JPS6188988A - Production of superplastic aluminum alloy having excellent corrosion resistance - Google Patents

Production of superplastic aluminum alloy having excellent corrosion resistance

Info

Publication number
JPS6188988A
JPS6188988A JP21079784A JP21079784A JPS6188988A JP S6188988 A JPS6188988 A JP S6188988A JP 21079784 A JP21079784 A JP 21079784A JP 21079784 A JP21079784 A JP 21079784A JP S6188988 A JPS6188988 A JP S6188988A
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
aluminum alloy
temperature
excellent corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21079784A
Other languages
Japanese (ja)
Inventor
Mitsuo Hino
光雄 日野
Takehiko Eto
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21079784A priority Critical patent/JPS6188988A/en
Publication of JPS6188988A publication Critical patent/JPS6188988A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a superplastic Al alloy having excellent corrosion resistance by using a specifically composed Al-Cu alloy as a core material and cladding the same with specifically composed pure Al as a facing material then subjecting the clad material to cold rolling. CONSTITUTION:The Al-Cu alloy which contains Cu at specific %, contains further 1 or >=2 kinds selected from specific % Mg, Si, Mn, Cr, Zr, V and Ti and consists of the balance Al and impurities is used as the core material. The pure Al which contains 1 or >=2 kinds selected from specific % Cu, Zn, Mg, Mn, Cr, Zr and Ti and consists of the balance Al and impurities is used as the facing material. Such core material and facing material are subjected to hot cladding rolling to form the cladding material which is then subjected to one or two stages of heating and holding at a specific temp. The clad material is cooled at a specific cooling rate and is subjected to at least >=30% cold rolling or >=1 times of 20-60% cold rolling.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は耐蝕性の優れた超塑性アルミニウム合金の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for producing a superplastic aluminum alloy having excellent corrosion resistance.

本発明に係る耐蝕性の優れたアルミニウム合金の製造方
法において、超塑性とは、ある外的条件の下で材料がく
びれ(neckinH)なしに数tj・−数丁・%の巨
大な伸びを生じる現象であり、恒温変態を利用した変態
超塑性と全細粒結晶材料で見られる微細粒超塑性(fM
造超超塑性とに大別され、本発明は後者の微細粒超塑性
材料の製造方法であり、この微細粒超塑性を起させるた
めには、一般にその材料の結晶粒径を微細に制御するこ
とが必須であり、本発明はこのような@細粒を材料に付
与する耐蝕性の優れた屈塑性アルミニウム合金の製造方
法に関するものである。
In the method for producing an aluminum alloy with excellent corrosion resistance according to the present invention, superplasticity means that under certain external conditions, the material undergoes a huge elongation of several tens per cent without necking. transformation superplasticity using isothermal transformation and fine-grained superplasticity (fM) observed in all fine-grained crystal materials.
The present invention is a method for producing the latter type of fine-grained superplastic material, and in order to induce this fine-grained superplasticity, generally the crystal grain size of the material is finely controlled. This is essential, and the present invention relates to a method for producing a flexible aluminum alloy with excellent corrosion resistance by imparting such @ fine grains to the material.

[従来技術] 一般に、耐蝕性の優れrこAl−Cu系の高強度アルミ
ニウム合金は、芯材(鋳yX)を均質化処理した後、熱
開圧延時に皮材を両面或いは片面に合せておいて、圧延
時に接着させて合せ材(クラ7ド材)とし、冷間圧延を
行なってから、溶体化処理、時効処理が施されて所定の
製品とされる。この場合、Al−Cu系合金の芯材には
、99.3wt%以上の純Alが使用されている。
[Prior art] In general, high-strength Al-Cu-based aluminum alloys with excellent corrosion resistance are manufactured by homogenizing the core material (casting material) and then applying the skin material to both sides or one side during hot open rolling. Then, they are bonded together during rolling to form a laminated material (clad material), which is cold rolled and then subjected to solution treatment and aging treatment to form a predetermined product. In this case, 99.3 wt % or more of pure Al is used for the core material of the Al-Cu alloy.

しかし、このような通常の工程で製造さ、れる材料では
、結晶粒は40〜100μ釦と大きくなってしまい、高
温において変形しても目的とする超塑性伸びは得ること
ができない。
However, in materials manufactured by such normal processes, the crystal grains are as large as 40 to 100 μm, and the desired superplastic elongation cannot be obtained even when deformed at high temperatures.

【発明が解決しようとする問題点1 本発明は上記に説明した従来の方法ではA I−CuJ
t合金を芯材とし、純Alを皮材とするクラ7ド材は、
通常の方法では超塑性伸びが得られなかったという問題
を解決したものであって、耐蝕性に優れた微細粒組織を
有する超塑性アルミニウム合金の製造方法を提供するも
のである。
[Problem to be solved by the invention 1] The present invention solves the problem that the conventional method described above
Clad 7d material is made of T-alloy as the core material and pure Al as the skin material.
The present invention solves the problem of not being able to obtain superplastic elongation using conventional methods, and provides a method for producing a superplastic aluminum alloy having a fine grain structure with excellent corrosion resistance.

[問題点を解決するための手段1 本発明に係る耐蝕性の優れた超塑性アルミニウム合金の
製造方法は、 (1)  Cu 2〜7wt% を含有し、さらに、 卜1g 2.5WL%以下、Si2wt%以下、Mn 
0005−2.’Oa+t%、Cr 0.05〜0.5
+nL%、Zr 0.05〜0.5+Ilt%、V 0
.05〜0.05〜0.5wt%、Ti 0115ut
%以下 の中から選んだ1種または2種以上 を含有し、残部Alおよび不純物からなるt\1−Cu
系合金を芯材とし、 Cu O0IOw1%以化、Zn O0lowt%以l
−1Mg 0.005〜0.5wt%以下、Mn010
5〜1.0wt%、Cr 0.05〜0.25111j
%、Zr 0.05−0.20wt%、TiQ、15w
t%以下 の中から選んだ1種または2!9以上 を含有し、残11tliA+および不純物からなる純A
lを皮材とし、 熱間合せ圧延により片面或いは両面のクラッド材とした
後、350〜550℃の温度iこおいて1段階或いは2
段階の加熱保持を行ない、31) ’C/ Hr以上の
冷却速度で冷却してか呟少なくと63()%以上の冷間
圧延を行なうが、或いは20〜60%の冷間圧延を1回
以上行なうことを特徴とする耐蝕性の優れた超塑性アル
ミニツム合金の製造Jj法を第1の発明とし、 (2)  Cu 2〜7+oL% を含有し、さらに、 M82.51111%以下、Si2+uL%以下、Mn
 0.05−2,kt%、Cr 0.05〜0.51a
1%、  ”7.r 0.05〜0.5++rt%、■
0.05−0.5iot%、Ti 0.15u+L%以
下 の中から選んだ1種または2神具1− を含有し、残部Alおよび不純物からなるA l−Cu
系合金を芯材とし、 Cu 0110+at%以下、Zn 0.lou+t%
以下、N(go、05wt%以下、Mn 0.05〜1
.0wt%、Cr 0.05〜0.25wt%、Zr 
0.05〜0.20wt%、Ti 0.I05〜0.5
wt%以下 の中から選んだ1種または2種以上 を含有し、残部Alおよび不純物からなる純Alを皮材
とし、 熱間合せ圧Xにより片面或いは両面のクラシト材とした
後、350〜55 f) ’Cの温度において1段階或
いは2段階の加熱保持を行ない、30℃/Hrの冷却速
度で冷却してから、少なくとも30%以上の冷開圧延を
行なうか、或いは20〜6096の冷間圧延を1回以上
行ない、次いで、100℃/Hr以上の速度で加熱し、
350〜5S11’Cの温度で加熱軟化処理を行なうニ
ーとを・1.−徴とセろ耐蝕性に優れた超塑性アルミニ
ウム合金の製造方法を@2の発明とする2つの発明より
なるものである。
[Means for Solving the Problems 1] The method for producing a superplastic aluminum alloy with excellent corrosion resistance according to the present invention includes: (1) containing 2 to 7 wt% of Cu, and further containing 2.5 WL% or less per gram; Si2wt% or less, Mn
0005-2. 'Oa+t%, Cr 0.05-0.5
+nL%, Zr 0.05-0.5+Ilt%, V 0
.. 05~0.05~0.5wt%, Ti 0115ut
t\1-Cu containing one or more selected from % or less, with the remainder consisting of Al and impurities.
Cu O0IOw 1% or more, Zn O0lowt% or more
-1Mg 0.005~0.5wt% or less, Mn010
5-1.0wt%, Cr 0.05-0.25111j
%, Zr 0.05-0.20wt%, TiQ, 15w
Pure A containing one selected from t% or less or 2!9 or more, and the remaining 11tliA+ and impurities
1 is used as a skin material, and after hot rolling to form a cladding material on one or both sides, it is subjected to one or two stages at a temperature of 350 to 550°C.
31) Cool at a cooling rate of 31)'C/Hr or more and cold-roll at least 63()% or more, or cold-roll from 20 to 60% once. The Jj method for producing a superplastic aluminum alloy with excellent corrosion resistance characterized by carrying out the above is the first invention, and (2) contains Cu 2 to 7+oL%, and further contains M82.51111% or less and Si2+uL% or less. , Mn
0.05-2, kt%, Cr 0.05-0.51a
1%, "7.r 0.05~0.5++rt%,■
Al-Cu containing one or two selected from 0.05-0.5iot%, Ti 0.15u+L% or less, and the remainder consisting of Al and impurities.
based alloy as the core material, Cu 0110+at% or less, Zn 0. lou+t%
Hereinafter, N (go, 05 wt% or less, Mn 0.05 to 1
.. 0wt%, Cr 0.05-0.25wt%, Zr
0.05-0.20wt%, Ti 0. I05~0.5
Pure Al containing one or more selected from wt% or less, with the remainder being Al and impurities, is used as a skin material, and after hot bonding pressure f) Perform one or two stages of heating and holding at a temperature of 'C, cool at a cooling rate of 30°C/Hr, and then cold open rolling by at least 30%, or cold open rolling at a temperature of 20 to 6096 Rolling is performed one or more times, and then heated at a rate of 100° C./Hr or more,
1. Heat softening treatment at a temperature of 350 to 5S11'C. This invention consists of two inventions, the invention of @2 being a method for producing a superplastic aluminum alloy with excellent corrosion resistance and corrosion resistance.

本発明に係る耐蝕性の優れた超塑性アルミニウム合金の
製造方法について以下詳細に説明する。
The method for producing a superplastic aluminum alloy with excellent corrosion resistance according to the present invention will be described in detail below.

先ず、本発明に係る耐蝕性の優れた超塑性アルミニウム
合金の製造方法(以下単に本発明に係る方法ということ
がある。)において、使用する芯材および皮材の含有成
分および成分割合について説明する。
First, in the method for manufacturing a superplastic aluminum alloy with excellent corrosion resistance according to the present invention (hereinafter simply referred to as the method according to the present invention), the components and component ratios of the core material and skin material used will be explained. .

(1)芯材のAl  C11系合金について、Cuは含
有量が2wt%未満では充分な強度が得られず、また、
7u+t%を越乏る含有量では伸びの低下が著しくなる
。よって、Cu含有■は2〜7II11%とする。
(1) For the core Al C11 alloy, if the Cu content is less than 2 wt%, sufficient strength cannot be obtained;
If the content exceeds 7u+t%, the elongation decreases significantly. Therefore, the Cu content (2) is set to 2-7II11%.

八f8は含有量が2.5+u19ざを越えろ含(i列で
lま伸びが著しく減少−rる。よって、lV1g含有量
は2.5wt%とする。
If the content of 8f8 exceeds 2.5+u19, the elongation will decrease significantly in the i row.Therefore, the lV1g content is set to 2.5wt%.

Slは含有量が2す七%を越えて含(イされると伸びが
著しく低ドする5よって、Si含(f贋は2駿1%以下
とする。
If the Si content exceeds 2.7%, the elongation will be significantly reduced5.Therefore, the Si content should be 2.1% or less.

Mn、Cr、Zr、Vは含有量が0.05−nj%木漏
では像細な結晶粒が得られず、また、Mn含有量が2.
0wt%、Cr、Zr、\゛が0.5+u+%t)よゾ
Ti0.I5―t%を夫々越えて含有されると鋳j1時
に充分固溶されず、巨大金属開化合物が生成して充分な
伸びが得られない。よって、Mn含f、l’jは0.0
5〜2.0IJL%、Cr含有量は0.05−0.5v
L%、Zr含イア量は0.05〜0.51%、■含有H
f 0.,05〜0.5u1%、T1含有y工は0.1
5111L%以下とする。
When the content of Mn, Cr, Zr, and V is 0.05-nj%, fine crystal grains cannot be obtained with wood leakage, and when the Mn content is 2.05-nj%.
0wt%, Cr, Zr, \゛ is 0.5+u+%t)yozoTi0. If each content exceeds I5-t%, it will not be sufficiently dissolved in solid solution during casting, and a giant metal open compound will be formed, making it impossible to obtain sufficient elongation. Therefore, Mn content f, l'j is 0.0
5-2.0IJL%, Cr content is 0.05-0.5v
L%, Zr content is 0.05-0.51%, ■ Contains H
f0. ,05~0.5u1%, T1 content is 0.1
5111L% or less.

(2)皮材としての純Alについて。(2) Regarding pure Al as a skin material.

微細な結晶粒を得るために、 Mn 0.05〜1.O
すL%、 Cr  0005〜0.25u+t%、 Z
r  0005〜0.20uL%、Ti 0.15+a
t%の中から選んだ1種または21m1;u上を含有さ
せ、そして、これら各含有元素の下限未満では微細な結
晶帥を得ることができず5.十な、上限を越える含有量
では晶出物の数が多くなり、充分な伸びを得ることがで
きない。
In order to obtain fine crystal grains, Mn is 0.05 to 1. O
L%, Cr 0005~0.25u+t%, Z
r 0005~0.20uL%, Ti 0.15+a
5. If the lower limit of each of these elements is less than the lower limit, fine crystal grains cannot be obtained.5. If the content exceeds the upper limit, the number of crystallized substances increases and sufficient elongation cannot be obtained.

また、Cu、Zn、Mgは不純物として含有されてくる
ものであり、かつ、耐蝕性を低ドさせるのでCu含有呈
は0.IOu+t%、Zn含a礒は0.IOu+j9狙
Mg含有呈は0.05a+t%以下とする。
In addition, Cu, Zn, and Mg are contained as impurities and reduce corrosion resistance, so the Cu content is 0. IOu+t%, Zn-containing soybean powder is 0. IOu+j9 target Mg content is 0.05a+t% or less.

なお、芯材中に不純物として含有されるFCおよびSi
は、夫々0,15a+L%を越えると鋳造aダに゛ト溶
性の晶出物が生成し、超塑性伸びが著しく I!3汗す
るようになるので、FeおよびSi含有量は0.15w
t%以下に規制する必要がある。
In addition, FC and Si contained as impurities in the core material
If the concentration exceeds 0.15a+L%, respectively, soluble crystallized substances will be formed in the casting a, and the superplastic elongation will be significant. 3.The Fe and Si content is 0.15w as it causes sweating.
It is necessary to regulate it to t% or less.

次に、本発明に係る耐蝕性の優れた超塑性アルミニウム
合金の製造方法における熱処理および加工について説明
する。
Next, heat treatment and processing in the method for manufacturing a superplastic aluminum alloy with excellent corrosion resistance according to the present invention will be explained.

Al  Cu系の所定の含有成分および成分割合のアル
ミニウム合金を通常のDC鋳造法に上り造塊し、内部に
丁均質に分布している主要元素の均質化および熱間圧延
性を向上させるために、通常1()0〜55C1℃の温
度にす3いて充分な時間均質化処理を行なって芯材とす
る。
In order to homogenize the main elements homogeneously distributed inside and improve hot rolling properties, an Al Cu-based aluminum alloy with a predetermined content and component ratio is ingot-formed using a normal DC casting method. A core material is obtained by homogenizing the material at a temperature of 1°C to 55°C for a sufficient period of time.

一力、所定の含有成分および成51割合の皮材は鋳造後
、400〜600℃の温度において均質化熱処理を行な
って、30()〜50+1 ’Cの71J度における熱
間圧延において所定の板厚に加工される。
After casting, the skin material with the specified ingredients and composition ratio is subjected to homogenization heat treatment at a temperature of 400 to 600°C, and then hot rolled at 71J degrees at 30() to 50+1'C to form a specified plate. Processed thickly.

次いで、皮材を芯材の片面或いは両面に重ねて400〜
550℃の温度に再加熱を行ない、300〜550℃の
温度で熱間合せ圧延を行なって所定の板厚まで加工し、
芯材および皮材を熱間7フイバー組織にすると同時にC
u、 Mg、 Zn、Si等の析出物およびZr、Cr
、Mn、Ti等の遷移元素の一部が組織中に部分析出さ
せる6さらに、この熱間加工後、好ましくは、30%以
上の冷開加工を行なうことにより、芯材および皮材がよ
り微細粒の材料が得られ超塑性伸びが大きくなる。
Next, layer the skin material on one or both sides of the core material and
It is reheated to a temperature of 550°C, hot rolled at a temperature of 300 to 550°C, and processed to a predetermined thickness.
At the same time, the core material and skin material are made into a hot 7-fiber structure.
Precipitates such as u, Mg, Zn, Si and Zr, Cr
, Mn, Ti, and other transition elements are partially released into the structure6.Furthermore, after this hot working, preferably 30% or more cold opening is performed to further improve the core material and skin material. A fine-grained material is obtained and the superplastic elongation is increased.

次に、この熱間加工後に350〜550℃の温度で0.
5〜20H「の加熱保持をしてか呟少なくとも、30℃
/Hr以上、特に、100℃/Hr以上の冷却速度で冷
却して固溶元素の強制固溶を図る。
Next, after this hot working, a temperature of 350 to 550°C is applied.
Maintain heating for 5 to 20 hours, at least 30℃
/Hr or higher, particularly at a cooling rate of 100° C./Hr or higher to force solid solution of the solid solution elements.

また、この熱処理を2、連加熱、2、速冷却が口■能な
連続焼鈍炉により400〜55 tl ’Cの温度で1
0sec〜10m1n開行なってもよく、この加熱保持
により芯材中のCu、Mg、Zn、Si等は固溶され、
一方、遷移元素のZr、 Cr、)iln等はAlと金
属間化合物、Z r A l h、CrJig+ALa
等を析出する。また、皮材中にはZrAl=、MnAl
−等が析出する。この1段加熱後の加熱速度が100℃
/Hr未満ではV&細粒が得られず伸びがでにくくなる
In addition, this heat treatment was performed at a temperature of 400 to 55 tl'C using a continuous annealing furnace capable of continuous heating, 2, and rapid cooling.
It may be opened for 0 sec to 10 ml, and Cu, Mg, Zn, Si, etc. in the core material are dissolved in solid solution by this heating and holding.
On the other hand, the transition elements Zr, Cr, )iln, etc. are intermetallic compounds with Al, Z r A l h, CrJig+ALa
etc. are precipitated. In addition, ZrAl=, MnAl=, MnAl in the skin material
- etc. are precipitated. The heating rate after this first stage heating is 100℃
If it is less than /Hr, V&fine grains cannot be obtained and elongation becomes difficult.

加熱保持を2段階で行なう場合、先ず、450〜s s
 o ’cの温度で0゜5〜1OHrの第1回の加熱保
持を行ない、続いて第2回の加熱保持温度まで冷却し、
350〜450℃の温度で0.5〜50Hrの第2回の
加熱保持を行ない、30℃/Hr以上の冷却速度で冷却
する。この加熱保持の温度が高い程時間は短時間でよい
When heating and holding is performed in two stages, first, 450 to s s
Perform the first heating and holding at a temperature of 0°C to 1OHr, then cool to the second heating and holding temperature,
A second heating and holding period is performed for 0.5 to 50 hours at a temperature of 350 to 450°C, and cooling is performed at a cooling rate of 30°C/Hr or more. The higher the temperature for this heating and holding, the shorter the time may be.

このような、2回の加熱保持において、第1回の加熱保
持により析出している溶質元素は、その大部分が固溶さ
れ、続く第2回の加熱保持により遷移元素のZr、Cr
、Mn等とノ\Iとの金属間化合物、ZrA l=、C
r2MR:+AL@等が析出する。
In such two heating and holding operations, most of the solute elements precipitated by the first heating and holding process are dissolved in solid solution, and the transition elements Zr and Cr are dissolved by the second heating and holding process.
, an intermetallic compound of Mn etc. and \I, ZrA l=, C
r2MR: +AL@ etc. are precipitated.

この2段階の加熱保持は、加熱保持を1回行なった場合
に比較して、遷移元素の析出形態が微細なことおよび若
干のCu%tVIg、 Zn、 Si等とA;との高温
時効析出物が形成されるために、加熱保持後の冷却速度
も30℃/Hrと遅くなってもよく、製造がより容易と
なり、かつ、冷間加工中に生成される転位の密度がより
高くなり、さらに、微細な結晶粒が生成され超塑性伸び
の大きい材料が得られる。
This two-stage heating and holding process is different from the case where the heating and holding process is performed once, because the precipitation form of transition elements is finer and some high temperature aging precipitates of Cu%tVIg, Zn, Si, etc. and A; Because of the formation of , a material with large superplastic elongation due to the formation of fine grains can be obtained.

この2段階加熱保持後の冷却速度は、3+)’C/Hr
未満では微細粒が得られにくくなる。
The cooling rate after this two-stage heating and holding is 3+)'C/Hr
If it is less than that, it becomes difficult to obtain fine grains.

このような加熱保持により、熱間ファイバー組織を形成
していた転位の下部組織は回復、再結晶により歪エネル
ギーが低減され、続く冷間加工で転位が導入され易くな
り、かつ、Zr、 Cr、λ1n等の析出粒子により、
次の冷開加工後の超塑性温度域における加熱によって、
材料中に生成される?!!111tb組織が保持されて
超塑性が得られる、冷却後、少なくとも30%以上の冷
間加工を行なうのであるが、30%未満の加工率では充
分微細な結晶粒が得られない。
By such heating and holding, the dislocation substructure that had formed the hot fiber structure is recovered, the strain energy is reduced by recrystallization, and dislocations are easily introduced in the subsequent cold working, and Zr, Cr, Due to precipitated particles such as λ1n,
By heating in the superplastic temperature range after the next cold opening process,
Is it generated in the material? ! ! After cooling, at least 30% or more cold working is performed to maintain the 111tb structure and obtain superplasticity, but sufficiently fine grains cannot be obtained at a working rate of less than 30%.

また、20〜60%の冷間加工とこれに続く3()0℃
以下の低温軟化焼鈍とを1回以上行なうこともでき、こ
の低温軟化焼鈍を導入することにより結晶粒はさらに微
細化される。
Also, 20-60% cold working followed by 3()0℃
The following low-temperature softening annealing can be performed one or more times, and by introducing this low-temperature softening annealing, the crystal grains are further refined.

このように、冷間加工された材料には高い歪エネルギー
を有する転位の下部組織が高密度に形成されている。
In this manner, a dislocation substructure having high strain energy is formed in the cold-worked material at a high density.

この材料を続けて、通常0゜5Ta+(Tmは材料の融
点(絶対温度))以上の拡散接合温度I&(アルミニウ
ム合金では400’C以上)に加熱すると、材料中の高
密度の転位組織を起点として新しい結晶粒が形成される
。この転位密度は高署;度である程徽細粒組織が得られ
、そして、−反古結晶が完了すると結晶粒界のエネルギ
ーを減少させるため転位が移動して結晶粒が粗大化し、
この粗大化した組織が超塑性変形を阻害することになる
When this material is subsequently heated to a diffusion bonding temperature I&(400'C or higher for aluminum alloys) which is normally 0°5Ta+ (Tm is the melting point (absolute temperature) of the material) or higher (400'C or higher for aluminum alloys), the high-density dislocation structure in the material is new crystal grains are formed as The higher the dislocation density is, the finer the grain structure is obtained, and when anti-old crystallization is completed, dislocations move to reduce the energy of the grain boundaries, and the grains become coarser.
This coarsened structure inhibits superplastic deformation.

従って、本発明に係る耐蝕fトの1ぐれた超φIJ1/
lアルミニウム合金の製造ノJ法における熱処理におい
ては、熱間加工後の1段階或いは2段階の加熱保持によ
り形成されたZ r A l +、Cr:Mg)Al1
n、MnAl1等の析出物の寸法と分布とを制御するこ
とにより、転位の移動を阻止して微細粒組織を保持して
いるのである。即ち、析出物寸法が小さすぎたり、析出
粒子間隔が太い過ぎると転位移動阻止効果が得られなり
1゜ また、本発明に係る耐蝕性の匿れた超塑性アルミニウム
合金の製造方法により製造された材料は、冷間加工した
ままの状態で超塑性の加工を行なってもよいが、冷開加
工後に、] 00’C/Hr以上の加熱速度で加熱し、
350〜550 ’Cの温度で軟化して、超塑性変形を
行なってもよい。
Therefore, the corrosion resistant f according to the present invention has a superior superφIJ1/
In the heat treatment in the J method of manufacturing aluminum alloys, Z r A l +, Cr:Mg)Al1 formed by one or two stages of heating and holding after hot working.
By controlling the size and distribution of precipitates such as n, MnAl1, etc., movement of dislocations is prevented and a fine grain structure is maintained. That is, if the size of the precipitates is too small or the distance between the precipitated particles is too wide, the effect of inhibiting dislocation movement cannot be obtained. The material may be subjected to superplastic processing in the cold-worked state, but after cold-opening, the material may be heated at a heating rate of 00'C/Hr or more,
It may be softened at a temperature of 350-550'C to undergo superplastic deformation.

[実施例1 本発明に係る耐蝕性の優れたMlvii性アルミニアル
ミニウム合金法について実施例を説明すよ実施例1 第1表に示す代表的なAl−Cu系合金芯材および純、
\1系の皮材とを11−暫し、第ンムに小Fシ!!造加
」二条性により最終板1!72 、5m11Iの合せ÷
((11面クり/ト率3%]を製造した。
[Example 1] Examples of the Mlvii aluminum alloy method with excellent corrosion resistance according to the present invention will be explained.Example 1 Representative Al-Cu alloy core materials shown in Table 1 and pure,
\11- for a while with the 1-series leather material, small F-shi in the second part! ! Due to the double-striped nature of the final board 1!72, 5m11I ÷
((11 sides hollowed out/total ratio 3%) was manufactured.

超塑性特性を第3&に示す。The superplastic properties are shown in 3&.

なお、比較材として通常の工程による材料について試験
を行なった。
In addition, as a comparative material, a test was conducted using a material produced by a normal process.

実施例2 実施例1の供試材B(板1!72.5mm1と、第1ノ
シのNo、I合金を通常の工程により2 、5 vnの
板材(クラッド率0%)とを用いて、耐蝕性の試験を実
施した。
Example 2 Using the sample material B of Example 1 (plate 1! 72.5 mm 1) and a plate material (cladding ratio 0%) of 2.5 vn of the No. I alloy of the first nozzle by a normal process, A corrosion resistance test was conducted.

結果を第4表に示す。The results are shown in Table 4.

この実施例1す(より実施例2から明らかなLつに、本
発明に係るi打憔性の筺れrこ超ヤ1性アルミニウム合
金の製造方法により製造されたヰ(料は、伸びは比較例
の略3倍程度であり、また、耐応力腐f!l!割れ、耐
粒界腐蝕性および耐剥離腐蝕性にも優れ、極めて耐蝕性
に優れていることがわかる。
This Example 1 (more clearly from Example 2) shows that the elongation of the aluminum alloy produced by the method for producing a highly malleable aluminum alloy according to the present invention is This is approximately three times as high as that of the comparative example, and it is also found to have excellent stress corrosion resistance, f!l! cracking resistance, intergranular corrosion resistance, and exfoliation corrosion resistance, indicating extremely excellent corrosion resistance.

[発明の効果1 以上説明したように、本発明に係る耐蝕性の優れたM塑
性アルミニウム合金の!遺方法は上記の構成を有してい
るものであるから、非常に伸びが大きく、かつ、優れた
耐蝕性を有するアルミニウム合金を製造することができ
るという効果を有しているものである。
[Effect of the invention 1 As explained above, the M plastic aluminum alloy with excellent corrosion resistance according to the present invention! Since the method has the above-mentioned structure, it has the effect of being able to produce an aluminum alloy with very high elongation and excellent corrosion resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)Cu2〜7wt% を含有し、さらに、 Mg2.5wt%以下、Si2.0wt%以下、Mn0
.05〜2.0wt%、Cr0.05〜0.5wt%、
Zr0.05〜0.5wt%、V0.05〜0.5wt
%、Ti0.15wt%以下 の中から選んだ1種または2種以上 を含有し、残部Alおよび不純物からなるAl−Cu系
合金を芯材とし、 Cu0.10wt%以下、Zn0.10wt%以下、M
g0.05wt%以下、Mn0.05〜1.0wt%、
Cr0.05〜0.25wt%、Zr0.05〜0.2
0wt%Ti0.15wt%以下 の中から選んだ1種または2種以上 を含有し、残部Alおよび不純物からなる純Al−を皮
材とし、 熱間合せ圧延により片面或いは両面のクラッド材とした
後、350〜550℃の温度において1段階或いは2段
階の加熱保持を行ない、30℃/Hr以上の冷却速度で
冷却してから、少なくとも30%以上の冷間圧延を行な
うか、或いは20〜60%の冷間圧延を1回以上行なう
ことを特徴とする耐蝕性の優れた超塑性アルミニウム合
金の製造方法。
(1) Contains Cu2-7wt%, and further contains Mg2.5wt% or less, Si2.0wt% or less, Mn0
.. 05-2.0wt%, Cr0.05-0.5wt%,
Zr0.05~0.5wt%, V0.05~0.5wt
%, Ti or less than 0.15 wt%, and the balance is Al and impurities. M
g0.05wt% or less, Mn0.05-1.0wt%,
Cr0.05~0.25wt%, Zr0.05~0.2
Pure Al- containing one or more selected from 0wt%Ti0.15wt% or less, the balance being Al and impurities, is used as a skin material, and after hot rolling to form a cladding material on one or both sides. , perform one or two stages of heating and holding at a temperature of 350 to 550°C, cool at a cooling rate of 30°C/Hr or more, and then cold-roll at least 30% or 20 to 60%. 1. A method for producing a superplastic aluminum alloy with excellent corrosion resistance, which comprises performing cold rolling one or more times.
(2)Cu2〜7wt% を含有し、さらに、 Mg2.5wt%以下、Si2wt%以下、Mn0.0
5〜2.0wt%、Cr0.05〜0.5wt%、Zr
0.05〜0.5wt%、V0.05〜0.5wt%、
Ti0.15wt%以下 の中から選んだ1種または2種以上 を含有し、残部Alおよび不純物からなるAl−Cu系
合金を芯材とし、 Cu0.10wt%以下、Zn0.2wt%以下、Mg
0.05wt%以下、Mn0.05〜1.0wt%、C
r0.05〜0.25wt%、Zr0.05〜0.20
wt%、Ti0.15wt%以下 の中から選んだ1種または2種以上 を含有し、残部Alおよび不純物からなる純Alを皮材
とし、 熱間合せ圧延により片面或いは両面のクラッド材とした
後、350〜550℃の温度において1段階或いは2段
階の加熱保持を行ない、30℃/Hrの冷却速度で冷却
してから、少なくとも30%以上の冷間圧延を行なうか
、或いは20〜60%の冷間圧延を1回以上行ない、次
いで、100℃/Hr以上の速度で加熱し、350〜5
50℃の温度で加熱軟化処理を行なうこことを特徴とす
る耐蝕性に優れた超塑性アルミニウム合金の製造方法。
(2) Contains 2 to 7 wt% of Cu, and further contains 2.5 wt% or less of Mg, 2 wt% or less of Si, and 0.0 Mn.
5-2.0wt%, Cr0.05-0.5wt%, Zr
0.05-0.5wt%, V0.05-0.5wt%,
The core material is an Al-Cu alloy containing one or more selected from Ti0.15wt% or less, the balance being Al and impurities, Cu0.10wt% or less, Zn0.2wt% or less, Mg
0.05wt% or less, Mn0.05-1.0wt%, C
r0.05~0.25wt%, Zr0.05~0.20
wt%, Ti containing one or more selected from 0.15wt% or less, with the remainder being Al and impurities as a skin material, and after hot rolling to form a cladding material on one or both sides. , carry out one or two stages of heating and holding at a temperature of 350 to 550°C, cool at a cooling rate of 30°C/Hr, and then cold-roll at least 30% or 20 to 60%. Cold rolling is performed one or more times, and then heated at a rate of 100°C/Hr or higher to a temperature of 350 to 5
A method for producing a superplastic aluminum alloy with excellent corrosion resistance, characterized by carrying out a heat softening treatment at a temperature of 50°C.
JP21079784A 1984-10-08 1984-10-08 Production of superplastic aluminum alloy having excellent corrosion resistance Pending JPS6188988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21079784A JPS6188988A (en) 1984-10-08 1984-10-08 Production of superplastic aluminum alloy having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21079784A JPS6188988A (en) 1984-10-08 1984-10-08 Production of superplastic aluminum alloy having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
JPS6188988A true JPS6188988A (en) 1986-05-07

Family

ID=16595289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21079784A Pending JPS6188988A (en) 1984-10-08 1984-10-08 Production of superplastic aluminum alloy having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPS6188988A (en)

Similar Documents

Publication Publication Date Title
JPS63501883A (en) Aluminum-lithium alloy and method of manufacturing the same
JPH07145441A (en) Superplastic aluminum alloy and its production
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
EP0030070A1 (en) Method for producing aircraft stringer material
US4820360A (en) Method for developing ultrafine microstructures in titanium alloy castings
AU759402B2 (en) Aluminium based alloy and method for subjecting it to heat treatment
US3994695A (en) Composite aluminum brazing sheet
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
US4410370A (en) Aircraft stringer material and method for producing the same
JPS6156269A (en) Manufacture of super plastic al-li alloy
JPH0261025A (en) Al-si alloy plate material having excellent formability and its manufacture
US3966506A (en) Aluminum alloy sheet and process therefor
JPS6149796A (en) Manufacture of superplastic aluminum alloy for diffused junction
JPS60251260A (en) Manufacture of super plastic aluminum alloy
JPS6188988A (en) Production of superplastic aluminum alloy having excellent corrosion resistance
JPS6136065B2 (en)
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPS58213850A (en) Manufacture of al-zn-mg-cu alloy material of superior formability
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JPS6188987A (en) Production of superplastic aluminum alloy having excellent corrosion resistance
JPS6086248A (en) Preparation of super-plastic aluminum alloy
JPS60238461A (en) Manufacture of superplastic aluminum alloy
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPS6086250A (en) Preparation of super-plastic aluminum alloy