;M(リミット)にあるかどうかを判断
し、末端に到達した場合には論理和回路416を経由し
切換スイッチ回路417を通してスロープゲイン回路5
1に入力し、スロープゲインを高くするように動作する
。スロープゲイン回路51は伝達関数回路46の出力値
が開開領域の末端に達すると静止形無効’Ll?、力h
0償装置の電圧電流特性の傾きを大きくするようにする
。このようにし、て制御領域から外れたものを制が1領
域に引き込むことになる。
In the α limit detection circuit 414 and r limit detection circuit 415, the output value from the continuous function circuit 46 is controlled by constant voltage control.
The youngest of the 11 regions; determines whether it is at M (limit), and if it reaches the end, it passes through the logical sum circuit 416 and the changeover switch circuit 417 to the slope gain circuit 5.
1 and operates to increase the slope gain. The slope gain circuit 51 is statically disabled when the output value of the transfer function circuit 46 reaches the end of the open/open region. , force h
The slope of the voltage-current characteristic of the zero compensation device is increased. In this way, things that are out of the control area will be pulled into the control area.

・また系統1a圧が電圧基準値に近い値に回復したかど
うかをレベル検出回路418によυ監視し、回復したら
切換スイッチ回路417のスイッチを切換えてスロープ
ゲイン回路51のスロープゲインをもとの状態にもどす
ようvc動作する。これを第2図を用いて説明する。嬉
2図の(イ)の特性は従来方式の特性の例で系統の特性
との交差するところがリミットになっているため、リミ
ットより下の電圧変動に対しては抑制効果がない。(ロ
)の特性は本発明rこよるものでスロープゲインを大き
くした場合を示す。これにより定電圧制御領域に引き込
まれ、電圧変動の抑制効果が発揮されていることが分る
・Also, the level detection circuit 418 monitors whether the system 1a pressure has recovered to a value close to the voltage reference value, and when it has recovered, the changeover switch circuit 417 is switched to change the slope gain of the slope gain circuit 51 to the original value. VC operates to restore the state. This will be explained using FIG. The characteristic shown in Figure 2 (a) is an example of the characteristic of the conventional system, and the limit is where it intersects with the grid characteristic, so it has no suppressing effect on voltage fluctuations below the limit. The characteristic (b) is based on the present invention and shows the case where the slope gain is increased. It can be seen that this brings the voltage into the constant voltage control region and exerts the effect of suppressing voltage fluctuations.

第2図(a)は系統電圧が上昇方向になった場合で第2
図fb)は低下方向になった場合を示す。
Figure 2 (a) shows the second case when the grid voltage is in the rising direction.
Figure fb) shows the case where the trend is in the downward direction.

〔発明の効果〕〔Effect of the invention〕

以上に示したように、本発明でよれば系統電圧が大きく
変化し定電圧制御領域のリミットに到達しても、制御ス
ロープを変えるだめ、系統電圧が大きく変化し、さらに
小外乱的な電圧変動に対しても制御能力が継続しである
だめ制御能力を向上出来る。
As shown above, according to the present invention, even if the grid voltage changes greatly and reaches the limit of the constant voltage control region, the control slope cannot be changed, the grid voltage will change greatly, and even a small disturbance voltage fluctuation will occur. The control ability can be improved even if the control ability continues.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の静市形無効電力補償装置の四線結線図
と制jtlブロック図1、第2図は本発明の説明をする
ための電圧電流特性図、第3図は従来の静止形無効電力
補償装置の単線結線図と制御ブロック図、第4図は静止
形無効電力補償装置の制御特性図である。 1・・、ij、j力系統  2・・′id圧変成器 3
・・・変流器・1・・静止形無動電力袖131装置の割
部II装置[) ・・斗山イj′i  リ ブ り ト
 ル   6 ・・・ 1市11是コ / デ /す7
.8・・・サイリスタ   41.49 ・・整流回路
42.50・・・ローパスフィルタ 43・・電圧基準
回路51・・スロープゲイン回路 4.4.45・・・
1aII算点・16・・伝達関数回路 lt7・・・Q−α間該発生回路 48・・・点弧パルス発生回路 ・114・・・αリミット検出回路 415 ・・rリミット検出回路 416・・・論理和回路 417・・・切換スイッチ回
路418・・レベル検出回路 (7317)代理人フト理士 則 近 憲 佑 (に、
か1名)第4図(α9 第4図(b〕
Fig. 1 is a four-line connection diagram and control jtl block diagram of the static static type var power compensator of the present invention, Fig. 2 is a voltage-current characteristic diagram for explaining the present invention, and Fig. 3 is a conventional static static type var power compensator. A single line diagram and a control block diagram of the static var power compensator, and FIG. 4 is a control characteristic diagram of the static var power compensator. 1..., ij, j power system 2...'id pressure transformer 3
...Current transformer 1...Stationary non-active power sleeve 131 device split part II device [)...Doosan Ij′i Ributor 6...1 City 11 Correct/De/S 7
.. 8... Thyristor 41.49... Rectifier circuit 42.50... Low pass filter 43... Voltage reference circuit 51... Slope gain circuit 4.4.45...
1aII calculation point 16...Transfer function circuit lt7...Q-α generation circuit 48...Ignition pulse generation circuit 114...α limit detection circuit 415...r limit detection circuit 416... OR circuit 417... Changeover switch circuit 418... Level detection circuit (7317) Agent Futo Physician Noriyuki Chika (Ni,
or 1 person) Figure 4 (α9 Figure 4 (b)

Claims (1)

【特許請求の範囲】[Claims] 系統電圧を安定化するために、電力系統と負荷との間に
補償リアクトルと補償コンデンサを並列に設け、前記補
償リアクトルに流れる電流をサイリスタにより位相制御
する静止形無効電力補償装置において、その制御量を監
視し、制御量が前記静止形無効電力補償装置の制御領域
の限界に到達したときに、前記静止形無効電力補償装置
の電圧電流特性の制御傾斜を調整することにより制御領
域に引き込むことを特徴とする静止形無効電力補償装置
の制御方法。
In a static reactive power compensator, a compensation reactor and a compensation capacitor are provided in parallel between the power system and the load in order to stabilize the system voltage, and the phase of the current flowing through the compensation reactor is controlled by a thyristor. and when the controlled amount reaches the limit of the control region of the static var power compensator, the static var power compensator is pulled into the control region by adjusting the control slope of the voltage-current characteristic of the static var power compensator. A method of controlling a static var power compensator characterized by:
JP59173361A 1984-08-22 1984-08-22 Control method of static reactive power compensating device Pending JPS6152721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173361A JPS6152721A (en) 1984-08-22 1984-08-22 Control method of static reactive power compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173361A JPS6152721A (en) 1984-08-22 1984-08-22 Control method of static reactive power compensating device

Publications (1)

Publication Number Publication Date
JPS6152721A true JPS6152721A (en) 1986-03-15

Family

ID=15958976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173361A Pending JPS6152721A (en) 1984-08-22 1984-08-22 Control method of static reactive power compensating device

Country Status (1)

Country Link
JP (1) JPS6152721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438059A2 (en) * 1990-01-16 1991-07-24 Kabushiki Kaisha Toshiba Reactive power compensation apparatus
JP2008165499A (en) * 2006-12-28 2008-07-17 Toshiba Corp Reactive power compensation device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438059A2 (en) * 1990-01-16 1991-07-24 Kabushiki Kaisha Toshiba Reactive power compensation apparatus
JP2008165499A (en) * 2006-12-28 2008-07-17 Toshiba Corp Reactive power compensation device and method

Similar Documents

Publication Publication Date Title
US5077517A (en) Voltage fluctuation and higher harmonics suppressor
GB2142485A (en) Thyristor voltage limiter for current source inverter
JPH02131329A (en) Reactive power compensator for power system
JP2795183B2 (en) Static var compensator
JP2007020306A (en) Method of controlling alternating voltage in electric power system by power converter or reactive power compensator
JPS6152721A (en) Control method of static reactive power compensating device
US4339705A (en) Thyristor switched inductor circuit for regulating voltage
JPS6118405B2 (en)
JPH06233530A (en) Variable-gain voltage control system of dc/dc converter using detection of load current
JPS619125A (en) Method of controlling stationary reactive power compensator
JPH04313108A (en) Reactive power compensating device
JPH03222016A (en) Control system for reactive power compensator
JP2598635B2 (en) Control method and control device for circulating current type cycloconverter
JPH0274149A (en) Chopper
JPS61241812A (en) Control system for compensating device of reactive electric power
JPS61156320A (en) Static reactive power compensator
JP3319010B2 (en) Static reactive power adjustment device
JPH0869333A (en) Stationary reactive power compensation device
JPH02181209A (en) Controller of reactive power compensating device
JP2507434B2 (en) Excitation controller for synchronous machine
JPS6268022A (en) Controlling method for reactive power compensator
JPH0382338A (en) Higher harmonic voltage suppressing apparatus
JPS62221713A (en) Controller for static reactive power compensator
SU987763A1 (en) Three-phase inverter
JPH0515162A (en) Power converter