JPS6189125A - Drive coupling device for four-wheel drive - Google Patents
Drive coupling device for four-wheel driveInfo
- Publication number
- JPS6189125A JPS6189125A JP20794984A JP20794984A JPS6189125A JP S6189125 A JPS6189125 A JP S6189125A JP 20794984 A JP20794984 A JP 20794984A JP 20794984 A JP20794984 A JP 20794984A JP S6189125 A JPS6189125 A JP S6189125A
- Authority
- JP
- Japan
- Prior art keywords
- wheel drive
- drive
- wheels
- rear wheels
- hydraulic pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/348—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
- B60K17/35—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
- B60K17/3505—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は後輪に伝達されるエンジン動力を油圧ポンプを
介して前輪に配分伝達する4輪駆動用駆動連結装置に関
する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a four-wheel drive drive coupling device that distributes and transmits engine power transmitted to rear wheels to front wheels via a hydraulic pump.
〈従来の技術〉
前輪・後輪を同一のエンジンで駆動する4輪駆動車にお
いては、前輪および後輪のタイヤの有効半径に多少の相
違があったり、旋回走行の場合はタイヤのころがり経路
の違いからタイヤにすべりを伴い駆動系に無理な力が作
用するためこれを防止する手段を設ける必要がある。<Prior art> In a four-wheel drive vehicle in which the front and rear wheels are driven by the same engine, there is a slight difference in the effective radius of the front and rear tires, and in the case of turning, the rolling path of the tires is slightly different. Due to the difference, the tires slip and unreasonable force is applied to the drive system, so it is necessary to provide a means to prevent this.
このため従来より、前輪に駆動力を伝達する第1回転軸
と後輪に駆動力を伝達する第2回転軸とを前輪と後輪と
の間に回転速度差が生じても駆動力を伝達できるようセ
ンタデフと称する第3の差動装置で連結したフルタイム
4輪駆動車や、センタデフを設置せずに旋回走行により
生ずるタイトコーナブレーキング現象等4輪駆動による
不具合がある場合には運転者による操作で前輪若しくは
後輪の2輪駆動とするパートタイム4輪駆動車がある。For this reason, conventionally, a first rotating shaft that transmits driving force to the front wheels and a second rotating shaft that transmits driving force to the rear wheels are used to transmit driving force even if there is a difference in rotational speed between the front wheels and the rear wheels. For full-time 4-wheel drive vehicles that are connected with a third differential device called a center differential, or when there is a problem with 4-wheel drive such as tight corner braking caused by cornering without a center differential installed, the driver There are part-time four-wheel drive vehicles that drive either the front wheels or the rear wheels by operating the vehicle.
〈発明が解決しようとする問題点〉
上記フルタイム4輪駆動車にあってはセンタデフを設置
するため、重量、大きさ及びコストの面からパートタイ
ム4輪駆動車に較へて不利であると共に、差動回転が可
能であることから4輪駆動を必要とするときに4輪駆動
が達成できない場合があり、デフロック機構を必要とす
る等装置の一層の複雑化を招いてしまうという欠点があ
った。<Problems to be Solved by the Invention> Since the above-mentioned full-time four-wheel drive vehicle is equipped with a center differential, it is disadvantageous compared to a part-time four-wheel drive vehicle in terms of weight, size, and cost. However, because differential rotation is possible, it may not be possible to achieve four-wheel drive when four-wheel drive is required, and there are drawbacks such as requiring a differential lock mechanism and further complicating the device. Ta.
一方、パートタイム4輪駆動車にあっては4輪駆動と2
輪駆動との切換はその都度運転者が操作しなければなら
ないため、運転操作が煩雑となるという欠点があった。On the other hand, part-time 4-wheel drive vehicles have 4-wheel drive and 2-wheel drive vehicles.
The driver must perform an operation to switch between wheel drive and wheel drive each time, which has the drawback of complicating driving operations.
本発明はかかる従来の4輪駆動車に生ずる欠点を解消し
、小型軽量な4輪駆動用駆動連結装置の提供を目的とす
る。It is an object of the present invention to eliminate the drawbacks that occur in conventional four-wheel drive vehicles and to provide a small and lightweight four-wheel drive drive coupling device.
く問題点を解決するための手段〉
本発明に係る4輪駆動用駆動連結装置は、前輪に駆動力
を伝達する第1回転軸と後輪に駆動力を伝達する第2回
転軸とをこれら第1回転軸と第2回転軸との回転速度差
によって駆動されると共に回転速度差に応じた油量を吐
出する油圧ポンプを介して連結する一方、前記後輪はエ
ンジン動力により直接駆動されるよう前記第2回転軸に
エンジン動力の出力軸を連結したことを特徴とする。Means for Solving Problems〉 The four-wheel drive drive coupling device according to the present invention connects a first rotating shaft that transmits driving force to the front wheels and a second rotating shaft that transmits driving force to the rear wheels. The first rotating shaft and the second rotating shaft are driven by a difference in rotational speed and are connected via a hydraulic pump that discharges an amount of oil according to the difference in rotational speed, while the rear wheels are directly driven by engine power. The invention is characterized in that an output shaft for engine power is connected to the second rotating shaft.
く作 用〉
油圧ポンプからの油の吐出圧を制御することにより、従
来パートタイム4輪駆動車で運転者の操作が必要であっ
たものが、自動的に4輪駆動と2輪駆動との切換えが行
われると共に前輪と後輪との回転速度差に応じた駆動力
を後輪側から前輪側へ配分した4輪駆動状態が得られる
。また、センタデフを不要とすることにより小型コンパ
クト化が図られるため、フルタイム4輪駆動車に較へ小
型コンパクト化を図ることができると共に重量軽減もは
かれ、コスト低減ともなる。更に後輪側への駆動力を油
圧ポンプを介して前輪側へ配分するようにしているため
、M!l!I力が油ポンプのトルク容量で制限される前
輪側に比して後輪側の方が駆動力配分が大きくなり、前
輪に比して後輪の方が車両重量配分が大きくなる急加速
時において優れた加速性能を得ることがてき、手≠駒竺
更に車輪に駆動力を与えた状態での旋回時において優れ
た操舵性能を得ることができる。Function: By controlling the oil discharge pressure from the hydraulic pump, conventional part-time 4-wheel drive vehicles that required driver operation can now automatically switch between 4-wheel drive and 2-wheel drive. As the switching is performed, a four-wheel drive state is obtained in which driving force is distributed from the rear wheels to the front wheels in accordance with the difference in rotational speed between the front wheels and the rear wheels. Further, since the vehicle is made smaller and more compact by eliminating the need for a center differential, it is possible to make the vehicle smaller and more compact than a full-time four-wheel drive vehicle, and also to reduce weight and cost. Furthermore, the driving force for the rear wheels is distributed to the front wheels via a hydraulic pump, making the M! l! During sudden acceleration, the driving force distribution is greater on the rear wheels than on the front wheels, where I-force is limited by the torque capacity of the oil pump, and the vehicle weight distribution is greater on the rear wheels than on the front wheels. It is possible to obtain excellent acceleration performance when turning by hand, and excellent steering performance when turning with driving force applied to the wheels.
く実 施 例〉
以下、本発明に係る4輪駆動用駆動連結装置の一実施例
を図面に基づいて説明する。本実施例は概略構成を表す
第1図に示すように、車両前部にエンジンを配置した型
式の車両に本発明を適用したものである。Embodiment Hereinafter, an embodiment of a four-wheel drive drive coupling device according to the present invention will be described based on the drawings. In this embodiment, the present invention is applied to a type of vehicle in which the engine is disposed at the front of the vehicle, as shown in FIG. 1 showing a schematic configuration.
縦置きされたエンジン1に変速@2が連結され、その出
力軸3に取付けられたドライブギヤ4から駆動力が取り
出されてドリブンギヤ5を介して第2回転軸14に伝達
され、この駆動力が第2回転軸14から後輪16用の差
動装置17に伝達され、後輪16を上記一連のパワート
レインを介してエンジン1により@破約に駆動する。一
方、第2回転軸14に伝達された駆動力は4輪駆動用駆
動連結装置13を経て第1回転軸11に伝達されるよう
になっており、この駆動力が前輪9用の差動装置10に
伝達され、前輪9を駆動連結装置13を介して後輪16
の駆動力により間接的に駆動する。A transmission@2 is connected to an engine 1 placed vertically, and driving force is taken out from a drive gear 4 attached to its output shaft 3 and transmitted to a second rotating shaft 14 via a driven gear 5. The signal is transmitted from the second rotating shaft 14 to the differential device 17 for the rear wheels 16, and the rear wheels 16 are driven by the engine 1 via the series of power trains described above. On the other hand, the driving force transmitted to the second rotating shaft 14 is transmitted to the first rotating shaft 11 via the four-wheel drive drive coupling device 13, and this driving force is transmitted to the differential gear for the front wheels 9. 10 and connects the front wheels 9 to the rear wheels 16 via the drive coupling device 13.
indirectly driven by the driving force of
この4輪駆動用駆動連結装置13は、第2図にその断面
構造を示すように、油圧ポンプであるベーンポンプ20
とこれに付属する油圧回路21とで構成されており、ベ
ーンポンプ20のロータ20aが後輪16への駆動力が
そのまま伝達される第2回転軸14と連結されると共に
カムリング20bが前輪9に駆動力を伝達する第1回転
軸11に連結しである。この油圧ポンプとしてのベーン
ポンプ20はその回転数に比例した油量を吐出するもの
であり、ロータ20aとカムリング20bとの間に相対
回転、すなわち第1回転軸11と第2回転軸14との間
に相対回転が生ずると油圧ポンプとして機能して油圧が
発生されるものであり、ベーンポンプ20の吐出口(相
対回転方向先端の吸込吐出口がこれに相当)を塞ぐこと
て油を介してその静圧でロータ20aとカムリング20
bとが剛体のようになって一体回転される。このためカ
ムリング20bには対角位置に2つのポンプ室が形成さ
れ回転方向基端側に位置したとき吸込口となり、先端側
に位置したとき吐出口となる4個の吸込吐出口22,2
3,24,25がほぼ対角位置に形成してあり、それぞ
れ同一機能をなす対角位置の吸込吐出口22,24と吸
込吐出口23.25がそれぞれカムリング20bの回転
状態でも固定側に油を送通し得る機構を介して第1油$
26と第2油路27とで連通しである。また、第1油路
26と第2油路27との間にそれぞれチェック弁28,
29を介してオイル溜30が連通され、オイル溜30か
らの流れのみが許容されると共に第1油路26と第2油
路27どの間に流出のみを許容する相対向した2つのチ
ェック弁31゜32を介して両油路26,27が連通さ
れ、この2つのチェック弁31’、32の中間部がリリ
ーフ弁33に連通している。このリリーフ弁33のスプ
リング34側である中間部には、オイル溜30と2つの
チェック弁28゜29までの中間部との連通路35が設
けてあり、スプリング34の他端には、スプリング34
によりU IJ−フ弁33の開弁圧力を制御するピスト
ン36が設けられ、ピストン36の他端にはデユーティ
制御される制御油圧が作用するようになっている。そし
て、デユーティ制御のためオリフィス37を介して供給
される一定圧力の油圧をソレノイド弁38で制御するが
、このソレノイド弁38はコンピュータ39に電気的に
接続され、コンピュータに入力されるエンジン回転数、
第1回転軸11の回転数、第2回転軸14の回転数、ス
ロットル開度、プレーキスインチ、転舵角によりピスト
ン36の他端に作用する油圧を制御する。尚、オリフィ
ス37を介して供給される一定圧力の油圧は、変速機2
がオートマチックトランスミッションの場合にはその制
御用油圧を利用すれば良く、手動式の場合にはオイルポ
ンプを設置する等によりこの油圧を確保する。This four-wheel drive drive coupling device 13 has a vane pump 20, which is a hydraulic pump, as shown in FIG.
The rotor 20a of the vane pump 20 is connected to the second rotating shaft 14 through which the driving force to the rear wheels 16 is directly transmitted, and the cam ring 20b drives the front wheels 9. It is connected to the first rotating shaft 11 that transmits force. The vane pump 20 as a hydraulic pump discharges an amount of oil proportional to its rotation speed, and there is a relative rotation between the rotor 20a and the cam ring 20b, that is, between the first rotation shaft 11 and the second rotation shaft 14. When relative rotation occurs, it functions as a hydraulic pump and generates hydraulic pressure, and by blocking the discharge port of the vane pump 20 (corresponding to the suction and discharge port at the tip in the direction of relative rotation), the static pressure is removed through oil. Rotor 20a and cam ring 20 due to pressure
b becomes like a rigid body and rotates together. Therefore, two pump chambers are formed at diagonal positions in the cam ring 20b, and four suction/discharge ports 22, 2 are formed, which serve as suction ports when located on the base end side in the rotational direction, and serve as discharge ports when located on the distal end side.
3, 24, and 25 are formed at approximately diagonal positions, and the suction and discharge ports 22 and 24 and the suction and discharge ports 23 and 25, which are located diagonally and have the same function, respectively, keep oil on the stationary side even when the cam ring 20b is rotating. The first oil $
26 and the second oil passage 27 are in communication. Also, a check valve 28,
An oil reservoir 30 is communicated with the oil reservoir 30 through the oil reservoir 29, and there are two opposing check valves 31 that allow only flow from the oil reservoir 30 and allow only flow out between the first oil passage 26 and the second oil passage 27. The oil passages 26 and 27 communicate with each other via the angle 32, and an intermediate portion between the two check valves 31' and 32 communicates with a relief valve 33. A communication path 35 between the oil reservoir 30 and the intermediate portions up to the two check valves 28 and 29 is provided at the intermediate portion of the relief valve 33 on the spring 34 side.
A piston 36 is provided to control the opening pressure of the U IJ-F valve 33, and the other end of the piston 36 is configured to act on a control hydraulic pressure that is duty-controlled. A solenoid valve 38 controls the constant pressure oil pressure supplied through the orifice 37 for duty control, and this solenoid valve 38 is electrically connected to a computer 39, and the engine rotation speed input to the computer is controlled by a solenoid valve 38.
The hydraulic pressure acting on the other end of the piston 36 is controlled by the rotation speed of the first rotation shaft 11, the rotation speed of the second rotation shaft 14, the throttle opening, the brake inch, and the steering angle. Note that the constant pressure oil pressure supplied through the orifice 37 is applied to the transmission 2.
In the case of an automatic transmission, the control hydraulic pressure may be used, and in the case of a manual transmission, this hydraulic pressure is secured by installing an oil pump or the like.
このような油圧回路21とすることでロータ20aとカ
ムリング20bとの相対回転方向によらず常に吐出圧が
リリーフ弁33の弁体に作用し、オイル溜30が吸込口
と連通ずることとなる。With such a hydraulic circuit 21, the discharge pressure always acts on the valve body of the relief valve 33 regardless of the relative rotational direction between the rotor 20a and the cam ring 20b, and the oil reservoir 30 communicates with the suction port.
かような4輪駆動用駆動連結装置による駆動状態を、ま
ずリリーフ弁33の開放圧力をスプリング34による設
定力のみで一定とした場合について説明する。The driving state of such a four-wheel drive drive coupling device will first be described in the case where the opening pressure of the relief valve 33 is kept constant only by the setting force of the spring 34.
通常の直進状態では前輪9と後輪16のタイヤの有効半
径が同一でタイヤのスリップ回転速度が少ないことから
4輪駆動用駆動連結装置13の第1回転軸11と第2回
転軸14との間に回転速度差が生じない。したがってベ
ーンポンプ20では油圧の発生はなく、前輪9に駆動力
が伝達されず後輪16のみによる後2輪駆動となる。In normal straight-ahead driving conditions, the effective radii of the tires of the front wheels 9 and rear wheels 16 are the same, and the slip rotational speed of the tires is small. There is no difference in rotational speed between them. Therefore, the vane pump 20 does not generate oil pressure, and no driving force is transmitted to the front wheels 9, resulting in two-wheel drive using only the rear wheels 16.
しかし、直進状態でも加速時のように太きなスリップが
なくても通常後輪16が約1%以内でスリップするので
、これによる回転速度差が第1回転軸11と第2回転軸
14との間に生じると、ベーンポンプ20が機能してこ
のこの回転速度差に応じた油圧が発生し、ロータ20a
とカムリング20bとが一体となって回転し、この油圧
とベーンの受圧面積とに対応した駆動力が前輪9に伝達
されて4輪駆動状態となる。この場合のベーンポンプ2
0における油の流れは、第3図ta+に示すように、相
対的にロータ20aが回転することとなり、吸込吐出口
23,25が吸込口となってチェック弁29を介してオ
イル溜30から油が吸込まれる一方、吸込吐出口22.
24が吐出口となってチェック弁28.32を閉じると
同時にチェック弁31を介してリリーフ弁33に導びか
れる。尚、図中実線矢印が吐出油の流れを、破線矢印が
吸込油の流れをそれぞれ示す。However, even when driving straight, the rear wheels 16 usually slip within about 1% even if there is no large slip like during acceleration, so the difference in rotational speed due to this occurs between the first rotating shaft 11 and the second rotating shaft 14. When this occurs, the vane pump 20 functions to generate oil pressure corresponding to this rotational speed difference, and the rotor 20a
and the cam ring 20b rotate together, and a driving force corresponding to this oil pressure and the pressure-receiving area of the vane is transmitted to the front wheels 9, resulting in a four-wheel drive state. Vane pump 2 in this case
As shown in FIG. 3 ta+, the flow of oil at 0 is caused by the relative rotation of the rotor 20a, and the suction and discharge ports 23 and 25 serve as suction ports, and oil is drawn from the oil reservoir 30 via the check valve 29. is sucked in, while the suction and discharge ports 22.
24 serves as a discharge port, and at the same time as the check valves 28 and 32 are closed, the air is guided to the relief valve 33 via the check valve 31. In the figure, solid line arrows indicate the flow of discharged oil, and broken line arrows indicate the flow of suction oil.
次に、前輪9の回転速度に比へ後輪16の回転速度が非
常に大きくなる場合、例えば雪路−Cの後輪のスリップ
時や急加速時あるいはブレーキ時の前輪がロック気味と
なる場合には、4輪駆動用駆動連結装置13の第1回転
軸11と第2回転軸14との間の回転速度差が非常に大
きくなり、ベーンポンプ20で第3図[alに示す状態
の油の流れが生じて大きな油圧が発生するが、所定値を
越えると、リリーフ弁33がスプリング34に抗して開
き吐出圧がほぼ一定に制御され、前輪9に一定の吐出圧
に対応した一定の駆動力が伝達された4輪駆動状態とな
る。この結果、後輪16の回転速度が減少すると共に前
輪9の回転速度が増大することとなり回転速度差を縮少
する(ノンスリップデフと同一機能)ようになり、後輪
16のスリップ状態では前輪9への駆動トルクが増大さ
れて走行不能となることを回避できると共に前輪9がロ
ック気味の場合には、後輪16のブレーキトルクを増大
して前輪9のロックを防止する。Next, when the rotational speed of the rear wheels 16 becomes very large compared to the rotational speed of the front wheels 9, for example, when the rear wheels on a snowy road slip, or when the front wheels tend to lock up during sudden acceleration or braking, , the difference in rotational speed between the first rotating shaft 11 and the second rotating shaft 14 of the four-wheel drive drive coupling device 13 becomes very large, and the vane pump 20 pumps the oil in the state shown in FIG. The flow generates a large hydraulic pressure, but when it exceeds a predetermined value, the relief valve 33 opens against the spring 34 and the discharge pressure is controlled to be almost constant, providing the front wheels 9 with a constant drive corresponding to the constant discharge pressure. It becomes a four-wheel drive state where power is transmitted. As a result, the rotational speed of the rear wheels 16 decreases and the rotational speed of the front wheels 9 increases, reducing the rotational speed difference (same function as a non-slip differential). In addition, when the front wheels 9 tend to lock, the brake torque of the rear wheels 16 is increased to prevent the front wheels 9 from locking.
ここで、本発明と異なり、エンジンにより前輪を直接的
に駆動してこの前輪9動力を油圧ポンプを介して後輪に
配分伝達する車両、所謂フロントドライブ車をベースと
した場合、特にラリ−等の競技用4輪駆動車にあっては
次のような不具合が生ずる。すなわち、急加速時には荷
重移動が生じて車両重量配分が前輪に較べて後輪の方が
大きくなると共に、後輪への伝達トルク量は油圧ポンプ
のトルク容量で制限されることから、エンジントルクの
大きい急加速時には前輪の駆動負担分が後輪より大きく
なってしまうために、前輪がスリップしてしまいエンジ
ン動力を有効に活用できない。また、これを解決するた
め油圧ポンプのトルク容量を増大させる場合には、油圧
ポンプが大型となると共に重量、コストの面で不利とな
る。Here, unlike the present invention, when the vehicle is based on a so-called front drive vehicle, which is a vehicle in which the front wheels are directly driven by the engine and the power is distributed and transmitted to the rear wheels via a hydraulic pump, it is particularly suitable for rallying, etc. The following problems occur in 4-wheel drive vehicles for competition. In other words, during sudden acceleration, load transfer occurs and the vehicle weight distribution becomes larger on the rear wheels than on the front wheels, and the amount of torque transmitted to the rear wheels is limited by the torque capacity of the hydraulic pump, so the engine torque During large sudden accelerations, the front wheels have a greater drive load than the rear wheels, causing the front wheels to slip and making it impossible to utilize engine power effectively. Furthermore, if the torque capacity of the hydraulic pump is increased to solve this problem, the hydraulic pump becomes large and disadvantageous in terms of weight and cost.
しかしながら、本発明ではエンジンにより後輪を直接的
に駆動してこの後輪駆動を油圧ポンプを介して前輪に配
分伝達する車両、所謂リヤドライブ車をベースとしだも
のであるので、上記不具合が無いばかりか、急加速時に
車両重量配分が大きい後輪に比較的大きい駆動力がかか
るため、エンジン動力が有効に活用される。また、スリ
ップが生ずる後輪のグリップ限界を越えた分のエンジン
トルクだけを油圧ポンプにより前輪に伝達するので油圧
ポンプのトルク容量は小さくて済む。上記効果の実利結
果を第4図に示す。すなわち、本実施例と同様にエンジ
ンを車両前部に配置して後輪を直接的に駆動する所謂F
R車をベースとした4輪駆動車と、エンジンを車両前部
に配置して前輪を直接的に駆動する所謂FF車をベース
とした4輪駆動車との比較において、FR車ベースのも
のにおけろ一途での最大、音引力発生時の後輪グリップ
限界とFF車ベースのものにおける一速ての最大牽引力
発生時の前輪グリップ限界との間には図示の如き差があ
るため、FR車ベースのものの油圧ポンプ容量はFF車
ベースのものに較へて小さくて済む。However, the present invention is based on a so-called rear-drive vehicle, which is a vehicle that directly drives the rear wheels with an engine and distributes this rear-wheel drive to the front wheels via a hydraulic pump, so there is no problem described above. Not only that, during sudden acceleration, a relatively large amount of driving force is applied to the rear wheels, where the weight distribution of the vehicle is large, so engine power is effectively utilized. Further, since only the engine torque exceeding the grip limit of the rear wheels, where slipping occurs, is transmitted to the front wheels by the hydraulic pump, the torque capacity of the hydraulic pump can be small. Figure 4 shows the practical results of the above effects. That is, similar to this embodiment, the so-called F engine is arranged in the front of the vehicle and directly drives the rear wheels.
In comparing a 4-wheel drive vehicle based on an R vehicle and a 4-wheel drive vehicle based on a so-called front-wheel drive vehicle, in which the engine is placed at the front of the vehicle and directly drives the front wheels, it is compared to a 4-wheel drive vehicle based on an FR vehicle. There is a difference as shown between the rear wheel grip limit when the maximum traction force is generated when the car is fully focused, and the front wheel grip limit when the maximum traction force is generated in first gear based on an FF car. The hydraulic pump capacity of the base model is smaller than that of the FF vehicle base model.
一方、後輪16の回転速度に比へ前輪90回転速度が非
常に大きくなる場合、例えば後輪16のブレーキ状態で
ロック気味となる場合では、4輪駆動用駆動連結装置1
3の第1回転軸11と第2回転軸14との間に上述とは
逆方向に非常に大きな回転速度差が生じ、ベーンポンプ
20では、第3図fblに示すような油の流れが生じ、
吸込吐出口22,24が吸込口となり、チェック弁28
を介してオイル溜30から油が吸込まれる一方、吸込吐
出口23.25が吐出口となり第2油路27を経てチェ
ック弁29.31を閉じてチェック弁32からリリーフ
弁33に導ひかれ大きな油圧が作用するが、この油圧も
リリーフ弁33により一定に保持され一定の駆動力か前
輪9に伝達されて4輪駆動状態となる。この結果、前輪
9へのブレーキトルクを増大して後輪16のロックを防
止する。On the other hand, when the rotational speed of the front wheels 90 becomes very large compared to the rotational speed of the rear wheels 16, for example, when the rear wheels 16 are slightly locked in the braking state, the four-wheel drive drive coupling device 1
A very large rotational speed difference occurs between the first rotating shaft 11 and the second rotating shaft 14 of No. 3 in the opposite direction to that described above, and in the vane pump 20, oil flows as shown in FIG.
The suction and discharge ports 22 and 24 serve as suction ports, and the check valve 28
While oil is sucked in from the oil reservoir 30 through the oil reservoir 30, the suction/discharge port 23.25 becomes a discharge port, passes through the second oil passage 27, closes the check valve 29.31, and is guided from the check valve 32 to the relief valve 33, causing a large Hydraulic pressure is applied, but this oil pressure is also held constant by the relief valve 33, and a constant driving force is transmitted to the front wheels 9, resulting in a four-wheel drive state. As a result, the brake torque to the front wheels 9 is increased to prevent the rear wheels 16 from locking.
また、通常の旋回走11時には、前輪90回転速度が後
輪16の回転速度よりわずかに太き(なるため、後輪1
6にブレーキトルクが作用し、前部9に若干の駆動トル
クが作用した4輪駆動状態となって旋回走行がなされる
。Also, at 11 o'clock in normal turning, the front wheel 90 rotation speed is slightly thicker than the rear wheel 16 rotation speed.
A four-wheel drive state is established in which brake torque is applied to the front part 6 and a slight driving torque is applied to the front part 9, and cornering is performed.
ここで、車輪に駆動力を与えた状態での旋回走行におい
て、フロントドライブ車をベースとした4稲駆動車、特
にラリ−等の競技用4輪駆動車にあっては次のような不
具合が生ずる。すなわち、フロントドライブ車をベース
としたものにあっては、油圧ポンプのトルク容量の制限
から、後輪に較へて前輪の方が駆動力配分が太き(なる
が、第5図に示すように操舵輪である前輪のタイヤグリ
ップ力Tが駆動力りとして多くの部分が消費され旋回時
の還心力に対抗するコーナリングフォース、Cが小さく
なってしまうため、操舵輪のグリシプカ低下により操舵
性能が悪化してしまう。When turning with driving force applied to the wheels, four-wheel drive vehicles based on front drive vehicles, especially four-wheel drive vehicles for competitions such as rallies, have the following problems. arise. In other words, in a vehicle based on a front drive vehicle, due to the limited torque capacity of the hydraulic pump, the front wheels have a wider distribution of driving force than the rear wheels (as shown in Figure 5). In this case, a large portion of the tire grip force T of the front wheels, which are the steered wheels, is consumed as driving force, and the cornering force, C, which counters the centering force during turning, becomes small, resulting in a decrease in the grip strength of the steered wheels, resulting in a decrease in steering performance. It gets worse.
しかしながら、本発明ではリヤドライブ車をベースとし
たものであるので上記不具合が無く、車輪に大きな駆動
力をかけた高速旋回が良好になされるばかりか、競技走
行に際して有効な手段となる所謂スピンクーン、すなわ
ち、故意に過大なエンジントルクをかけて後輪を空転ス
リップさせながら前輪を支点として急旋回することも可
能となる。However, since the present invention is based on a rear-drive vehicle, it does not have the above-mentioned problems, and not only can it perform good high-speed turns by applying a large driving force to the wheels, but also has a so-called spin coon, which is an effective means for competitive driving. In other words, it is possible to make a sharp turn using the front wheels as a fulcrum while intentionally applying excessive engine torque to cause the rear wheels to spin and slip.
かように4輪駆動用駆動連結装置13て吐出圧をリリー
フ弁33により一定値以上とならないように制御するこ
とで、従来パートタイム4輪駆動車で4輪駆動状態を必
要とする場合には運転者の操作が必要であったものが、
自動的に4輪駆動と2輪駆動との切換が行なわれると共
に前輪と後輪との回転速度差に応じた駆動力による4輪
駆動状態が得られる。In this way, by controlling the discharge pressure of the four-wheel drive drive coupling device 13 using the relief valve 33 so that it does not exceed a certain value, when a four-wheel drive state is required in a conventional part-time four-wheel drive vehicle, Things that required operation by the driver,
Switching between four-wheel drive and two-wheel drive is automatically performed, and a four-wheel drive state is obtained with a driving force corresponding to the rotational speed difference between the front wheels and the rear wheels.
また、フルタイム4輪駆動車では必ず装備されていたセ
ンタデフに比べ小型コンパクト化をはかることができる
と共に重量軽減もはかれ、コスト低減ともなる。In addition, it can be made smaller and more compact than the center differential that is always installed in full-time four-wheel drive vehicles, and it also reduces weight and costs.
次に、リリーフ弁33の開放圧力を、ピストン36の下
端側に作用する油圧をデユーティ刷部することで、調整
する場合には、ベーンポンプ20の吐出圧を調整制御で
き、前輪9への駆動力を調整することができる。Next, when adjusting the opening pressure of the relief valve 33 by applying the hydraulic pressure acting on the lower end side of the piston 36 to the duty press, the discharge pressure of the vane pump 20 can be adjusted and controlled, and the driving force to the front wheels 9 can be adjusted. can be adjusted.
したがって、エンジン1が高負荷となるほどこれをスロ
ットル開度信号により検出してベーンポンプ20の吐出
圧を高めるよう制御すれば、4輪駆動状態で前輪9へ伝
達される駆動力の伝達量を増大して走行するようにでき
る。Therefore, as the load on the engine 1 increases, if this is detected by the throttle opening signal and the discharge pressure of the vane pump 20 is controlled to increase, the amount of driving force transmitted to the front wheels 9 in the four-wheel drive state can be increased. It can be made to run with ease.
また、フットブレーキの操作状態をブレーキスイッチて
検出しONとなった場合にベーンポンプ20の吐出圧を
大とするように制御することて前輪9および後輪16が
ロックすることを防止して制御距離を短かくし、しかも
安定した制動状態を得ろことができる。In addition, the operation state of the foot brake is detected by the brake switch, and when the foot brake is turned on, the discharge pressure of the vane pump 20 is increased to prevent the front wheels 9 and the rear wheels 16 from locking, thereby controlling the distance. It is possible to shorten the time and obtain a stable braking condition.
さらに、操舵角を検出し、大きくなればなるほど吐出圧
を低くするよう制御することで、クイ)・コーナブレー
キング現象を回避してスムースに旋回走行することが可
能となる。また、コンピュータに入力される各検出信号
によりエンジンの回転数や車両の速度に応じてベーンポ
ンプ20の吐出圧を調整制御して安定した走行状態とす
ることもできる。Furthermore, by detecting the steering angle and controlling the discharge pressure so that the larger the steering angle becomes, the lower the discharge pressure becomes, it becomes possible to avoid corner braking phenomena and smoothly turn the vehicle. Further, the discharge pressure of the vane pump 20 can be adjusted and controlled according to the engine rotational speed and vehicle speed using each detection signal inputted to the computer to maintain a stable running condition.
尚、上記実施例では4輪駆動用駆動連結装置13の油圧
ポンプとしてベーンポンプを用いしかも吸込吐出口が4
個の平衡形のもので説明したが、駆動力の伝達量によっ
ては吸込吐出口が2個の不平衡形ベーンポンプとするこ
とも可能であり、他の形式の油圧ポンプ、例えば内接ギ
ヤポンプ、トロコイドポンプ。In the above embodiment, a vane pump is used as the hydraulic pump of the four-wheel drive drive coupling device 13, and there are four suction and discharge ports.
Although the explanation has been made using a balanced type vane pump with two suction and discharge ports depending on the amount of driving force transmitted, it is also possible to use an unbalanced vane pump with two suction and discharge ports, and other types of hydraulic pumps such as internal gear pumps and trochoid pumps can also be used. pump.
ハイポサイクロイドポンプ、アホンヤルおよびラジアル
プランジャポンプ等のものも使用でき、回転速度差に応
じて吐出油量が変化する形式のものであれば良い。また
、エンジンの配置位置は車両前部としたものに限られず
、リヤドライブ車をベースとするものであればエンジン
は車両中央部、車両後部等その配置位置はどこでも良い
。さらに、変巡樵も手動式、自動式のいずれであっても
良<、リリーフ弁の制御も油圧を用いるデユーティ制御
に限らず機械式に制御するもの等であっても良い。Hypocycloid pumps, ahonyal pumps, radial plunger pumps, and the like can also be used, as long as the amount of oil discharged changes according to the difference in rotational speed. Furthermore, the engine is not limited to the front part of the vehicle; if the vehicle is based on a rear-drive vehicle, the engine may be located anywhere, such as in the center of the vehicle or at the rear of the vehicle. Furthermore, the variable logger may be either manual or automatic, and control of the relief valve is not limited to duty control using hydraulic pressure, but may be mechanically controlled.
尚、第6図に示すグラフは本発明に用いる油圧ポンプの
伝達トルクと公知の可変粘性クラッチの伝達トルクとの
比較を表すものである。この可変粘性クラッチは、英国
のHarryFerguson社製のもので、温度に応
じて粘度が変化するシリコン油により2軸間のトルク伝
達を行うものである。この可変粘性クラッチと油圧ポン
プとを略同し大きさのものを用いて比較すると、図示の
ように油圧ポンプの方が少ない差動回転速度で4輪駆動
状態が得られる。The graph shown in FIG. 6 shows a comparison between the transmission torque of the hydraulic pump used in the present invention and the transmission torque of a known variable viscosity clutch. This variable viscosity clutch is manufactured by Harry Ferguson in the UK, and transmits torque between two shafts using silicone oil whose viscosity changes depending on temperature. When this variable viscosity clutch and a hydraulic pump are compared using ones that are approximately the same size, the hydraulic pump provides a four-wheel drive state with a lower differential rotational speed, as shown in the figure.
〈発明の効果〉
本発明によれば、フロントドライブ車をペースとして、
前輪に駆動力を伝達する第1回転軸と後輪に駆動力を伝
達する第2回転軸とをこれらの回転速度差に応じて駆動
され且つ回転速度差に応じた油量を吐出する油圧ポンプ
を介して連結し、その静的油圧により駆動力を伝達して
4輪駆動状態を得るので、バートタイム4輪駆動車のク
イ)・コーナブレーキング現象などの不具合や運転操作
の炬雑さを解消てきると共にフルタイム4輪駆動車に従
来装備されたセンタデフに比へ小型・軽量とすることが
でき、しかも構造も簡単で安価となる。<Effects of the Invention> According to the present invention, a front drive car is used as a pace,
A hydraulic pump that drives a first rotary shaft that transmits driving force to the front wheels and a second rotary shaft that transmits the driving force to the rear wheels according to the rotational speed difference between them, and discharges an amount of oil according to the rotational speed difference. Since the static hydraulic pressure is used to transmit the driving force and obtain a four-wheel drive state, it eliminates problems such as corner braking phenomena and sloppy driving operations of 4-wheel drive vehicles. In addition to this, it can be made smaller and lighter than the center differential conventionally equipped on full-time four-wheel drive vehicles, and the structure is simple and inexpensive.
更に、後輪側への駆動力を油圧ポンプを介して前輪側へ
配分するようにしているため、駆動力が油圧ポンプのト
ルク容量で制限される前輪側に比して後輪側の方が駆動
力配分が大きくなり、前輪に比して後輪の方が車両重量
配分が大きくなる急加速時において優れた加速性能を得
ることができると共に、車輪に駆動力を与えた状態での
旋回時において殴れた燥舵性能を得ることができる。Furthermore, because the driving force for the rear wheels is distributed to the front wheels via the hydraulic pump, the driving force for the rear wheels is stronger than for the front wheels, where the driving force is limited by the torque capacity of the hydraulic pump. The drive force distribution is large, and the vehicle weight distribution is greater in the rear wheels than in the front wheels, making it possible to obtain excellent acceleration performance during sudden acceleration, as well as when turning with drive force applied to the wheels. It is possible to obtain outstanding dry rudder performance.
第1図〜第3図は本発明の4輪駆動用駆動連結装置の一
実施例にかかり、第1図は概略構成図、第2図は詳細な
断面図、第3図fat (blはそれぞれ油の流れの説
明図、第4図はFRベース車とFFベース車との牽引力
を比較したグラフ、第5図は前輪タイヤグリップ力と駆
動力、コーナリングフォースとの関係を表す説明図、第
6図は油圧ポンプと可変粘性クラッチとの伝達トルクを
比較したグラフである。
図 面 中、
1はエンジン、
2は変速機、
3は出力軸、
9は前輪、
11は第1回転軸、
13は4輪駆動用駆動連結装置、
14は第2回転軸、
16は後輪、
20はベーンポンプである。FIGS. 1 to 3 show an embodiment of the four-wheel drive drive coupling device of the present invention, in which FIG. 1 is a schematic configuration diagram, FIG. 2 is a detailed sectional view, and FIG. An explanatory diagram of oil flow. Figure 4 is a graph comparing the traction forces of FR-based and FF-based vehicles. Figure 5 is an explanatory diagram showing the relationship between front tire grip force, driving force, and cornering force. The figure is a graph comparing the transmission torque between a hydraulic pump and a variable viscosity clutch.In the figure, 1 is the engine, 2 is the transmission, 3 is the output shaft, 9 is the front wheel, 11 is the first rotating shaft, 13 is the A drive coupling device for four-wheel drive, 14 is a second rotating shaft, 16 is a rear wheel, and 20 is a vane pump.
Claims (1)
達する第2回転軸とをこれら第1回転軸と第2回転軸と
の回転速度差によって駆動されると共に回転速度差に応
じた油量を吐出する油圧ポンプを介して連結する一方、
前記後輪はエンジン動力により直接駆動されるよう前記
第2回転軸にエンジン動力の出力軸を連結したことを特
徴とする4輪駆動用駆動連結装置。A first rotating shaft that transmits driving force to the front wheels and a second rotating shaft that transmits driving force to the rear wheels are driven by the rotational speed difference between the first rotating shaft and the second rotating shaft, and While connected via a hydraulic pump that discharges the appropriate amount of oil,
A drive coupling device for four-wheel drive, characterized in that an output shaft of the engine power is connected to the second rotation shaft so that the rear wheels are directly driven by the engine power.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20794984A JPS6189125A (en) | 1984-10-05 | 1984-10-05 | Drive coupling device for four-wheel drive |
FR8417165A FR2554768B1 (en) | 1983-11-11 | 1984-11-09 | POWER TRANSMISSION DEVICE FOR A VEHICLE |
DE19843441076 DE3441076A1 (en) | 1983-11-11 | 1984-11-09 | Power transmission device for four-wheel drive motor vehicles |
US06/670,903 US4676336A (en) | 1983-11-11 | 1984-11-13 | Power transmission apparatus for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20794984A JPS6189125A (en) | 1984-10-05 | 1984-10-05 | Drive coupling device for four-wheel drive |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6189125A true JPS6189125A (en) | 1986-05-07 |
Family
ID=16548203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20794984A Pending JPS6189125A (en) | 1983-11-11 | 1984-10-05 | Drive coupling device for four-wheel drive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6189125A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4950626A (en) * | 1973-06-21 | 1974-05-16 |
-
1984
- 1984-10-05 JP JP20794984A patent/JPS6189125A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4950626A (en) * | 1973-06-21 | 1974-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4727966A (en) | Differential with differential motion limiting mechanism | |
US4676336A (en) | Power transmission apparatus for vehicle | |
JPS60252026A (en) | Transfer clutch apparatus for 4-wheel driving car | |
JPS60116529A (en) | Driving-coupling device for four-wheel driving | |
JPH038499Y2 (en) | ||
JPS6189125A (en) | Drive coupling device for four-wheel drive | |
JPS60116526A (en) | Driving-coupling device for four-wheel driving | |
KR890001336B1 (en) | Differential with differential motion limiting mechanism | |
JPS60104426A (en) | Driving and coupling device for four-wheel drive | |
JPH0139226Y2 (en) | ||
JPH038498Y2 (en) | ||
JPH0567817B2 (en) | ||
JPH0215699Y2 (en) | ||
JPS60116525A (en) | Driving-coupling device for four-wheel driving | |
JPH0215698Y2 (en) | ||
KR890000272B1 (en) | Power transmission system for vehicles | |
JPH0364326B2 (en) | ||
JPH0118418Y2 (en) | ||
JPH0511060Y2 (en) | ||
JPS6361632A (en) | All-wheel-drive coupling device | |
JPS647895B2 (en) | ||
JPH0610229Y2 (en) | Torque transmission device for four-wheel drive vehicle | |
JPS61102326A (en) | Vehicle power transmission device | |
JPH0440977Y2 (en) | ||
JPS60176825A (en) | Drive coupling device for four wheels drive vehicle |