JPH0382338A - Higher harmonic voltage suppressing apparatus - Google Patents

Higher harmonic voltage suppressing apparatus

Info

Publication number
JPH0382338A
JPH0382338A JP1216855A JP21685589A JPH0382338A JP H0382338 A JPH0382338 A JP H0382338A JP 1216855 A JP1216855 A JP 1216855A JP 21685589 A JP21685589 A JP 21685589A JP H0382338 A JPH0382338 A JP H0382338A
Authority
JP
Japan
Prior art keywords
voltage
signal
outputting
pwm converter
phase pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1216855A
Other languages
Japanese (ja)
Inventor
Takeshi Shioda
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP1216855A priority Critical patent/JPH0382338A/en
Publication of JPH0382338A publication Critical patent/JPH0382338A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

PURPOSE:To obtain an active type higher harmonic suppressing apparatus which is provided with a load equipment in parallel and normalizes a voltage at a power receiving point by providing transformation matrix signal generating means, transformed voltage signal generating means, higher harmonic voltage signal generating means, compensating current signal generating means and switching command generating means for switching the three-phase PWM converter. CONSTITUTION:A transformation matrix generating circuit 81 is the function generator of the fundamental harmonic angular frequency of a system power supply voltage. A transformed voltage generating circuit 82 outputs transformed voltage Vsp and Vsq signals. A high-pass filter 83 outputs transformed voltage AC component Vsp and Vsq signals. A higher harmonic voltage generating circuit 84 outputs higher harmonic voltage VSHU, VSHV and VSHW signals. A proportion al integration circuit 85 outputs three-phase compensating current command values i U, i V and i W. A current control circuit 86 outputs a switching command VG signal so that compensating current detection values follow the compensating current command values and controls ON and OFF of switching elements forming a three-phase PWM converter.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電源系統の負荷設備に並設される高調波電圧抑
制装置、特に受電点の高調波電圧を抑制するアクティブ
形の高調波電圧抑制装置に関するものである。 〔従来の技術〕 tS系統の高調波電圧を抑制する方式として第5図に示
すものが知られている。 第5図は高調波電圧抑制方式の従来例の説明のため示し
たもので、lは系統電源、2.7は負荷、3は同期フィ
ルタ、4はトランス、5は電圧補償コンデンサ、6は電
源インピーダンスである。 ここに、負荷2は受電点人に接線形負荷を示し、負荷7
は受電点Bに接続される誘導機等の線形負荷を示す。さ
らにまた、電圧補償コンデンサ5はいわゆる601L付
きコンデンサである。 図示の如くこの種の高調波電圧抑制方式においては、高
調波tftを発生する負荷2の近傍に高調波に共振する
同調フィルタ3を設け、同調フィルタ3で高調波電流を
吸収させることにより、高調波電流を系統電源1に流さ
ないようにして高調波電圧の発生を抑制していた。 〔発明が解決しようとする課題〕 第5図に示した電源系統図においては、一般に負荷2が
容量の小さい高調波電流を発生する場合は同調フィルタ
3が設置されておらず、受電点Aに大きな高調波電圧が
発生するものとなってしまうO したがって受電点人に大きな高調波電圧が発生すれば、
電源系統に負荷7設備と並列接続される電圧補償のため
の電圧補償コンデンサ5に大きな高調波電流が流れてし
まい、そのため、を圧補償コンデンサ5の直列リアクト
ルが過熱・焼損するという不具合があった。 〔課題を解決するための手段〕 本発明は上述したような点に鑑みなされたものであり、
負荷設備と並設されて受電点Bの電圧を正常化し得るア
クティブ形高調波抑制装置を実現してなるものである。 しかして具体的には、第1に、3相PWM変換装置の制
御回路手段に、変換行列信号発生手段。 変換電圧信号発生手段、高調波電圧信号発生手段。 補償電流信号発生手段および3相PWM変換装置の3相
PWMコンバータのスイッチング指令発生手段を具備し
てなるものである。 第2に、3相PWM変換装置とともに電圧補償コンデン
サ等より主構成をなし、3相PWM変換装置の制御回路
手段に前記第1の制御回路手段と同様の構成部分を備え
、さらに電圧補償コンデンサの開閉器への開閉信号発生
手段を具備してなるものである。 〔作 用〕 つぎに、かかる解決手段およびその作用を第6図を参照
して詳細説明する。 第6図は本発明の基本技術思想の理解を容易にするため
示したものであり、ysrおよびV8Hは系統1121
1’の電圧v8の基本波成分および高調波成分、i8は
電源電流、jLは負荷電流、i(は補償電流を示す。 すなわち、系統電源l′から流出する電源直流iBはリ
アクトル6′を流れたあと、線形負荷2′に流れる負荷
電流ILと抑制装置3′に流れる補償電流j(とに分流
する。よって、これは次式で表すことができる。 IJl = l(、+1(・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・(1)ここで、線
形負荷2′に印加される電圧vcが補償電流Ecによっ
て正弦波となり、かつ負荷電流ILが系統電源1′から
供給されるためには、リアクトル6′の電圧降下V、は
次式となる必要がある。ただし、リアクトル6′のイン
ダクタンスをLとする。 これを電源1流iSについて解くと式(2つとなり、こ
れに式(1)を代入すると、式(3)が得られる。 かくの如く、補償電流1cとして系統電源電圧高調渡分
補償電流、すなわち式(3)の右辺項記載分を流すこと
により、負荷に印加される電圧vCは正弦波となる。 つぎに、その電源電圧の高調渡分の導出法について説明
する・ 3相の各相電圧VSU * vsv l VSWを基本
波角周波数ωで回転する変換行列
[Industrial Field of Application] The present invention relates to a harmonic voltage suppressing device installed in parallel with load equipment of a power supply system, and particularly to an active type harmonic voltage suppressing device that suppresses harmonic voltage at a power receiving point. [Prior Art] A system shown in FIG. 5 is known as a system for suppressing harmonic voltages in a tS system. Figure 5 is shown to explain a conventional example of a harmonic voltage suppression system, where l is the system power supply, 2.7 is the load, 3 is the synchronous filter, 4 is the transformer, 5 is the voltage compensation capacitor, and 6 is the power supply. It is impedance. Here, load 2 indicates a tangential load to the power receiving point, and load 7
indicates a linear load such as an induction machine connected to power receiving point B. Furthermore, the voltage compensation capacitor 5 is a so-called 601L capacitor. As shown in the figure, in this type of harmonic voltage suppression method, a tuned filter 3 that resonates with harmonics is provided near a load 2 that generates harmonics tft, and the tuned filter 3 absorbs harmonic currents. The generation of harmonic voltages is suppressed by preventing wave currents from flowing through the system power supply 1. [Problems to be Solved by the Invention] In the power supply system diagram shown in FIG. Therefore, if a large harmonic voltage is generated at the receiving point,
A large harmonic current flows through the voltage compensation capacitor 5 for voltage compensation, which is connected in parallel with the load 7 equipment in the power supply system, and as a result, the series reactor of the voltage compensation capacitor 5 overheats and burns out. . [Means for Solving the Problems] The present invention has been made in view of the above points, and
This is achieved by implementing an active harmonic suppression device that is installed in parallel with load equipment and can normalize the voltage at power receiving point B. Specifically, first, the control circuit means of the three-phase PWM conversion device includes a conversion matrix signal generation means. Conversion voltage signal generation means, harmonic voltage signal generation means. The apparatus includes a compensation current signal generating means and a switching command generating means for a three-phase PWM converter of a three-phase PWM converter. Second, the main configuration includes a voltage compensation capacitor and the like together with the three-phase PWM converter, and the control circuit means of the three-phase PWM converter includes the same components as the first control circuit means, and further includes a voltage compensation capacitor. It is equipped with means for generating a switching signal to the switch. [Operation] Next, this solution and its operation will be explained in detail with reference to FIG. 6. FIG. 6 is shown to facilitate understanding of the basic technical idea of the present invention, and ysr and V8H are line 1121.
1', the fundamental wave component and harmonic component of the voltage v8, i8 is the power supply current, jL is the load current, and i ( is the compensation current. In other words, the power supply DC iB flowing from the system power supply l' flows through the reactor 6'. After that, the load current IL flowing through the linear load 2' and the compensation current j( flowing through the suppressor 3') are divided. Therefore, this can be expressed by the following formula: IJl = l(, +1(...・・・・・・・・・・・・
(1) Here, the voltage vc applied to the linear load 2' becomes a sine wave due to the compensation current Ec, and the load current IL In order to be supplied from ', the voltage drop V of the reactor 6' needs to be as follows. However, the inductance of the reactor 6' is assumed to be L. Solving this for the power source 1 current iS results in two equations, and substituting equation (1) into this, equation (3) is obtained.As shown above, as the compensation current 1c, the system power supply voltage harmonic component compensation current, In other words, the voltage vC applied to the load becomes a sine wave by flowing the component written in the right-hand side of equation (3).Next, we will explain how to derive the harmonic component of the power supply voltage.・Each of the three phases Transformation matrix that rotates the voltage VSU * vsv l VSW at the fundamental wave angular frequency ω

〔0〕で座標変換する
と、次式が成立する。 ここで、vspおよびvsqは瞬時空間電圧ベクトルの
p軸成分およびq軸成分を示し、それらの交流会vsp
およびvsqは電圧の歪み成分に起因するものであるか
ら、3相歪み電圧Vsgtr * Vsiitv * 
Vsuwは次式で求められる。 なお、(03−”は
When the coordinates are transformed using [0], the following equation is established. Here, vsp and vsq indicate the p-axis component and q-axis component of the instantaneous spatial voltage vector, and their interaction vsp
and vsq are caused by voltage distortion components, so the three-phase distortion voltage Vsgtr * Vsiitv *
Vsuw is determined by the following formula. In addition, (03-” is

〔0〕の逆変換行列である。 これより、第5図に示される如き受電魔人の電源電圧の
3相歪み電圧V8HU e vsiiv * VBln
lと、トランス4の漏れインダクタンスLから式(3)
により3*、*、* 相補償電流指令値1ctr t tcv + tcwを
つぎのように求めることができる。 よって、式(8)で示された補償電流指令値と等しい電
流を各相に流すことにより、第5図に示される受電点B
の電源電圧を正弦波にすることができる。 さらに、いまトランス4の漏れインダクタンスLが不明
な場合や受電魔人が受電点Bに対して距離が離れている
場合、受電点Bの電源電圧の3相歪ミW圧V8HU *
 V8HV + VIIHW ’e導出Lし、ツキノ式
(9)に基づいて3相補償電流値iCU  + ’CV
  r ICWを導出することにより、同様の高調波電
圧抑制を行うことができる。 さらにまた、式(8)で示される如くに補償電流指令値
は補償リアクトル6′のインダクタンスLに反比例し、
ここで、3相PWM変換装置の容量を小さくするために
は、インダクタンスLを大きくする必要がある。しかし
ながら、そのインダクタンスLを大きくすると負荷の遅
れ電流により受電点Bの基本波電圧が下がる。 よって、負荷の遅れ電流により受電点Bの電圧が下がっ
た場合に、電圧補償コンデンサを受電点Bに投下するこ
とによって電流の力率を改善し、受電点Bの電圧を正常
にすることができる。 〔実 施 例〕 第1図および第2図は本発明の一実施例の要部構成およ
びその制御回路を示すもので、8は3相PWM変換装置
である。図中、第5図と同符号の部分は同じ機能を有す
る部分を示す。 すなわち、受電点Bに3相PWM変換装置8が接続され
てなり、かかる3相PWM変換装置8は図示の如く、ス
イッチング素子およびダイオードにより3相ブリ、ジ回
路をなす3相PWMコンパ−タ、3相PWMコンバータ
の直流側の端子間に直流コンデンサおよび交流側に直列
に交流リアクトルを備えて構成されている。 また、その3相PWM変換装置8の制御回路は、第2図
に示した制御プロ、り図の如く、変換行列発生回路81
.変換電圧発生回路82 、バイパスフィルタ83.高
調波電圧発生回路劇、比例積分回路85および電流制御
回路%を主たる構成部分をなす。 さて第2図において、変換行列発生回路81は系統電源
電圧の基本波角周波数の関数発生器であり、式(5)で
表される変換行列
It is an inverse transformation matrix of [0]. From this, the three-phase distortion voltage V8HU e vsiv * VBln of the power supply voltage of the receiving demon as shown in FIG.
From l and leakage inductance L of transformer 4, formula (3)
Therefore, the 3*, *, * phase compensation current command value 1ctr t tcv + tcw can be obtained as follows. Therefore, by flowing a current equal to the compensation current command value shown in equation (8) to each phase, the power receiving point B shown in FIG.
The power supply voltage can be made into a sine wave. Furthermore, if the leakage inductance L of the transformer 4 is currently unknown or if the power receiving demon is far away from the power receiving point B, the three-phase distortion of the power supply voltage at the power receiving point B W pressure V8HU *
V8HV + VIIHW 'e derived L, and based on Tsukino formula (9), three-phase compensation current value iCU + 'CV
Similar harmonic voltage suppression can be achieved by deriving r ICW. Furthermore, as shown in equation (8), the compensation current command value is inversely proportional to the inductance L of the compensation reactor 6',
Here, in order to reduce the capacity of the three-phase PWM converter, it is necessary to increase the inductance L. However, when the inductance L is increased, the fundamental voltage at the power receiving point B decreases due to the delayed current of the load. Therefore, when the voltage at power receiving point B drops due to the delayed current of the load, by dropping a voltage compensation capacitor to power receiving point B, the power factor of the current can be improved and the voltage at power receiving point B can be normalized. . [Embodiment] FIGS. 1 and 2 show the main structure and control circuit of an embodiment of the present invention, and 8 is a three-phase PWM converter. In the figure, parts with the same symbols as in FIG. 5 indicate parts having the same functions. That is, a three-phase PWM converter 8 is connected to the power receiving point B, and as shown in the figure, the three-phase PWM converter 8 is a three-phase PWM converter that forms a three-phase circuit using switching elements and diodes. The three-phase PWM converter is configured to include a DC capacitor between terminals on the DC side and an AC reactor in series on the AC side. The control circuit of the three-phase PWM conversion device 8 is a control circuit shown in FIG.
.. Conversion voltage generation circuit 82, bypass filter 83. The main components are a harmonic voltage generation circuit, a proportional-integral circuit 85, and a current control circuit. Now, in FIG. 2, the transformation matrix generation circuit 81 is a function generator of the fundamental wave angular frequency of the grid power supply voltage, and the transformation matrix expressed by equation (5)

〔0〕および式(7)で表される逆変
換行列(0)  を変換行列信号として出力する。 変換電圧発生回路82は受電点Bの電圧V8U + V
BV +VSWと変換行列
[0] and the inverse transformation matrix (0) expressed by equation (7) are output as a transformation matrix signal. The converted voltage generation circuit 82 generates the voltage V8U + V at the power receiving point B.
BV +VSW and transformation matrix

〔0〕信号を入力し、式(4
)に基づいて変換電圧Vsp、 V、q信号を出力する
。 バイパスフィルタ83は変換電圧Vsp、 Vsq信号
を入力し、変換電圧交流外vsp、vsq信号を出力す
る。 高調波電圧発生回路況は変換電圧交流外v3.。 v3q信号と逆変換行列Co)  信号を入力し、式(
6)に基づいて高調波電圧v8HU・vsuv j V
81nF信号を出力する。 比例積分回路85は高調波電圧vs■υ+ vsttv
 l V8HW信号を入力し、式(9)に基づき3相補
償電流指令値*、*、* ムCOIIcV  elcW を出力するO*、* 電流制御回路86は3相補償電流指令値icv  + 
tcv s、  * 皇。1 と、3相PWMコンバータに流入する3相補償
電流検出値iCU * iCv+ tcwを入力し、補
償電流検出値が補償電流指令値に追従する如くスイ、チ
ング指令vGを信号出力し、3相PWMコンバータを構
成するスイッチング素子のオン・オフを制御する。 よって、本実施例においては補償電流を制御することに
より、受電点Bの高調波域圧を抑制することができる。 第3図および第4図は本発明の他の実施例の要部構成お
よびその制御回路を示すもので、9は補償リアクトル、
10は開閉器、101はコンデンサ制御回路である。図
中、第5図、第1図および第2図と同符号のものは同じ
機能を有する部分を示す。 すなわち、第3図においては、補償リアクトル9は負荷
設備、!圧補償コンデンサおよび3相PWM変換装置の
電源側に直列に挿入されてなり、そのインダクタンス値
は式(8)のLに相当するものである。また、電圧補償
コンデンサ5は通常60多り付きコンデンサで構成され
、これは開閉器10により受電点Bへの投入または切り
離しが行われる。 さらに第4図においては、特に変換電圧発生回路82ハ
受1点0(F)を圧Vsty + Vsv + Vsv
 信号ト変換行列
Input the [0] signal and use the formula (4
), the converted voltages Vsp, V, and q signals are output. The bypass filter 83 inputs the converted voltage Vsp and Vsq signals and outputs the converted voltage AC external vsp and vsq signals. The harmonic voltage generation circuit condition is converted voltage AC outside v3. . Input the v3q signal and the inverse transformation matrix Co) signal, and use the formula (
6) Based on harmonic voltage v8HU・vsuv j V
Outputs 81nF signal. The proportional-integral circuit 85 has a harmonic voltage vs■υ+ vsttv
l The current control circuit 86 inputs the V8HW signal and outputs the three-phase compensation current command value icv + based on the formula (9).
tcvs, *King. 1 and the three-phase compensation current detection value iCU * iCv + tcw flowing into the three-phase PWM converter, and outputs the switching command vG as a signal so that the compensation current detection value follows the compensation current command value, and the three-phase PWM converter Controls the on/off of switching elements that make up the converter. Therefore, in this embodiment, by controlling the compensation current, the harmonic region pressure at the power receiving point B can be suppressed. FIG. 3 and FIG. 4 show the main part configuration and its control circuit of another embodiment of the present invention, where 9 is a compensation reactor;
10 is a switch, and 101 is a capacitor control circuit. In the figures, the same reference numerals as in FIG. 5, FIG. 1, and FIG. 2 indicate parts having the same functions. That is, in FIG. 3, the compensation reactor 9 is the load equipment,! It is inserted in series with the pressure compensation capacitor and the power supply side of the three-phase PWM converter, and its inductance value corresponds to L in equation (8). Further, the voltage compensation capacitor 5 is normally constituted by a capacitor with a 60-volt capacitor, and this is connected to or disconnected from the power receiving point B by a switch 10. Furthermore, in FIG. 4, in particular, the conversion voltage generation circuit 82 is set to the voltage Vsty + Vsv + Vsv at the receiver 1 point 0 (F).
signal transformation matrix

〔0〕を入力するものであり、この点
において一方の入力を第2図に示した受電点Bの電圧信
号を得るものと相違する。また、比例積分回路85*、
* は式(櫛に基づき3相補償電流指令値tcU#1cV* icW を得るものである。 よって、第4図に示した制御回路もまた、第2図制御回
路と同様に格別なスイッチング指令vGを信号出力でき
る。 さらにまた、コンデンサ制御回路87は受電点Bの電圧
vstr # VBV + VB”Wを入力し、その電
圧がある一定値以下であれば、開閉器vG′を発生して
電圧補償コンデンサ5を受電点Bに接続し、あるいはあ
る一定値以上であれば電圧補償コンデンサ5を受電点B
から切り離す。 これより、かかる他の実施例においては補償電流を制御
することにより高調波域圧を抑制することができ、さら
に基本波電圧を正常な値にすることができる。 なお、本説明では基本波電圧の制御に電圧補償コンデン
サを用いたものとしたが、3相PWM変換装置により進
相または遅相の電流を流すことにより、よりきめ細かな
電圧制御が可能であることは勿論である。 〔発明の効果〕 以上説明したように本発明によれば、格別な技術思想に
基づき系統の高調波電圧を検出してこれを打ち消すよう
に補償電流を流すことにより、受電点の電圧を正弦波状
となし、さらにはその基本波電圧を正常な値に保有し得
る実用上極めて有用な装置を提供できる。
[0] is input, and in this point it is different from the one in which one input is used to obtain the voltage signal of the power receiving point B shown in FIG. In addition, the proportional integral circuit 85*,
* is used to obtain the three-phase compensation current command value tcU#1cV*icW based on the formula (comb). Therefore, the control circuit shown in FIG. Furthermore, the capacitor control circuit 87 inputs the voltage vstr #VBV + VB''W at the power receiving point B, and if the voltage is below a certain value, generates a switch vG' to compensate for the voltage. Connect the capacitor 5 to the power receiving point B, or connect the voltage compensation capacitor 5 to the power receiving point B if it exceeds a certain value.
separate from Therefore, in this other embodiment, by controlling the compensation current, the harmonic region pressure can be suppressed, and furthermore, the fundamental wave voltage can be brought to a normal value. In addition, in this explanation, a voltage compensation capacitor is used to control the fundamental wave voltage, but it is possible to perform more fine-grained voltage control by flowing leading or lagging current using a three-phase PWM converter. Of course. [Effects of the Invention] As explained above, according to the present invention, based on a special technical concept, harmonic voltage of the grid is detected and a compensation current is applied to cancel it, thereby changing the voltage at the receiving point into a sinusoidal waveform. It is possible to provide a device which is extremely useful in practice and which can maintain the fundamental wave voltage at a normal value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例の要部構成を示
す系統図およびその制御回路を示すプロ、り図、第3図
および第4図は本発明の他の実施例の要部構成を示す系
統図およびその制御回路を示すプロ、り図、第5図は高
調波電圧抑制方式の従来例を示す説明図、第6図は本発
明の基本技術思想の理解を容易にするため示した概念図
である。 1.1′・・・・・・系統電源、2 、2’ 、 7・
・・・・・負荷、4・・・・・・トランス、5・・・・
・・電圧補償コンデンサ、8・・・・・・3相PWM変
換装置、9・・・・・・補償リアクトル、10・・・・
・・開閉器。
1 and 2 are system diagrams showing the main part configuration of one embodiment of the present invention, and a program diagram showing its control circuit, and FIGS. 3 and 4 are main parts of other embodiments of the present invention. Fig. 5 is an explanatory diagram showing a conventional example of a harmonic voltage suppression system; Fig. 6 facilitates understanding of the basic technical idea of the present invention. FIG. 1.1'...System power supply, 2, 2', 7.
...Load, 4...Transformer, 5...
...Voltage compensation capacitor, 8...3-phase PWM converter, 9...Compensation reactor, 10...
...Switch.

Claims (1)

【特許請求の範囲】 1 電源系統に負荷設備と並列に接続される高調波電圧
抑制装置であって、3相PWMコンバータと、該3相P
WMコンバータの直流端子間に接続される直流コンデン
サと、前記3相PWMコンバータの交流側各相に直列に
挿入された交流リアクトルと、前記3相PWMコンバー
タを制御する制御装置とで主構成をなすとともに、該制
御装置に、電源周波数と同期して回転する変換行列信号
を出力する手段と、受電点電圧と前記変換行列信号とを
入力し変換電圧信号を出力する手段と、該変換電圧信号
の直流分を除去し変換電圧交流分信号を出力する手段と
、該変換電圧交流分信号と変換行列信号とを入力し高調
波電圧信号を出力する手段と、該高調波電圧信号を入力
し補償電流指令信号を出力する手段と、該補償電流指令
信号と補償電流検出信号とを入力し前記3相PWMコン
バータを構成するスイッチング素子にスイッチング指令
を出力する手段とを備えたことを特徴とする高調波電圧
抑制装置。 2 電源系統に直列に挿入される補償リアクトルと、該
補償リアクトルの反電源側に、負荷設備に並列に接続さ
れる電圧補償コンデンサと該電圧補償コンデンサを開閉
する開閉器と3相PWM変換装置とを備えるものであっ
て、前記3相PWM変換装置を、3相PWMコンバータ
と、該3相PWMコンバータの交流側の各相に直列に挿
入された交流リアクトルと、前記3相PWMコンバータ
の直流端子間に接続された直流コンデンサと、前記3相
PWMコンバータおよび開閉器を制御する制御装置より
構成するとともに、該制御装置に、電源周波数と同期し
て回転する変換行列信号を出力する手段と、前記補償リ
アクトルの電源側電圧と変換行列信号とを入力し変換電
圧信号を出力する手段と、該変換電圧信号の直流分を除
去し変換電圧交流分信号を出力する手段と、前記変換電
圧交流分信号と変換行列信号とを入力し高調波電圧信号
を出力する手段と、該高調波電圧信号を入力し補償電流
指令信号を出力する手段と、該補償電流指令信号と補償
電流検出信号とを入力し前記3相PWMコンバータを構
成するスイッチング素子にスイッチング指令を出力する
手段と、負荷設備受電点電圧を入力し負荷設備受電点電
圧の高低により前記開閉器を開閉する信号を出力する手
段とを備えた事を特徴とする高調波電圧抑制列置。
[Scope of Claims] 1. A harmonic voltage suppressing device connected in parallel with a load equipment to a power supply system, comprising a three-phase PWM converter and a three-phase PWM converter.
The main configuration includes a DC capacitor connected between the DC terminals of the WM converter, an AC reactor inserted in series with each phase on the AC side of the three-phase PWM converter, and a control device that controls the three-phase PWM converter. In addition, means for outputting a conversion matrix signal rotating in synchronization with the power supply frequency to the control device, means for inputting the receiving point voltage and the conversion matrix signal and outputting a converted voltage signal, means for removing the DC component and outputting a converted voltage AC component signal; means for inputting the converted voltage AC component signal and the conversion matrix signal to output a harmonic voltage signal; and means for inputting the harmonic voltage signal and outputting a compensation current signal. A harmonic wave generator characterized by comprising means for outputting a command signal, and means for inputting the compensation current command signal and the compensation current detection signal and outputting a switching command to a switching element constituting the three-phase PWM converter. Voltage suppressor. 2. A compensation reactor inserted in series in the power supply system, a voltage compensation capacitor connected in parallel to the load equipment on the opposite side of the compensation reactor, a switch for opening and closing the voltage compensation capacitor, and a three-phase PWM converter. The three-phase PWM converter comprises a three-phase PWM converter, an AC reactor inserted in series with each phase on the AC side of the three-phase PWM converter, and a DC terminal of the three-phase PWM converter. means for outputting a conversion matrix signal that rotates in synchronization with the power supply frequency to the control device; means for inputting the power supply side voltage of the compensation reactor and the conversion matrix signal and outputting the converted voltage signal; means for removing the DC component of the converted voltage signal and outputting the converted voltage AC component signal; and the converted voltage AC component signal. a means for inputting the harmonic voltage signal and a conversion matrix signal and outputting a harmonic voltage signal; a means for inputting the harmonic voltage signal and outputting a compensation current command signal; and a means for inputting the compensation current command signal and the compensation current detection signal. A means for outputting a switching command to a switching element constituting the three-phase PWM converter, and a means for inputting a load equipment receiving point voltage and outputting a signal for opening and closing the switch depending on the level of the load equipment receiving point voltage. A harmonic voltage suppression array characterized by:
JP1216855A 1989-08-23 1989-08-23 Higher harmonic voltage suppressing apparatus Pending JPH0382338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1216855A JPH0382338A (en) 1989-08-23 1989-08-23 Higher harmonic voltage suppressing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1216855A JPH0382338A (en) 1989-08-23 1989-08-23 Higher harmonic voltage suppressing apparatus

Publications (1)

Publication Number Publication Date
JPH0382338A true JPH0382338A (en) 1991-04-08

Family

ID=16694964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1216855A Pending JPH0382338A (en) 1989-08-23 1989-08-23 Higher harmonic voltage suppressing apparatus

Country Status (1)

Country Link
JP (1) JPH0382338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570146U (en) * 1992-02-27 1993-09-21 株式会社明電舎 Filter device
JPH05284651A (en) * 1992-03-31 1993-10-29 Toyo Electric Mfg Co Ltd Connection of active filter
CN113437860A (en) * 2021-08-05 2021-09-24 湖州学院 Matrix converter double closed-loop control method of improved specific harmonic cancellation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570146U (en) * 1992-02-27 1993-09-21 株式会社明電舎 Filter device
JPH05284651A (en) * 1992-03-31 1993-10-29 Toyo Electric Mfg Co Ltd Connection of active filter
CN113437860A (en) * 2021-08-05 2021-09-24 湖州学院 Matrix converter double closed-loop control method of improved specific harmonic cancellation method
CN113437860B (en) * 2021-08-05 2022-07-08 湖州学院 Matrix converter double closed-loop control method of improved specific harmonic cancellation method

Similar Documents

Publication Publication Date Title
US4651265A (en) Active power conditioner system
Fujita et al. An approach to harmonic current-free AC/DC power conversion for large industrial loads: the integration of a series active filter with a double-series diode rectifier
US5656924A (en) System and method for providing harmonic currents to a harmonic generating load connected to a power system
JPH0759351A (en) Control device for power converter
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
US6665198B2 (en) Power supply apparatus and method thereof for input harmonic current suppression and output voltage regulation
JP2842587B2 (en) Current oscillation compensation method and apparatus
JPH0954623A (en) Linkage type power converting device
Thomas et al. Performance evaluation of three phase three and four wire active filters
JP3763745B2 (en) DC reactor device and high-frequency suppression control device
JPH0382338A (en) Higher harmonic voltage suppressing apparatus
Benyettou et al. Comparative study of different methods of active power compensation
JP3570913B2 (en) Control device for semiconductor switch
JP2778976B2 (en) Harmonic suppression device using both AC filter and active filter for power
Chen et al. Analysis and comparison of passive & active harmonic suppression filters in distribution systems
Rahmani et al. A hybrid structure of series active and passive filters to achieving power quality criteria
JPH0584147B2 (en)
JPH11225477A (en) Sine wave converter with filtering function
JPH03150027A (en) Higher harmonic suppressor provided with voltage compensating function
Neha et al. An improved Interline Unified Power Quality Conditioner with FLC for compensation of voltage and current distortions in adjacent feeders
Lee et al. A novel active series voltage compensator with harmonic current compensating capability
JP4373614B2 (en) Harmonic suppression device
JPH04334930A (en) Series-type active filter
Ahmed A simplified control strategy for the shunt active power filter for harmonic and reactive power compensation
JPH07107669A (en) Restraining method for higher harmonic of capacitor for power factor improvement