JPS6190217A - Flow rate control method - Google Patents

Flow rate control method

Info

Publication number
JPS6190217A
JPS6190217A JP21175284A JP21175284A JPS6190217A JP S6190217 A JPS6190217 A JP S6190217A JP 21175284 A JP21175284 A JP 21175284A JP 21175284 A JP21175284 A JP 21175284A JP S6190217 A JPS6190217 A JP S6190217A
Authority
JP
Japan
Prior art keywords
flow rate
signal
rotation speed
valve
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21175284A
Other languages
Japanese (ja)
Inventor
Minoru Kawai
川合 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP21175284A priority Critical patent/JPS6190217A/en
Publication of JPS6190217A publication Critical patent/JPS6190217A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To make it possible to control a flow rate with high responsiveness and with less loss of energy by controlling the rotation speed of a flow delivery means according to the necessary volume. CONSTITUTION:When a setting signal Sf is step by step reduced at time point t1, a flow rate adjuster 5 makes control calculation to meet with the signal Sf and temporarily reduce the opening angle of a flow control valve 4 diminishing operational output SM. A valve opening adjuster 10 issues a setting signal for reducing the rotation speed of a blower 1 to a rotation adjuster 11. The adjuster 11 makes an output to rotation adjusting circuit 9 so that the rotation of a motor 7 may coincide with the setting signal. As a result, a flow volume signal Vf tends to become small due to the reduction of the blower 1 and opening of the valve 4, but the adjuster operates so that the signal Vf may coincide with the signal Sf, the opening of the valve 4 eventually opens until the angle which coincide with the initial setting signal Sv.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、流量制御方式に係シ、特にプロアあるいはタ
ーボコンプレッサの回転数を変化させるととkよって流
量制御を行々う流量制御方式に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a flow rate control system, and particularly to a flow rate control system in which flow rate is controlled by changing the rotational speed of a compressor or a turbo compressor. .

〈従来技術〉 従来、配管に流れる流量を制御する流量制御方式には各
種のものがある。これ等の代表的な流量制御方式を第1
図〜第3図に示し、これにつき説明する。
<Prior Art> Conventionally, there are various flow rate control methods for controlling the flow rate flowing through piping. These typical flow control methods are
This is shown in FIGS. 3 to 3 and will be described below.

第1図に示す流量制御方式はプロアの出口側に設けられ
た流量制御弁を制御して流量制御するものである。■は
プロアである。プロアlの出口側には配管2が接続され
ており、配管2の1部に流量計3が挿入され、更にその
下流側に流量制御弁4が挿入されている。流量計3の流
量信号は流量調節計5であらかじめ設定した設定信号S
、との偏差がとられ、この偏差がゼロになる様に流量制
御弁4を制御する。プロアlの出口側の配管2にはサー
ジ防止用の放出弁6が設置されている。プロア1はモー
タ7により定速度で回転され、プロアlの入口側の配管
8より空気流量Qを取り込み、配管2側に送り出す。
The flow rate control system shown in FIG. 1 controls the flow rate by controlling a flow rate control valve provided on the outlet side of the proa. ■ is proa. A piping 2 is connected to the outlet side of the flow meter 2, a flow meter 3 is inserted into a portion of the piping 2, and a flow control valve 4 is further inserted downstream of the flow meter 3. The flow rate signal of the flow meter 3 is the setting signal S preset by the flow rate controller 5.
, and the flow rate control valve 4 is controlled so that this deviation becomes zero. A discharge valve 6 for surge prevention is installed in the piping 2 on the outlet side of the pro-arl. The proar 1 is rotated at a constant speed by a motor 7, takes in an air flow rate Q from a pipe 8 on the inlet side of the proar 1, and sends it out to the pipe 2 side.

以上の流量制御方式では、設定信号S、の変更に対して
直ちに流量制御弁4を制御するので応答性は良いが、プ
ロア1は定速度で回転しているので所要エネルギは回転
数の3乗に比例することを考慮するとエネルギ損失が大
きくなる欠点がある。
In the above flow control method, the flow rate control valve 4 is immediately controlled in response to a change in the setting signal S, so the response is good, but since the proar 1 rotates at a constant speed, the required energy is the cube of the rotation speed. Considering that it is proportional to , the disadvantage is that the energy loss becomes large.

第2図に示す流量制御方式はプロアの入口側に設けられ
た流量制御弁を制御して流量制御するものである。流量
計3の流量信号と設定信号S、との偏差がとられ、この
偏差がゼロになる様に流量調節計5により流量制御弁4
を制御する。従って、配管2と8の間にプロアlが設置
されているので応答性は第1図の流量制御方式に比べて
劣るが、プロアlへの空気流量Qが変化するので第1図
の流量制御方式に比べてエネルギ損失は小さい。
The flow rate control method shown in FIG. 2 controls the flow rate by controlling a flow rate control valve provided on the inlet side of the proa. The deviation between the flow rate signal of the flow meter 3 and the setting signal S is taken, and the flow control valve 4 is adjusted by the flow controller 5 so that this deviation becomes zero.
control. Therefore, since the pro-arl is installed between piping 2 and 8, the response is inferior to the flow rate control method shown in Fig. 1, but since the air flow rate Q to the pro-arl changes, the flow rate control method shown in Fig. 1 is The energy loss is small compared to the conventional method.

第3図に示す流量制御方式はプロアの回転数を制御して
流量制御をするものである。流量計3の流量信号と設定
信号S、との偏差が流量調節計5でとられ、その出力が
回転制御回路9に与えられモータ7を制御して偏差がゼ
ロになる様に制御されるのである。この方式は空気流量
の変化をモータ7の回転数を変えて制御するものである
からエネルギ損失は少ないが応答性に欠ける欠点がある
The flow rate control system shown in FIG. 3 controls the flow rate by controlling the rotation speed of the prower. The deviation between the flow rate signal of the flow meter 3 and the setting signal S is detected by the flow rate controller 5, and its output is given to the rotation control circuit 9 to control the motor 7 so that the deviation becomes zero. be. Since this method controls changes in the air flow rate by changing the rotational speed of the motor 7, energy loss is small, but it has the drawback of lacking responsiveness.

第1図〜第3図に各種の代表的な流量制御方式を示した
が、第1図に示す方式は応答性は最も良いがエネルギ損
失は最も悪く、第3図に示す方式は応答性は最も悪いが
エネルギ損失は最も少ない。
Various typical flow rate control methods are shown in Figures 1 to 3. The method shown in Figure 1 has the best responsiveness but the worst energy loss, and the method shown in Figure 3 has the lowest responsiveness. It is the worst, but the energy loss is the least.

第2図に示す方式はこれ等の中間的な方式である。The method shown in FIG. 2 is an intermediate method between these methods.

従って、いずれの方式を採用しても応答性が良く、かつ
エネルギ損失も少ない方式が得ら□れないという問題が
ある。
Therefore, no matter which method is adopted, there is a problem that a method with good responsiveness and low energy loss cannot be obtained.

〈発明の目的〉 本発明は、前記の従来技術に鑑み、応答性も良くかつエ
ネルギ損失も少ない流量制御方式を提供することを目的
とする。
<Objective of the Invention> In view of the above-mentioned prior art, an object of the present invention is to provide a flow control method that has good responsiveness and low energy loss.

〈発明の構成〉 この目的を達成する本発明の構成は、流量制御方式に係
り、配管に流量を送り出す流量送出手段と、配管におけ
る流量を検出する検出端と、検出端からの流量信号とあ
らかじめ設定した流量設定信号との偏差を演算しこの偏
差がゼロになる様に制御する流量制御手段と、流量制御
手段の出力によ多制御され配管に挿入された流量制御弁
と、流量制御手段の出力とあらかじめ設定した弁開度設
定信号との偏差がゼロになる様に制御する弁開度制御手
段と、弁開度制御手段の出力により流量送出手段の回転
数を制御する回転数制御手段と、回転数制御手段の出力
により流量送出手段を制御し流量を制御することを特徴
とするものである。
<Configuration of the Invention> The configuration of the present invention to achieve this object relates to a flow rate control system, and includes a flow rate sending means for sending a flow rate to a pipe, a detection end for detecting the flow rate in the pipe, and a flow rate signal from the detection end and a flow rate signal from the detection end. A flow control means that calculates the deviation from the set flow rate setting signal and controls the deviation to zero; a flow control valve inserted into the piping that is controlled by the output of the flow control means; A valve opening control means for controlling the deviation between the output and a preset valve opening setting signal to be zero; and a rotation speed control means for controlling the rotation speed of the flow rate sending means based on the output of the valve opening control means. , the flow rate is controlled by controlling the flow rate sending means by the output of the rotation speed control means.

〈実施例〉 以下、本発明の実施例について図面に基づいて説明する
。なお、従来技術と同一の機能を有する部分には同一の
符号を付し、重複する説明は省略する。
<Example> Hereinafter, an example of the present invention will be described based on the drawings. Note that parts having the same functions as those in the prior art are denoted by the same reference numerals, and redundant explanations will be omitted.

第4図は本発明の一実施例を示す流量制御方式の構成図
である。
FIG. 4 is a block diagram of a flow rate control system showing one embodiment of the present invention.

プロア1の出口側の配管2に流量計3が挿入され、その
下流に流量制御弁4が接続されている。
A flow meter 3 is inserted into a pipe 2 on the outlet side of the proar 1, and a flow control valve 4 is connected downstream thereof.

流量調節計5にはあらかじめ流量を決める設定信号S、
が与えられ、更に流量計3からは流量信号V。
The flow rate controller 5 has a setting signal S that determines the flow rate in advance;
is given, and further a flow rate signal V is given from the flow meter 3.

が入力されている。流量調節計5の出力端からは流量制
御弁4を操作する操作出力〜が出力されておシ、設定信
号S、と流量信号V、との偏差がゼロになる様に流量調
節計5により流量制御弁40開度を制御している。この
第1の流量制御ループは第1図における流量制御方式に
対応し、応答性の良い流量制御ができる。
is entered. The output end of the flow rate controller 5 outputs an operation output for operating the flow rate control valve 4, and the flow rate is adjusted by the flow rate controller 5 so that the deviation between the setting signal S and the flow rate signal V becomes zero. The opening degree of the control valve 40 is controlled. This first flow rate control loop corresponds to the flow rate control method shown in FIG. 1, and can control the flow rate with good responsiveness.

lOは弁開度調節計であシ、あらかじめ与えた弁開度を
決める設定信号Svと操作出力SMとの偏差をとシ、こ
れに演算を施しその出力信号を回転数調節計11の設定
値として与える。
1O is a valve opening controller, which calculates the deviation between a predetermined setting signal Sv that determines the valve opening and the operation output SM, performs calculations on this, and uses the output signal as the setting value of the rotation speed controller 11. give as.

回転数調節計11にはモータ7に取付けられた回1 転
数検出器12よシ回転数信号SRが入力され、弁開度調
節計10の出力信号との偏差に対して所定の演算を施し
てモータ7の回転数を制御する回転数制御回路9に出力
する。これによりブロア1の回転数が制御され空気流量
Qを制御する。
The rotation speed signal SR from the rotation speed detector 12 attached to the motor 7 is input to the rotation speed controller 11, and a predetermined calculation is performed on the deviation from the output signal of the valve opening controller 10. and outputs it to a rotation speed control circuit 9 that controls the rotation speed of the motor 7. This controls the rotation speed of the blower 1 and controls the air flow rate Q.

以上の弁開度調節計10、回転数調節計11.回転数制
御回路9、モータ7、プロア1などで第2の流量制御ル
ープを構成し、これは第3図に示す流量制御方式に対応
する。従ってエネルギ損失の少ない流量制御ができる。
The above valve opening controller 10, rotation speed controller 11. The rotational speed control circuit 9, motor 7, proar 1, etc. constitute a second flow rate control loop, which corresponds to the flow rate control method shown in FIG. Therefore, flow rate control can be performed with less energy loss.

本実施例では以上の第1、第2の流量制御ループを5ま
く結合して応答性も良くかつエネルギ損失も少ない流量
制御方式としたものである・以上の点につき第5図に示
す波形図を用いて説明する。
In this embodiment, five of the above first and second flow rate control loops are combined to create a flow rate control system with good responsiveness and low energy loss. Regarding the above points, the waveform diagram shown in Fig. 5 is used. Explain using.

第5図(イ)は流量調節計5の流量の設定信号S2、(
ロ)は流量調節計5の操作出力SM%(ハ)はモータの
回転数を示す回転数信号SR1に)は流量計3の出力で
ある流量信号v7、(ホ)は流量制御弁4の弁開度をそ
れぞれ示している。横軸は時間である。
FIG. 5(a) shows the flow rate setting signal S2 of the flow rate controller 5, (
(b) is the operating output SM% of the flow rate controller 5 (c) is the rotational speed signal SR1 indicating the rotational speed of the motor, (e) is the flow rate signal v7 which is the output of the flowmeter 3, and (e) is the valve of the flow control valve 4. Each shows the opening degree. The horizontal axis is time.

先ず、第5図0)に示す様に時点t1で設定信号Sfを
階段状に低下させると、この設定信号S、に一致する様
に流量調節計5は制御演算を行ない第5図(ロ)に示す
様に操作出力SMを一時的に小さくして第5図(ホ)に
示す様に、流量制御弁4の弁開度を小さくする。この制
御演算は速い応答性を有しているので第5図に)に示す
様に設定信号S、に対応して急速に減少し、設定した流
量値になる。
First, as shown in Fig. 5 (0), when the setting signal Sf is lowered in a stepwise manner at time t1, the flow rate controller 5 performs control calculations so as to match this setting signal S, as shown in Fig. 5 (b). As shown in FIG. 5, the operating output SM is temporarily decreased, and the opening degree of the flow rate control valve 4 is decreased as shown in FIG. Since this control calculation has a fast response, the flow rate rapidly decreases in response to the setting signal S, as shown in FIG. 5), and reaches the set flow rate value.

一方、操作出力SMは弁開度調節計10にも入力されて
いるので、弁開度調節計10は操作出力〜の減少に対応
してプロア1の回転数を小さくする様な設定信号を回転
数調節計11に出力する。回転数調節計11はモータ7
の回転数が弁開度調節計10からの設定信号に一致する
様に回転数制御回路9に対して出力する。この結果、プ
ロアlの回転数が小さくなった(第5図(ハ))のと流
量制御弁40開度が小さくなった(第5図(ホ))こと
で流量信号V、は小さくなろうとするが、流量調節計5
は流量信号Vが設定信号Sfに一致する様に動作するの
で、結! 周回転数の低下による流量信号V、の低下に対応して漸
次操作出力SMを増加させ(第5図(ロ))、最終的に
流量制御弁4の弁開度を当初の設定信号〜に一致する弁
開度まで開く(第5図(ホ))。以上の様な動作をする
のは流量制御弁4とモータ7の動作速度に大きな差があ
るからである。
On the other hand, since the manipulated output SM is also input to the valve opening controller 10, the valve opening controller 10 outputs a setting signal that reduces the rotation speed of the proar 1 in response to the decrease in the manipulated output. Output to the number controller 11. The rotation speed controller 11 is the motor 7
is outputted to the rotation speed control circuit 9 so that the rotation speed matches the setting signal from the valve opening controller 10. As a result, the flow rate signal V becomes smaller because the rotational speed of the pro-arl becomes smaller (Fig. 5 (c)) and the opening degree of the flow control valve 40 becomes smaller (Fig. 5 (e)). However, the flow rate controller 5
operates so that the flow rate signal V matches the setting signal Sf, so conclude! The operating output SM is gradually increased in response to the decrease in the flow rate signal V due to the decrease in the circumferential rotational speed (Fig. 5 (b)), and finally the valve opening degree of the flow rate control valve 4 is adjusted to the initial setting signal ~. Open the valve to the matching opening degree (Fig. 5 (e)). The reason for the above operation is that there is a large difference in the operating speeds of the flow rate control valve 4 and the motor 7.

以上の一連の動作が終了した最終状態では、最初の状態
に比較してプロア1の回転数は小さくなル、流量制御弁
4は当初の弁開慶大の状態になっているのでエネルギ損
失が少ない状態となりている。しかも流量信号V、は第
5図に)K示す様に設定信号8.(第5図0))の変化
に速応した動作となっている。
In the final state where the above series of operations are completed, the rotation speed of the proar 1 is lower than in the initial state, and the flow rate control valve 4 is in the initial valve open state, so energy loss is reduced. It is in a low state. Moreover, the flow rate signal V, is set as the setting signal 8.K as shown in FIG. (Fig. 5, 0)))).

第4図に示す実施例では、流量調節計5、弁開度調節計
10、回転数調節計11などはデスクリートな形で構成
したが、これ等で実行される演算は例エバマイクロコン
ピュータで実行する形としても良い@ 〈発明の効果〉 以上、実施例と共に具体的に説明した様に1本発明によ
れば、必要流量に応じて流量送出手段の回転数を制御す
る様にしたので省エネルギ効果が大きくかつ流量制御弁
による流量制御も併用しているので外乱に対する連応性
も確保できる。
In the embodiment shown in FIG. 4, the flow rate controller 5, valve opening controller 10, rotation speed controller 11, etc. are configured in a discrete manner. It may also be carried out in a form @ <Effects of the Invention> As specifically explained above with the embodiments, according to the present invention, the number of revolutions of the flow rate sending means is controlled according to the required flow rate, which saves money. Since the energy effect is large and flow control is also performed using a flow control valve, it is possible to ensure responsiveness to disturbances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の第1の流量制御方式を示す構成図、#E
2図は従来の第2の流量制御方式を示す構成図、第3図
は従来のfJ3の流量制御方式を示す構成図、第4図は
本発明の一実施例の構成を示す構成図、第5図#′i第
4図に示す実施例の動作の説明をする波形図である。 1・・・プロア、2,8・・・配管、3・・・流量計、
4・・・流量制御弁、5・・・流量調節計、7・・・モ
ータ、10・・・弁開度調節計、11・・・回転数調節
計、Sf・・・設定信号、SM・・・操作出力、SR・
・・回転数信号、■、・・・流量信号。 代理人   弁理士  小 沢 信 助゛□1.12.
ヅ 7A1図 尾2図 冨3図 尾4図
Figure 1 is a configuration diagram showing the conventional first flow rate control method, #E
2 is a block diagram showing the conventional second flow control method, FIG. 3 is a block diagram showing the conventional fJ3 flow control method, and FIG. 4 is a block diagram showing the structure of an embodiment of the present invention. FIG. 5 #'i is a waveform diagram illustrating the operation of the embodiment shown in FIG. 4. 1... Proa, 2, 8... Piping, 3... Flowmeter,
4... Flow rate control valve, 5... Flow rate controller, 7... Motor, 10... Valve opening controller, 11... Rotation speed controller, Sf... Setting signal, SM.・・Operation output, SR・
...Rotation speed signal, ■,...Flow rate signal. Agent Patent Attorney Shinsuke Ozawa□1.12.
ㅅ7A1 figure tail 2 figure 3 figure tail 4 figure

Claims (1)

【特許請求の範囲】[Claims] 配管に流量を送り出す流量送出手段と、前記配管におけ
る流量を検出する検出端と、前記検出端からの流量信号
とあらかじめ設定した流量設定信号との偏差を演算しこ
の偏差がゼロになる様に制御する流量制御手段と、前記
流量制御手段の出力により制御され前記配管に挿入され
た流量制御弁と、前記流量制御手段の出力とあらかじめ
設定した弁開度設定信号との偏差がゼロになる様に制御
する弁開度制御手段と、前記弁開度制御手段の出力によ
り前記流量送出手段の回転数を制御する回転数制御手段
と、前記回転数制御手段の出力により前記流量送出手段
を制御し前記流量を制御することを特徴とする流量制御
方式。
A flow rate sending means for sending the flow rate to the piping, a detection end for detecting the flow rate in the piping, a deviation between the flow rate signal from the detection end and a preset flow rate setting signal is calculated, and control is performed so that this deviation becomes zero. and a flow rate control valve inserted into the piping that is controlled by the output of the flow rate control means, so that the deviation between the output of the flow rate control means and a preset valve opening setting signal becomes zero. a valve opening control means for controlling, a rotation speed control means for controlling the rotation speed of the flow rate sending means by the output of the valve opening degree control means, and a rotation speed control means for controlling the rotation speed of the flow rate sending means by the output of the rotation speed control means; A flow rate control method characterized by controlling the flow rate.
JP21175284A 1984-10-09 1984-10-09 Flow rate control method Pending JPS6190217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21175284A JPS6190217A (en) 1984-10-09 1984-10-09 Flow rate control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21175284A JPS6190217A (en) 1984-10-09 1984-10-09 Flow rate control method

Publications (1)

Publication Number Publication Date
JPS6190217A true JPS6190217A (en) 1986-05-08

Family

ID=16610992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21175284A Pending JPS6190217A (en) 1984-10-09 1984-10-09 Flow rate control method

Country Status (1)

Country Link
JP (1) JPS6190217A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148673A (en) * 1977-05-31 1978-12-25 Shimadzu Corp Process controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148673A (en) * 1977-05-31 1978-12-25 Shimadzu Corp Process controller

Similar Documents

Publication Publication Date Title
US4046490A (en) Method and apparatus for antisurge protection of a dynamic compressor
JP2754079B2 (en) Control method and control device for compressor system
US4255089A (en) Method of controlling series fans driving a variable load
JPH02140491A (en) Method of determining surge state
JPH01273900A (en) Safety operation method of turbocompressor
US4968215A (en) Device for control of a turbocompressor
JPH01300093A (en) Surge avoiding method of turbo compressor by adjusting blow-off
JPS6190217A (en) Flow rate control method
USRE30329E (en) Method and apparatus for antisurge protection of a dynamic compressor
JP3469178B2 (en) Optimal load control system for compressor
JP3384894B2 (en) Turbo compressor capacity control method
JPH0658295A (en) Controller for compressor
JPS61241498A (en) Flow rate control method for centrifugal compressor by variable diffuser
JPH06101500A (en) Control method for turbine compressor
JPH05118297A (en) Control device of compressor
JPH01271700A (en) Centrifugal compressor
JPH062021A (en) Method for changing over blower in blast furnace
JPH02223694A (en) Operation control method for centrifugal compressor
JP3439025B2 (en) Compressor control device
JPH06250741A (en) Intake valve controller
JPH064394U (en) Compressor control device
JPH09264500A (en) Operation control method for gas pipeline boosting facility
JPH0666159A (en) Fuel gas feeding device for gas turbine
JPS59119096A (en) Multi-stage compressor
JPH04370397A (en) Control device for compressor