JPS6189924A - Intake device of engine - Google Patents

Intake device of engine

Info

Publication number
JPS6189924A
JPS6189924A JP59212937A JP21293784A JPS6189924A JP S6189924 A JPS6189924 A JP S6189924A JP 59212937 A JP59212937 A JP 59212937A JP 21293784 A JP21293784 A JP 21293784A JP S6189924 A JPS6189924 A JP S6189924A
Authority
JP
Japan
Prior art keywords
engine
intake
valve
state
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59212937A
Other languages
Japanese (ja)
Other versions
JPH0577845B2 (en
Inventor
Kiyotaka Mamiya
清孝 間宮
Hirobumi Nishimura
博文 西村
Mitsuo Hitomi
光夫 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59212937A priority Critical patent/JPS6189924A/en
Publication of JPS6189924A publication Critical patent/JPS6189924A/en
Publication of JPH0577845B2 publication Critical patent/JPH0577845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10065Valves arranged in the plenum chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To reduce a torque shock produced at the opening time of an intake air controlling valve in an engine containing said valve which can be opened only when a vehicle runs at high speed over a set value by resetting the value to a lower one and opening the intake air controlling valve by use of the new value if the vehicle is accelerated over a specified ratio. CONSTITUTION:Two intake valves 3 and 4 are provided for each of cylinders 2 and have a primary and a secondary passage 7a and 7b, respectively. The primary passage 7a contains a fuel injection valve while the secondary passage 7b contains an intake air controlling valve 11. A controller 8 senses revolutional speed 20, intake quantity 14 and opened degree 19 of a throttle valve and has an actuator 13 open and close the intake air controlling valve 11. When an engine is accelerated quickly, the controller 18 loweres a set value which is usually used for the opening time of the controlling valve 11, and opens the valve earlier. Since an intake air condition suitable for a high-speed revolution of an engine is be prepared, an intake system will be able to make an attack to any quick change in r.p.m of an engine at a quick acceleration time thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気通路長さ、通路面積、容積等の吸気系の
形状を可変とし、これをエンジン回転数に応じて切換え
るようにしたエンジンの吸気装置に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an engine in which the shape of the intake system, such as the length of the intake passage, the area of the passage, and the volume, is made variable and is switched according to the engine speed. The present invention relates to an air intake device.

(従来技術) 従来より、エンジンに吸気を供給づる吸気装置において
、例えば実開昭57−2215号に見られるように、各
シリンダに複数の吸気通路を接続し、一方の吸気通路に
開閉弁を設けて、低回転時には開閉弁を閉じ、高回転時
に聞いて通路面(iを切換えるように制御し、トルク特
性を改善する技術が知られている。
(Prior art) Conventionally, in an intake system that supplies intake air to an engine, a plurality of intake passages are connected to each cylinder, and an on-off valve is attached to one of the intake passages, as shown in Utility Model Application Publication No. 57-2215, for example. A known technique is to improve the torque characteristics by controlling the opening/closing valve to close at low speeds and switching the passage surface (i) at high speeds.

すなわら、上記のような技術においては、吸気系にトル
クのピークが低回転側にある第一1の状態と、トルクの
ピークが高回転側にある第2の状態とを設け、第1の状
態にある低回転数からの回転数の上昇に伴い、第1の状
態での発生トルクが低下するのに対し第2の状態での発
生トルクが増大して、両者のトルクが一致する設定回転
数に達すると、第1の状態から第2の状態に切換作動し
て、全運転域で高いトルク特性を得るようにしたもので
ある。
In other words, in the above technology, the intake system is provided with a first state in which the torque peak is on the low rotation side and a second state in which the torque peak is on the high rotation side. As the rotational speed increases from the low rotational speed in the state of When the rotational speed is reached, the first state is switched to the second state to obtain high torque characteristics over the entire operating range.

また、上記のようにエンジンの吸気系の形状を切換える
ものとしては、吸気燐性等の動的特性をエンジン回転数
の変動に対応して変化させるために、動的特性の変化要
素である通路長さ、通路面積、容積等を切換変更し、そ
れぞれの回転域に適合した動的特性を得て充填効率の向
上を図るようにした技術もある。
In addition, as mentioned above, to change the shape of the engine intake system, in order to change the dynamic characteristics such as intake phosphority in response to fluctuations in engine speed, the air passage, which is an element that changes the dynamic characteristics, is There is also a technique in which the length, passage area, volume, etc. are changed to obtain dynamic characteristics suitable for each rotation range and to improve filling efficiency.

しかるに、上記のように吸気系の形状をエンジン回転数
の変動に応じて切換えるようにした場合に、急加速時の
切換作動時にノッキングもしくはトルクショックが生起
して加速性能が低下する恐れがある。すなわら、急加速
時には一時的に混合気の空燃比がばくなり、また、トル
クもしくは回転数の上昇より早期に点火時期が進角する
などの原因によってノッキングが発生し易いものであり
、しかも、第1の状態で高い発生トルクがあるときに第
2状態への切換えを行うと、これに伴って第2状態での
発生トルクが上昇するまでにトルク変動が大きく、トル
クショックとして運転性を阻害するものである。
However, when the shape of the intake system is switched in response to fluctuations in engine speed as described above, there is a risk that knocking or torque shock may occur during the switching operation during sudden acceleration, resulting in a decrease in acceleration performance. In other words, knocking is likely to occur due to factors such as the air-fuel ratio of the air-fuel mixture temporarily increasing during sudden acceleration, and the ignition timing advancing earlier than the increase in torque or rotational speed. If you switch to the second state when there is a high generated torque in the first state, the torque fluctuation will be large until the generated torque in the second state increases, causing a torque shock that will affect drivability. It is something that hinders.

(発明の目的) 本発明は上記事情に鑑み、急加速時に第1の状態から第
2の状態への切換えを行うときのトルクショックの抑制
およびノッキングの発生を解消して加速性を向上したエ
ンジンの吸気装置を提供することを目的とするものであ
る。
(Object of the Invention) In view of the above circumstances, the present invention provides an engine that improves acceleration by suppressing torque shock and eliminating knocking when switching from a first state to a second state during sudden acceleration. The purpose of this invention is to provide an intake device for the following.

(発明の構成) 本発明の吸気装置は、エンジン回転数に応じて吸気系の
形状を低回転域用の第1の状態と高回転域用の第2の状
態とに切換えるについて、エンジンの加速状態を検出し
、所定値以上の急加速時には、上記第1の状態と第2の
状態との切換えを行うときの設定回転数を低い側に補正
するようにしたことを特徴とするものである。
(Structure of the Invention) The intake system of the present invention switches the shape of the intake system between a first state for a low speed range and a second state for a high speed range according to the engine speed. The present invention is characterized by detecting the state and correcting the set rotation speed when switching between the first state and the second state to a lower side when sudden acceleration exceeds a predetermined value. .

(発明の効果) 本発明によれば、急加速時には第1の状態から第2の状
態への切換時期の設定回転数を低く補正することにより
、低回転域から高回転域に回転数が上昇する際に、早い
時期に吸気系が第1の状態から第2の状態に切換わり、
充填量が実質急に変化しないようにし、早い時期から第
2の状態のトルク特性に沿って変動し、急激なトルク変
動を伴うことなくなだらかにトルクが上昇し、トルクシ
ョックのない良好な運転性を得るとともに、混合気の一
時的な希薄化もなくノッキングが効果的に防止できる。
(Effects of the Invention) According to the present invention, during sudden acceleration, the rotation speed increases from a low rotation range to a high rotation range by correcting the set rotation speed at the time of switching from the first state to the second state to a lower value. When doing so, the intake system switches from the first state to the second state at an early stage,
The filling amount does not substantially change abruptly, and it changes along the torque characteristics of the second state from an early stage, so that the torque increases gradually without sudden torque fluctuations, and good drivability is achieved without torque shock. At the same time, knocking can be effectively prevented without temporary dilution of the air-fuel mixture.

また、緩加速時には、第1の状態と第2の状態での発生
トルクが一致する通常の設定回転数で切換えを行うので
、急加速時と同様の早い時期に切換えを行った際に生じ
る不具合、すなわち切換時にトルクが大きく低下するの
に伴うトルクショックを生じることなく、スムーズな運
転性、加速性が得られるものである。
In addition, during gentle acceleration, switching is performed at the normal set rotation speed where the torque generated in the first state and the second state match, so problems that may occur when switching is performed at an early stage similar to during sudden acceleration. That is, smooth drivability and acceleration can be obtained without causing a torque shock due to a large decrease in torque during switching.

(実施例) 以下、図面により本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

実施例1 第1図は本発明の一実施例による吸気装置を僅えたエン
ジンの全体構成図である。
Embodiment 1 FIG. 1 is an overall configuration diagram of an engine without an intake device according to an embodiment of the present invention.

エンジン1の各シリンダ2には、第1吸気ポート3およ
び第2吸気ポート4の2つの吸気ボートが開設されると
ともに、2つの排気ボート5.5が開設されている。
Each cylinder 2 of the engine 1 has two intake boats, a first intake port 3 and a second intake port 4, and two exhaust boats 5.5.

吸気ポート3.4に吸気を供給する吸気通路7はターボ
過給機8を備えるとともに、サージタンク9下流側の部
分が、各シリンダ2の第1吸気ボート3に接続される第
1通路7aと、第2吸気ボート4に接続される第2通路
7bとにそれぞれ分岐されている。上記第1通路7aに
は燃料噴射ノズル10が配設され、第2通路7bにはこ
の第2通路7bを開閉する開閉弁11が介装され、各シ
リンダ2に対する各開閉弁11は共通の操作軸12に接
続され、この操作ll1Il112がアクチュエータ1
3によって開閉作動されるものである。サージタンク9
の上流側の吸気通路7には吸気口を検出するエアフロー
メータ14、負荷に応じてl71mされるスロットルバ
ルブ15が介装されている。
The intake passage 7 that supplies intake air to the intake ports 3.4 is equipped with a turbo supercharger 8, and the downstream portion of the surge tank 9 is connected to the first passage 7a connected to the first intake boat 3 of each cylinder 2. , and a second passage 7b connected to the second intake boat 4. A fuel injection nozzle 10 is disposed in the first passage 7a, and an on-off valve 11 for opening and closing the second passage 7b is interposed in the second passage 7b, and each on-off valve 11 for each cylinder 2 can be operated by a common operation. This operation ll1Il112 is connected to the shaft 12 and the actuator 1
3, it is opened and closed. surge tank 9
An air flow meter 14 for detecting the intake port and a throttle valve 15 that adjusts the speed by 171 m depending on the load are installed in the intake passage 7 on the upstream side of the engine.

また、前記排気ボート5.5に接続されて排気ガスを導
出する排気通路17には、排気ガスによって駆動される
ターボ過給機8のタービン8aが配設され、このタービ
ン8aに連結され吸気を加圧するブロア8bが前記吸気
通路7に配設されている。
Further, a turbine 8a of a turbocharger 8 driven by the exhaust gas is disposed in the exhaust passage 17 connected to the exhaust boat 5.5 and leading out the exhaust gas, and is connected to the turbine 8a to direct intake air. A pressurizing blower 8b is disposed in the intake passage 7.

前記開閉弁11の開開を行うアクチュエータ13の作動
および燃料噴射ノズル10による燃料噴射は、制御装置
18(コントロールユニットンからの制御信号によって
行われる。この制御装置18には、前記エアフローメー
タ14からの吸気量信号に加えて、スロットルバルブ1
5の開度に基づき加速状態を検出するためのスロットル
開度センサー19からの信号、およびエンジン1のクラ
ンク軸6の回転速度からエンジン回転数を検出する回転
数センサー20からの信号がそれぞれ入力される。
The operation of the actuator 13 that opens and opens the on-off valve 11 and the fuel injection by the fuel injection nozzle 10 are performed by control signals from a control device 18 (control unit). In addition to the intake air amount signal of throttle valve 1
A signal from a throttle opening sensor 19 for detecting the acceleration state based on the opening of the engine 1 and a signal from a rotation speed sensor 20 for detecting the engine rotation speed from the rotation speed of the crankshaft 6 of the engine 1 are respectively input. Ru.

前記吸気系において、開閉弁11によって第2通路7b
を閉じて第1通路7aのみによって吸気を供給している
ときが低回転域用の第1の状態であり、一方、開閉弁1
1が聞いて第1通路7aおよび第2通路7bによって吸
気を供給しているときが高回転域用の第2の状態である
。この第1の状態と第2の状態とを切換えるアクチュエ
ータ13の作動は、回転数センサー20により検出され
たエンジン回転数に応じて設定回転数で行われるととも
に、この切換時の設定回転数はスロットル開度センサー
19により検出された加速状態に応じて変更されるもの
である。
In the intake system, the second passage 7b is opened by the on-off valve 11.
The first state for the low rotation range is when the on-off valve 1 is closed and intake air is supplied only through the first passage 7a.
1 and supplying intake air through the first passage 7a and the second passage 7b is the second state for the high rotation range. The actuator 13 is operated to switch between the first state and the second state at a set rotation speed according to the engine rotation speed detected by the rotation speed sensor 20, and the set rotation speed at the time of switching is determined by the throttle speed. It is changed according to the acceleration state detected by the opening sensor 19.

すなわち、第2図Aに示すように、開閉弁11が閉じた
第1の状態から開閉弁11が開いた第2の状態への切換
時は、エンジン1の加速状態が設定値未満の緩加速時に
は、実線で示す第1の設定回転数Noであり、エンジン
1の加速状態が設定値以上の急加速時には、破線で示す
第2の設定回転数N1であり、第2の設定回転数N1は
第1の設定回転数Noより低い値であり、急加速時には
切換時の設定回転数は低い値に補正される。
That is, as shown in FIG. 2A, when switching from the first state in which the on-off valve 11 is closed to the second state in which the on-off valve 11 is open, the acceleration state of the engine 1 is a slow acceleration that is less than the set value. Sometimes, it is the first set rotation speed No shown by the solid line, and when the acceleration state of the engine 1 suddenly accelerates beyond the set value, it is the second set rotation speed N1 shown by the broken line, and the second set rotation speed N1 is This value is lower than the first set rotation speed No. During sudden acceleration, the set rotation speed at the time of switching is corrected to a lower value.

そして、上記第1の設定回転数Noは第2図Bに示すよ
うに、吸気系が第1の状態にあるときのトルクカーブエ
と、吸気系が第2の状態にあるときのトルクカーブ■と
が交差して両状態の発生トルクが一致する時の回転数に
設定され、第2の設定回転数N1はこれより低い値に設
定されている。
As shown in FIG. 2B, the first set rotation speed No. is determined by the torque curve (E) when the intake system is in the first state and the torque curve (2) when the intake system is in the second state. The rotational speed is set to a value at which the torques generated in both states intersect and match, and the second set rotational speed N1 is set to a value lower than this.

なお、第2図Bにおいて曲線■は減速ラインである。In addition, in FIG. 2B, the curve ■ is a deceleration line.

前記制御装置18は、急加速時を除く加速状態において
エンジン回転数が上昇して第1の設定回転数Noに達し
た時には、アクチュエータ13に開信号を出力して開閉
弁11を開状態に作動制御するらのであり、急加速時に
はこれより低回転側の第2の設定回転数N1に補正して
早い時期に開開弁11を開く作動信号を出力するもので
ある。
The control device 18 outputs an open signal to the actuator 13 to open the on-off valve 11 when the engine speed increases and reaches the first set speed No. in an acceleration state other than during sudden acceleration. When accelerating rapidly, the second set rotation speed N1 is corrected to a lower rotation side, and an operation signal is output to open the opening/opening valve 11 at an earlier stage.

これによりノッキング発生を伴うことなく良好な加速性
が得られる。
This provides good acceleration without causing knocking.

上記実施例においては、低回転域では第1通路7aのみ
によって吸気が供給され、その流速が速いことからシリ
ンダ2内に強いスワールを生成するように設置プられて
いるが、急加速時にスワールが強いとさらにノッキング
発生しやづくなるものである。しかし、この急加速時に
は切換時期が早くなって第2通路7bからも吸気が早期
に供給されてスワールが弱くなり、これによってもノッ
キングの発生が抑制される。
In the above embodiment, intake air is supplied only through the first passage 7a in the low rotation range, and since the flow velocity is high, the cylinder 2 is installed to generate a strong swirl, but the swirl is generated during sudden acceleration. If it is too strong, knocking becomes more likely to occur. However, during this rapid acceleration, the switching timing becomes earlier, and the intake air is also supplied from the second passage 7b earlier, weakening the swirl, thereby also suppressing the occurrence of knocking.

第3図は緩加速1i(実線)と急加速時(破IiI>と
におけるターボ過給機8の作動に伴う吸気圧力の変化を
示すものである。a点はアイドリング状態で吸気圧力は
負圧になっており、b点からスロットルバルブ15が緩
加速時は緩慢に、急加速時には急激に開作動される。こ
のスロットルバルブ15の同作動に伴い、吸気圧力は大
気圧に上昇するとともに、排気ガスの増大によってター
ボ過給′R8が作動して吸気圧力は正圧方向に上昇し、
最終的に過給圧に達する。そして、緩加速時にはd点で
開閉弁11が開き、急加速時にはこれより前の0点で開
閉弁11が開くものである。その際、開開弁11が閉じ
ている状態では通路面積は狭く、吸気の抵抗が大きくな
ってブロア8bの回転上昇が小さくなるのに対し、急加
速時には早期に開閉弁11が開くことから、ブロア8b
の回転上昇度が高くなって、吸気圧力の上昇が早くなり
、ターボ過給機8のタイムラグが短くなって加速時の応
答性が向上する。
Figure 3 shows the change in intake pressure due to the operation of the turbocharger 8 during slow acceleration 1i (solid line) and rapid acceleration (broken IiI>).Point a is in the idling state and the intake pressure is negative pressure. From point b, the throttle valve 15 is opened slowly during slow acceleration, and suddenly opened during sudden acceleration.As the throttle valve 15 opens, the intake pressure rises to atmospheric pressure, and the exhaust pressure increases. Due to the increase in gas, turbocharging 'R8 is activated and the intake pressure increases in the positive pressure direction.
Eventually, boost pressure is reached. During slow acceleration, the on-off valve 11 opens at point d, and during rapid acceleration, the on-off valve 11 opens at point 0, which is earlier than this. At this time, when the opening/closing valve 11 is closed, the passage area is narrow and the intake resistance increases, resulting in a small increase in rotation of the blower 8b, whereas during sudden acceleration, the opening/closing valve 11 opens early. Blower 8b
The rate of increase in rotation becomes higher, the intake pressure increases faster, the time lag of the turbocharger 8 becomes shorter, and responsiveness during acceleration improves.

なお、上記実施例においては、加速状f(3に対応して
切換設定回転数を2段階に設定しているが、加速の大き
さに応じて切換設定回転数を無段階に制御するようにし
てもよい。
In the above embodiment, the switching setting rotation speed is set in two stages corresponding to the acceleration state f (3), but the switching setting rotation speed is controlled steplessly according to the magnitude of acceleration. It's okay.

実施例2 第4図は吸気系の形状を低回転域用の第1の状態と高回
転域用の第2の状態とに切換える他の実施例を示し、こ
の例では吸気系の形状をその動的特性がエンジン回転数
の変化に対応して同調するように調整し、充填効率を向
上し、トルク特性を改善するものである。
Embodiment 2 Figure 4 shows another embodiment in which the shape of the intake system is switched between a first state for a low rotation range and a second state for a high rotation range. The system adjusts dynamic characteristics to match changes in engine speed, improving charging efficiency and torque characteristics.

直列6気筒エンジン21における各シリンダ2゜2・・
・に接続された吸気通路22は、それぞれ実質的に吸気
行程がオーバーラツプしない2つの気筒群に分割されて
、第1サージタンク23もしくは第2サージタンク24
に接続されている。すなわち、第1ないし第3気筒の独
立吸気通路22が第1サージタンク23に集合され、第
4ないし第6気筒の独立吸気通路22が第2サージタン
ク24に集合されている。また、上記第1および第2サ
ージタンク23.24には、その上流側に1本ずつの吸
気通路25.26が接続され、両吸気通路25.26は
集合して合流通路27に連通して設けられている。
Each cylinder 2°2 in the inline 6-cylinder engine 21...
The intake passage 22 connected to
It is connected to the. That is, the independent intake passages 22 of the first to third cylinders are collected in the first surge tank 23, and the independent intake passages 22 of the fourth to sixth cylinders are collected in the second surge tank 24. Furthermore, one intake passage 25.26 is connected to the first and second surge tanks 23.24 on their upstream sides, and both intake passages 25.26 collectively communicate with a merging passage 27. It is provided.

一方、前記第1および第2サージタンク23゜24は互
いに連通路28によつ−て直接連通され、この連通路2
8には該連通路28を開閉する開開弁29が介装されて
いる。この開閉弁29はアクチュエータ30によって1
70開作動され、該アクチュエータに前記第1図と同様
の制御装置18からの制御信号が出力され、設定回転数
未満の低回転域では開閉弁29を閉じた第1の状態とす
る一方、設定回転数以上の高回転域では開開弁29を開
いた第2の状態とするように切換制御される。
On the other hand, the first and second surge tanks 23 and 24 are in direct communication with each other through a communication passage 28.
8 is interposed with an on-off valve 29 that opens and closes the communication passage 28. This on-off valve 29 is operated by an actuator 30.
70 is opened, and a control signal from the control device 18 similar to that shown in FIG. In a high rotation range exceeding the rotation speed, switching control is performed so that the open/close valve 29 is placed in the second open state.

そして、制御装置18はエンジン21の加速状態を検出
し、設定値未満の緩加速時に開開弁29を開作動する切
換時の設定回転数に対して、設定値以上の急加速時には
切換時の設定回転数を低回転側に補正するものである。
Then, the control device 18 detects the acceleration state of the engine 21, and when the rotation speed is set to switch to open the opening/opening valve 29 during slow acceleration below the set value, when the rotation speed is switched when the opening valve 29 is opened when the engine is accelerated at a speed exceeding the set value. This is to correct the set rotation speed to the lower rotation side.

上記開閉弁29の開閉は、各サージタンク23゜24と
上流側の吸気通路25’、26および合流通路27によ
る気柱振動系の影響による圧力撮動に伴う動的特性の同
調回転数を変更するものであ・つて、エンジン回転数の
変動に合った動的特性を利用して充填効率を向上する。
The opening and closing of the on-off valve 29 changes the synchronized rotation speed of the dynamic characteristics associated with pressure imaging due to the influence of the air column vibration system by each surge tank 23, 24, the upstream intake passages 25', 26, and the merging passage 27. It improves charging efficiency by utilizing dynamic characteristics that match fluctuations in engine speed.

すなわち、両サージタンク23.24の連通長さを長く
すると同調回転数が低回転側となり、短くすると高回転
側に移行するので、高回転時には連通路28の開開弁2
9を開いて、両サージタンク23.24をこの連通路2
8で直接連通ずるように制御するものである。
That is, when the communication length of both surge tanks 23 and 24 is lengthened, the synchronized rotation speed shifts to the low rotation side, and when it is shortened, the synchronized rotation speed shifts to the high rotation side.
9 and connect both surge tanks 23 and 24 to this communication path 2.
8 for direct communication.

実施例3 第5図および第6図は吸気系の通路長さを、低回転域用
の第1の状態と高回転域用の第2の状態とに切換えを行
う実施例を示している。これらの図において、第1図と
同様の構造には同一符号を付している。
Embodiment 3 FIGS. 5 and 6 show an embodiment in which the passage length of the intake system is switched between a first state for a low rotation range and a second state for a high rotation range. In these figures, structures similar to those in FIG. 1 are designated by the same reference numerals.

エンジン31の各シリンダ2に吸気を供給する吸気通路
32は、サージタンク9から各シリンダ2用に独立した
分岐通路32aに分岐されている。
An intake passage 32 that supplies intake air to each cylinder 2 of the engine 31 is branched from the surge tank 9 into an independent branch passage 32a for each cylinder 2.

この分岐通路32aはサージタンク9の一側面から湾曲
して通路長さが長くなるように形成され、一方、上記サ
ージタンク9の底部と分岐通路32aの途中の部分とが
連通路33によってそれぞれ短絡接続され、この連通路
33には該連通路33を開閉する開開弁34が介装され
ている。この開閉弁34は各気筒のものが操作軸35に
よって連結され、この操作軸35が図示しないアクチュ
エータによって第1図と同様の制御装置からの制御信号
に基づいて作動され、設定回転数未満の低回転域では開
閉弁34を閉じた第1の状態とする一方、設定回転数以
上の高回転域では開閉弁34を開いた第2の状態とする
ように切換制御される。
This branch passage 32a is curved from one side of the surge tank 9 so that the passage length becomes long, and on the other hand, the bottom of the surge tank 9 and the middle part of the branch passage 32a are short-circuited by the communication passage 33. An on-off valve 34 for opening and closing the communication passage 33 is interposed in the communication passage 33. The on-off valves 34 for each cylinder are connected by an operating shaft 35, and this operating shaft 35 is operated by an actuator (not shown) based on a control signal from a control device similar to that shown in FIG. Switching control is performed so that the on-off valve 34 is in the first closed state in the rotation range, and in the second state where the on-off valve 34 is open in the high rotation range above the set rotation speed.

上記開閉弁34はサージタンク9とシリンダ2とを接続
する吸気通路長さを、閉じたときに長く、聞いたときに
短くするものであって、この気性振動系の同調回転数を
変更して吸気慣性効果をエンジン回転数に応じて高める
。すなわら、通路長さを長くすると同調回転数が低回転
側となり、短くすると高回転側に移行するので、前記の
ように設定回転教又・連通路33の開閉弁34を聞くよ
うに制御されるものである。
The opening/closing valve 34 increases the length of the intake passage connecting the surge tank 9 and the cylinder 2 when closed and shortens it when closed, and changes the tuned rotation speed of this air vibration system. Increases intake inertia effect according to engine speed. In other words, if the passage length is made long, the tuned rotation speed will be on the low rotation side, and if it is shortened, the tuned rotation speed will be shifted to the high rotation side, so as mentioned above, the tuning speed is controlled so as to listen to the on-off valve 34 of the setting rotation instruction/communication passage 33. It is something that will be done.

そして、制御装置はエンジン31の加速状態を検出し、
設定値未満の緩加速時に開閉弁34を聞゛   作動す
る切換時の設定回転数に対して、設定11r1以上の急
加速時には切換時の設定回転数を11(回転側に?+1
i正するものである。
Then, the control device detects the acceleration state of the engine 31,
When the on-off valve 34 is activated during slow acceleration below the set value, the set rotation speed at the time of switching is changed to 11 (toward the rotation side? +1
i It is something to correct.

また、この実施例にa5いて、連通路33に介装した開
閉弁34は、連通路33を聞く際に、この連通部分より
上流側の分岐通路32aを閉じるような切換弁に構成し
てもよい。
Further, in this embodiment, the on-off valve 34 installed in the communication passage 33 in a5 may be configured as a switching valve that closes the branch passage 32a upstream of this communication part when listening to the communication passage 33. good.

なお、吸気系の形状をエンジン回転数に応じて切換変更
し、各運転状!/!て゛エンジンの充填効率の向上を図
り、トルク特性を改善する構造としては、上記した各側
の他、公知の構造が採用でき、それらに対しC本発明は
適用可能である。
In addition, the shape of the intake system can be changed according to the engine speed to suit each driving condition! /! In addition to the above-mentioned structures, known structures can be used as a structure for improving engine charging efficiency and torque characteristics, and the present invention is applicable to these structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例による吸気装置を有ケる
エンジンの仝体構成図、 第2図A、Bはエンジン回転数に対り−るtl)1開弁
の開閉時期とトルク特性の関係を示す説明図、第3図は
急加速時と緩加速時に、15りるターボ過給機の作動に
伴う吸気圧力の変動を示す説明図、第4図は第2の実施
例にJヲける吸気装置の構成図、 第5図は第3の実施例にa3ける吸気装置の概略平面図
、 第6図は第5図のvr −vr線に沿う断面構成図であ
る。 1.21.31・・・・・・エンジン  7・・・・・
・吸気通路7a・・・・・・第1通路    7b・・
・・・・第2通路8・・・・・・ターボ過給Ill  
  11・・・・・・開閉弁13・・・・・・アクチュ
エータ 18・・・・・・利口II装置 19・・・・・・スロットル開度センサー20・・・・
・・回転数センサー 23.24・・・・・・サージタンク 25.26.32・・・・・・吸気通路28.33・・
・・・・連通路 29.34・・・・・・17n開弁 30・・・・・・アクチュ’11−タ 第2図 第3図 oca     [lf闇
Fig. 1 is a structural diagram of an engine equipped with an intake system according to the first embodiment of the present invention, and Fig. 2A and B show the opening/closing timing of the 1 valve with respect to the engine rotation speed. An explanatory diagram showing the relationship between torque characteristics. Fig. 3 is an explanatory diagram showing fluctuations in intake pressure due to the operation of the 15-liter turbo supercharger during sudden acceleration and slow acceleration. Fig. 4 is a diagram showing the second embodiment. FIG. 5 is a schematic plan view of the intake device according to the third embodiment, and FIG. 6 is a cross-sectional configuration diagram taken along line vr-vr in FIG. 5. 1.21.31...Engine 7...
・Intake passage 7a...First passage 7b...
...Second passage 8...Turbo supercharging Ill
11... Opening/closing valve 13... Actuator 18... Clever II device 19... Throttle opening sensor 20...
...Rotational speed sensor 23.24...Surge tank 25.26.32...Intake passage 28.33...
...Communication path 29.34...17n Valve opening 30... Actuator'11-ta Figure 2 Figure 3 oca [lf darkness

Claims (1)

【特許請求の範囲】[Claims] (1)吸気系の形状を第1の状態と第2の状態とに可変
とし、少なくとも高負荷で、エンジン回転数が設定回転
数未満の領域で第1の状態とし、設定回転数以上の領域
で第2の状態とするように切換えるエンジンの吸気装置
において、エンジンの加速状態を検出し、所定値以上の
急加速時には、第1の状態と第2の状態との切換えを行
う上記設定回転数を低い側に補正するようにしたことを
特徴とするエンジンの吸気装置。
(1) The shape of the intake system is variable between a first state and a second state, and the first state is at least under high load when the engine speed is less than the set speed, and when the engine speed is higher than the set speed. The engine intake system detects the acceleration state of the engine and switches between the first state and the second state when the engine accelerates rapidly beyond a predetermined value. An engine intake device characterized in that the engine intake device is configured to correct the amount of air to a lower side.
JP59212937A 1984-10-11 1984-10-11 Intake device of engine Granted JPS6189924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212937A JPS6189924A (en) 1984-10-11 1984-10-11 Intake device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212937A JPS6189924A (en) 1984-10-11 1984-10-11 Intake device of engine

Publications (2)

Publication Number Publication Date
JPS6189924A true JPS6189924A (en) 1986-05-08
JPH0577845B2 JPH0577845B2 (en) 1993-10-27

Family

ID=16630761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212937A Granted JPS6189924A (en) 1984-10-11 1984-10-11 Intake device of engine

Country Status (1)

Country Link
JP (1) JPS6189924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215421A (en) * 1985-03-22 1986-09-25 Toyota Motor Corp Intake controller of internal-combustion engine
JP2010077908A (en) * 2008-09-26 2010-04-08 Mazda Motor Corp Method for controlling air intake of engine and device thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215421A (en) * 1985-03-22 1986-09-25 Toyota Motor Corp Intake controller of internal-combustion engine
JPH0260848B2 (en) * 1985-03-22 1990-12-18 Toyota Motor Co Ltd
JP2010077908A (en) * 2008-09-26 2010-04-08 Mazda Motor Corp Method for controlling air intake of engine and device thereof

Also Published As

Publication number Publication date
JPH0577845B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
EP3059427B1 (en) Control device for a supercharged internal combustion engine provided with a plurality of cylinder groups and with a plurality of turbochargers
JPH0656106B2 (en) Intake device for supercharged engine
JPH02108820A (en) Controller for engine with exhaust turbo supercharger
JPS6189924A (en) Intake device of engine
JPH01142214A (en) Turbo supercharged engine
JPS59165867A (en) Ignition timing control device of supercharged engine
JPH01271644A (en) Device for controlling engine with supercharger
JP2546047B2 (en) Variable intake system for automobile
JPS6189929A (en) Intake device of supercharged engine
JP2001227351A (en) Controller for engine with supercharger
JP2515812B2 (en) Control device for engine with supercharger
JPS60240822A (en) Suction system for engine
JPS61218720A (en) Intake device of engine with supercharger
JPS6123628Y2 (en)
JPH0242123A (en) Control device for engine with supercharger
JPS6313388Y2 (en)
JPH0454237A (en) Engine controller
JPS61132719A (en) Duplex air intake unit of internal-combustion engine
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JPH0618663U (en) Ignition timing control device for internal combustion engine with supercharger
JPS60216031A (en) Rotary piston engine equipped with turbosupercharger
JPH01208538A (en) Device for controlling throttle valve of engine
JP2003322061A (en) Suction device of engine
JPH04370369A (en) Ignition timing control device for engine with supercharger
JPH04310436A (en) Controller of engine with supercharger