JPS6188739A - Monitoring system of cooling medium temperature for rotary electric machine - Google Patents

Monitoring system of cooling medium temperature for rotary electric machine

Info

Publication number
JPS6188739A
JPS6188739A JP59207007A JP20700784A JPS6188739A JP S6188739 A JPS6188739 A JP S6188739A JP 59207007 A JP59207007 A JP 59207007A JP 20700784 A JP20700784 A JP 20700784A JP S6188739 A JPS6188739 A JP S6188739A
Authority
JP
Japan
Prior art keywords
temperature
cooling medium
stator coil
alarm
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59207007A
Other languages
Japanese (ja)
Inventor
Yutaka Uematsu
豊 植松
Morio Matsuzaki
松崎 盛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59207007A priority Critical patent/JPS6188739A/en
Priority to CH4253/85A priority patent/CH673729A5/de
Priority to DE3535550A priority patent/DE3535550C2/en
Priority to US06/784,302 priority patent/US4733225A/en
Publication of JPS6188739A publication Critical patent/JPS6188739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To alarm the abnormal condition of stator coils, by metering the cooling medium temperatures of every outlet of cooling medium passages in a plurality of stator coils, and by finding the respective temperature differences. CONSTITUTION:Cooling medium temperatures T1-Tn at the outlets of each cooling medium passage are detected by thermometric elements 21 provided every stator coils 3, and armature current Iph is detected by a current transformer 27, and the respective detection signals are read into the RAM for a micro-computer 29 through conversion elements 25 and a converter 28, and P.U.-converted current values I are computed by operation. Then, temperature differences are found by two or more thermometric elements 21, and it is detected whether or not any of the signals of the temperature differences found in this manner comes to the range of set temperatures based on generator output namely armature current, and in case that the signal comes to the set temperature range, an alarm is worked according to the detection output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固定子コイル内部に設けた冷却媒体通路の出
口における冷却媒体温度を監視する回転電機の冷却媒体
温度監視方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling medium temperature monitoring system for a rotating electrical machine that monitors the cooling medium temperature at the outlet of a cooling medium passage provided inside a stator coil.

〔従来の技術〕[Conventional technology]

従来この種の装置として第5図、第6図および第7図に
示すようなタービン発電機の冷却媒体温度監視装置があ
った。第5図はこのタービン発電機内部の通風状況を示
す脱BA図、第6図は固定子コイルの断面図、第7図は
固定子コイルの冷却媒通路の出口における冷却媒体温度
の監視回路図の説明図である。
Conventionally, as this type of device, there have been cooling medium temperature monitoring devices for turbine generators as shown in FIGS. 5, 6, and 7. Figure 5 is a diagram showing the ventilation inside the turbine generator, Figure 6 is a sectional view of the stator coil, and Figure 7 is a circuit diagram for monitoring the coolant temperature at the outlet of the coolant passage of the stator coil. FIG.

第5図において、1は発電機のフレームで、機内に水素
ガスを封入しておくため、気密構造となっている。2は
固定子鉄心、3は゛固定子コイル、4は回転子、5は回
転子4の回転軸48両端を支える軸受、6は回転子4の
一端部外周に突設したプロワ、8は水素ガスクー2であ
る。’t fC、Glは低温の水素ガスの流れの方向を
示す矢印、G!は固定子コイル3の内部における水素ガ
スの流れの方向を示す矢印、Gsは固定子コイル3内部
に設けた冷却媒体通路の出口における水素ガスの流れの
方向を示す矢印、G4は回転子コイル内部における水素
ガスの流れの方向を示す矢印である。
In FIG. 5, reference numeral 1 denotes a generator frame, which has an airtight structure in order to seal hydrogen gas inside the generator. 2 is a stator core, 3 is a stator coil, 4 is a rotor, 5 is a bearing that supports both ends of the rotating shaft 48 of the rotor 4, 6 is a blower protruding from the outer periphery of one end of the rotor 4, and 8 is a hydrogen gas cooler. It is 2. 't fC, Gl is an arrow indicating the direction of flow of low-temperature hydrogen gas, G! is an arrow indicating the direction of the flow of hydrogen gas inside the stator coil 3, Gs is an arrow indicating the direction of the flow of hydrogen gas at the outlet of the cooling medium passage provided inside the stator coil 3, and G4 is an arrow indicating the direction of the flow of hydrogen gas inside the rotor coil. 2 is an arrow indicating the direction of flow of hydrogen gas in FIG.

次に、この水素ガスによる冷却作用について述べると、
水素ガスはフレーム1内に封止されておシ、回転子4の
回転によってプロワ6によシガスクーラ7に送られて冷
却される。冷却された低温の水素ガス8は矢印G】の向
きに流れ、固定子コイル3のガス入口から固定子コイル
3の内部を軸方向(矢印Gx方向)に通過して、固定子
ごイル3の抵抗損失などによる発生熱を奪い、温度の高
い水素ガスとなって固定子コイル3の冷却媒体通路の出
口から矢印G!方向に排出される。
Next, let's talk about the cooling effect of hydrogen gas.
Hydrogen gas is sealed within the frame 1, and is sent to the gas cooler 7 by the blower 6 and cooled by the rotation of the rotor 4. The cooled low-temperature hydrogen gas 8 flows in the direction of the arrow G, passes from the gas inlet of the stator coil 3 through the interior of the stator coil 3 in the axial direction (direction of the arrow Gx), and enters the stator coil 3. The heat generated due to resistance loss is removed, and it becomes high temperature hydrogen gas, which flows from the exit of the cooling medium passage of the stator coil 3 in the direction of arrow G! ejected in the direction.

一方、回転子4の回転子コイルに入った低温の水素ガス
はこの回転子コイルの両端から中央部に向って軸方向(
矢印G4)方向に流れ、その回転子コイルに生じた発生
熱を奪い、温度の高い水素ガスとなってその回転子コイ
ルの中央部から排出される。
On the other hand, the low-temperature hydrogen gas that has entered the rotor coil of rotor 4 moves in the axial direction (
It flows in the direction of arrow G4), absorbs the heat generated in the rotor coil, becomes high temperature hydrogen gas, and is discharged from the center of the rotor coil.

これらの高温の水素ガスはプロワ6によってガスクーラ
7に送られ、冷却水と熱交換を行って低温ガスとなシ、
再び上記の各矢印Gt 、G2.Ga 、G4の方向に
循還する。
These high-temperature hydrogen gases are sent to the gas cooler 7 by the blower 6, where they exchange heat with cooling water and become low-temperature gas.
Again, each of the above arrows Gt, G2. Ga circulates in the direction of G4.

また、固定子コイル3付近の構造は第6図に示すようK
なっている。同図において、12fiH定子鉄心、13
は固定子スロットであシ、このスロット13に固定子コ
イル3が挿入されている。14は固定子コイル30対地
絶縁部材、15は固定子コイル導体、16はこの導体1
5内に埋設された通風管である。この通風管16は固定
子コイルの全長にわたって設けられ、この通風管16内
を水素ガスが通過することによって固定子コイル3を冷
却する。固定子コイル3はスペーサ18.19を介在し
て、スロットウェッジ20fCより固定子スロット13
内に脱出しないように保持されている。
In addition, the structure near the stator coil 3 is K as shown in Fig. 6.
It has become. In the same figure, a 12fiH stator core, a 13fiH stator core,
is a stator slot 13, and the stator coil 3 is inserted into this slot 13. 14 is a stator coil 30 ground insulating member, 15 is a stator coil conductor, and 16 is this conductor 1.
This is a ventilation pipe buried inside 5. The ventilation pipe 16 is provided over the entire length of the stator coil, and hydrogen gas passes through the ventilation pipe 16 to cool the stator coil 3. The stator coil 3 is connected to the stator slot 13 from the slot wedge 20fC with spacers 18 and 19 interposed therebetween.
It is held inside to prevent it from escaping.

さらに、冷却媒体温度の監視回路は第7図に示す。水素
ガスは固定子コイル3内部を通過する際に固定子コイル
3の熱を吸収し、冷却媒体通路の出口つまシ通風管16
の出口から排出される。21は複数の固定子コイル3の
冷却媒体通路のうち出口に設けた測温素子で、その出口
から排出される水素ガスの温度を測定する。測温素子2
1からの温度信号は記録計22および善報装置23に入
力される。
Further, a cooling medium temperature monitoring circuit is shown in FIG. The hydrogen gas absorbs the heat of the stator coil 3 as it passes through the stator coil 3, and the hydrogen gas absorbs the heat of the stator coil 3, and the hydrogen gas absorbs the heat of the stator coil 3 and passes through the cooling medium passage outlet stub ventilation pipe 16.
is discharged from the outlet. Reference numeral 21 denotes a temperature measuring element provided at the outlet of the cooling medium passages of the plurality of stator coils 3, and measures the temperature of the hydrogen gas discharged from the outlet. Temperature measuring element 2
The temperature signal from 1 is input to a recorder 22 and a notification device 23.

善報装置23はすべての測温素子21からの温度信号を
常に一括監視し、このうちいずれかの測温素子で検出し
た温度が予め設定した警報値を超えた場合に俳報を発す
る。そしてこの芒報値は発電機の負荷の大きさすなわち
電機子電流の大きさに関係なく測温データのみに依存し
て一定の値に定められている。第8図は電機子電流と冷
却媒体通路の出口における冷却媒体温度および警報値と
の関係を示すグラフである。なお、ここでは定格電機子
電流における上記冷却媒体温度の上昇を1(p、u、)
として表わしである。
The alarm device 23 always collectively monitors the temperature signals from all the temperature measuring elements 21, and issues an alarm when the temperature detected by any of the temperature measuring elements exceeds a preset alarm value. This value is determined to be a constant value depending only on the temperature measurement data, regardless of the magnitude of the load on the generator, that is, the magnitude of the armature current. FIG. 8 is a graph showing the relationship between the armature current, the coolant temperature at the outlet of the coolant passage, and the alarm value. Note that here, the increase in the coolant temperature at the rated armature current is expressed as 1 (p, u,)
It is expressed as .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷却媒体温度監視は以上のように構成されている
ので、複数の固定子コイル3の各測温素子で検出した温
度信号のうちいずれかが上記情報値を越えることによシ
警報が発生されるまで固定子コイルの異常を発見するの
が困難であシ、かつ異常発生後の迅速な処置ができない
という問題点があった。
Since conventional cooling medium temperature monitoring is configured as described above, an alarm is generated when any one of the temperature signals detected by each temperature measuring element of the plurality of stator coils 3 exceeds the above information value. There have been problems in that it is difficult to discover abnormalities in the stator coil until the abnormality occurs, and prompt treatment cannot be taken after the abnormality occurs.

また、固定子コイルの冷却媒体通路の出口における冷却
媒体温度は電機子電流の大きさに応じて変化するが、上
記警報値か電機子電流に関係なく一定であるため電機子
電流の小さい領域では7f報値とのひらきが大きくなシ
、に機子が相当以上に温度上昇しないと固定子コイルの
異常を正しく判断できないし、逆に電機子電流が大きい
領域では冷却媒体温度の上昇によシ、誤って鐸報を発し
やすくなるという問題点があった。
In addition, the coolant temperature at the outlet of the coolant passage of the stator coil changes depending on the magnitude of the armature current, but it is constant regardless of the above alarm value or the armature current, so in the area where the armature current is small, In areas where there is a large difference between the 7f alarm value and the temperature of the armature, it is not possible to correctly determine whether there is an abnormality in the stator coil unless the temperature of the armature rises above a considerable level. However, there was a problem in that it was easy to issue the alarm by mistake.

更に、E報発生前に固定子コイル3の異常を発見するた
め、従来では電機子電流の変化と上記温度記録計に表示
される全ての温度値の時間変化を見比べて運転員が判断
していたので、運転員の常時監視による疲労が著るしぐ
、固定子コイル3が異常であるかどうかの判断も多分に
経験にたよるところがあり、誤判断する場合が生じてい
た。
Furthermore, in order to detect an abnormality in the stator coil 3 before an E alarm occurs, conventionally the operator has to compare changes in the armature current with time changes in all the temperature values displayed on the temperature recorder. Therefore, the operator's fatigue due to constant monitoring is significant, and the determination of whether or not the stator coil 3 is abnormal has largely relied on experience, resulting in erroneous judgments.

本発明は上記のような従来のものの問題点を除去するた
めになされたもので、全ての固定子コイル内部に設けた
冷却媒体通路の出口における測温素子が得た温度信号を
相互に自動比較し、発電機出力に応じて予め設定した警
報値領域外に上記自動比較した温度差が達した場合に警
報を発することができる回転電機の冷却媒体温度監視装
置を提供することを目的とするものである。これにより
、発′rFL機の異常の早期発見、事故の未然防止ある
いは運転員の負担軽減が図れる。
The present invention was made in order to eliminate the problems of the conventional ones as described above, and it automatically compares the temperature signals obtained by the temperature measuring elements at the exits of the cooling medium passages provided inside all stator coils. The object of the present invention is to provide a cooling medium temperature monitoring device for a rotating electrical machine that can issue an alarm when the automatically compared temperature difference reaches a value outside a preset alarm value range according to the generator output. It is. This makes it possible to detect abnormalities in the starting rFL aircraft early, prevent accidents, and reduce the burden on the operator.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は固定子コイル内の冷却媒体通路の出口における
温度を複数の固定子コイルごとに測定し、この測定した
2以上の温度についてそれぞれ温度差を求め、求めた温
度差のいずれかが発電機出力に応じて予め設定した警報
値を越えた場合に警報を発するようにしたのである。
The present invention measures the temperature at the outlet of the cooling medium passage in the stator coil for each of a plurality of stator coils, determines the temperature difference between the two or more measured temperatures, and determines whether any of the determined temperature differences will cause the generator to An alarm is issued when the output exceeds a preset alarm value.

〔作 用〕[For production]

この発明によれば、冷却媒体温度を固定子コイルの各冷
却媒体通路の出口において測温素子により測定しておシ
、その測温信号は温度差監視回路に入力されて、2以上
の測温信号について温度差信号を求め、こうして求めた
温度差信号のいずれかが、発電機出力すなわち電機子電
流にもとすく設定温度領域に達したか否かを検出し、そ
の設定温度領域に達した場合にはその検出出力にもとづ
き訃報装置を作動し、固定子コイルの異常を警告するよ
うに作用する。
According to this invention, the temperature of the cooling medium is measured by the temperature measuring element at the outlet of each cooling medium passage of the stator coil, and the temperature measurement signal is inputted to the temperature difference monitoring circuit, and the temperature measurement signal is inputted to the temperature difference monitoring circuit. A temperature difference signal is obtained for the signal, and it is detected whether any of the temperature difference signals obtained in this way reaches a set temperature range as soon as the generator output, that is, the armature current, and whether or not the set temperature range is reached. In such a case, the obituary alarm device is activated based on the detection output to warn of an abnormality in the stator coil.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、21は各固定子コイル3内に設けた冷却媒
体通路の出口に設けた測温素子、22は多数の測温素子
21に接続した測温用の記録計、23は同様に接続した
警報素子で、音や光で表示するものが用いられる。また
、上記測温素子21には測定する2つの温度差を処理演
算する温度差監視回路24が接続され、この温度差監視
回路24の出力にもとづいて警報装置の動作を制御する
構成となっている0 第2図はかかる温度差監視回路24を具体的に示したも
のである。かかる回路では、測温素子21の測温信号が
、測温抵抗体の抵抗値変化あるいはサーモカップルの発
生電圧の変化として、ケーブルを介して固定コイル3ご
とに設けた各変換素子25に入力される。各変換素子2
5では例えばこの入力信号を時間積分した安定なアナロ
グ信七とシテ出力し、マイクロコンピュータ29に入力
する。一方、発電機の電機子電流は、発電電力を主変圧
器(図示省略)に導く母線に入れた電流変成器27によ
り検出し、この検出電流を変換器28に入力し、この変
換器28は上記電機子電流の大きさに対応した信号とし
てこれをマイクロコンピュータ29に入力するようにな
っている。30は指示計器で、マイクロコンピュータ2
9の出力としての上記温度差や電機子電流の大きさが運
転員に常時示されるようになっており、温度差が既述の
警報値を越えたとき、訃報装置23を作動するようにな
っている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 21 is a temperature measuring element provided at the outlet of the cooling medium passage provided in each stator coil 3, 22 is a temperature measuring recorder connected to a large number of temperature measuring elements 21, and 23 is a temperature measuring element connected in the same way. Alarm elements that display sound or light are used. Further, a temperature difference monitoring circuit 24 is connected to the temperature measuring element 21 to process and calculate the difference between the two temperatures to be measured, and the operation of the alarm device is controlled based on the output of this temperature difference monitoring circuit 24. FIG. 2 specifically shows such a temperature difference monitoring circuit 24. In this circuit, the temperature measurement signal of the temperature measurement element 21 is inputted to each conversion element 25 provided for each fixed coil 3 via a cable as a change in the resistance value of the temperature measurement resistor or a change in the voltage generated by the thermocouple. Ru. Each conversion element 2
In step 5, for example, this input signal is integrated over time and output as a stable analog signal, which is then input to the microcomputer 29. On the other hand, the armature current of the generator is detected by a current transformer 27 installed in a bus that leads the generated power to a main transformer (not shown), and this detected current is input to a converter 28. This is input to the microcomputer 29 as a signal corresponding to the magnitude of the armature current. 30 is an indicator, and microcomputer 2
The above-mentioned temperature difference and the magnitude of the armature current as outputs of 9 are constantly displayed to the operator, and when the temperature difference exceeds the above-mentioned alarm value, the death alarm device 23 is activated. ing.

次に、上記構成になる冷却媒体温度監視装置の作用を、
第3図((示すフローチャートを中心に具体的に説明す
る。
Next, the operation of the cooling medium temperature monitoring device having the above configuration is as follows.
A detailed explanation will be given focusing on the flowchart shown in FIG.

(a)  先ず、複数の固定子コイル3ごとに設けた測
温素子21によシ各冷却媒体通路の出口における冷却媒
体温度Tl−Tnを検出するとともに、電流変成器27
から電機子電流Iphを検出し、これらの各検出信号を
変換索子25および変換器28を通シテマイクロコンピ
ュータ29の礎Mに読み込む。
(a) First, the temperature measuring element 21 provided for each of the plurality of stator coils 3 detects the coolant temperature Tl-Tn at the outlet of each coolant passage, and the current transformer 27
The armature current Iph is detected from , and each of these detection signals is read into the base M of the microcomputer 29 through the conversion cable 25 and the converter 28 .

(b)  RAMに読み込んだ上記の電機子電流と予め
ROMに格納した定格電機子電流とからプロセッサにお
いてp、 u、変換した電流値工を演算する。
(b) The processor calculates p, u, and the converted current value from the armature current read into the RAM and the rated armature current previously stored in the ROM.

(C)  次に、この電流値工が上記測温素子21に大
きく影響する値の、例えば0.7よシも大きいか小さい
かをプロセッサで判定する。
(C) Next, the processor determines whether this current value is larger or smaller than, for example, 0.7, which is a value that greatly affects the temperature measuring element 21.

(d)  この判定の結果、I)0.7である場合には
予警報値としての温度ΔT ANNをΔ’rHX I”
と設定する。
(d) If the result of this judgment is I) 0.7, the temperature ΔT ANN as the preliminary alarm value is set as Δ'rHX I"
and set.

(e)  また、工≦0,7である場合には警報呟とし
ての温度ΔTANNをΔTLと設定する。
(e) In addition, when the temperature is 0.7, the temperature ΔTANN as an alarm is set to ΔTL.

(f)  次に、2以上の測温素子について温度差ΔT
iを求める。この温度差ΔTiは全固定子コイル3に設
けた測温素子21の例えば2つずつの測温素子の温度差
を求めるものである。
(f) Next, the temperature difference ΔT between two or more temperature measuring elements
Find i. This temperature difference ΔTi is used to determine the temperature difference between, for example, two temperature measuring elements 21 provided in all the stator coils 3.

(g)  こうして求めた複数の温度差ΔTiは警報値
ΔTANNよシ大きいか否かを判定する。つまりΔTi
(h)  この判定によってΔTi≧ΔTANNである
場合には、マイクロコンピュータ29は上記1報装置2
3に信号を送って、固定子コイルが異常であることを運
転者にg報することになる。
(g) It is determined whether the plurality of temperature differences ΔTi thus obtained are larger than the alarm value ΔTANN. In other words, ΔTi
(h) If ΔTi≧ΔTANN as a result of this determination, the microcomputer 29
3 to notify the driver that the stator coil is abnormal.

ところで、上記温度差監視の動作において、各固定子コ
イル3が正常の場合でも、各冷却媒体通路の出口の冷却
媒体温度は発電機定格電流時において約4〜5℃程のば
らつきがある。そこで、かかるばらつきによる影響を少
なくし、監視精度を上けるためには、発電機の試運転結
果にもとづいて、全ての測温素子について冷却媒体温度
差の少ない部位にある2つずつの測温素子を1組として
、その各組の2つの測温素子間に求めた温度差を監視し
、この温度差が設定警報値を越えたとき警報を発するこ
とが望ましい。
By the way, in the temperature difference monitoring operation described above, even when each stator coil 3 is normal, the coolant temperature at the outlet of each coolant passage varies by about 4 to 5 degrees Celsius at the generator rated current. Therefore, in order to reduce the influence of such variations and improve monitoring accuracy, it is necessary to set two temperature-measuring elements for each temperature-measuring element located at a location where there is a small difference in coolant temperature based on the test run results of the generator. It is desirable to monitor the temperature difference between the two temperature measuring elements of each set, and to issue an alarm when this temperature difference exceeds a set alarm value.

このようにすれば、固定子コイル3のいずれかに異常が
発生した場合には基準となる一方の正常な測温素子21
の出力に対する他方の測温素子21の出力との間に生じ
る温度差の傾向および温度差の大きさが検出し易くなる
。つまシ、上記温度差の傾向を上記指示計器30によっ
て監視すれば、電機子電流との関係において、警報前に
異常を発見することができる。
In this way, if an abnormality occurs in any of the stator coils 3, one of the normal temperature measuring elements 21 will be used as a reference.
It becomes easier to detect the tendency and magnitude of the temperature difference between the output of the temperature measuring element 21 and the output of the other temperature measuring element 21. Finally, if the tendency of the temperature difference is monitored by the indicator 30, an abnormality can be detected in relation to the armature current before an alarm is issued.

また、上記のように、各固定子コイル3ごとの冷媒温度
は発電機出力つまり電機子電流によって変化し、上記2
つの測温索子間の温度差が電機子電流が増すにつれて大
きくなる。このため、警報値を電機子電流に応じて、第
4図に示すように設定する。なお、かかる電機子電流に
応じた警報値ハ予メマイクロコンピュータ29のROM
に格納しである。ここでは、2つの測温素子21間の温
度差の許容値をi (p、u−)としてあり、この値は
個個の発電機において調整可能となっている。また、発
電機の低負荷時に瞥報域の温度差が小さくなるので、誤
芒報を発生するおそれがある。このため、2つの測温素
子21間の温度差の最小値が予め制限される。
In addition, as mentioned above, the refrigerant temperature for each stator coil 3 changes depending on the generator output, that is, the armature current, and
The temperature difference between the two thermometers increases as the armature current increases. Therefore, the alarm value is set as shown in FIG. 4 according to the armature current. Note that the alarm value corresponding to the armature current is stored in the ROM of the microcomputer 29.
It is stored in. Here, the allowable value of the temperature difference between the two temperature measuring elements 21 is set as i (p, u-), and this value can be adjusted in each generator. Furthermore, when the generator is under low load, the temperature difference in the visual report area becomes small, so there is a risk that false awning reports will occur. Therefore, the minimum value of the temperature difference between the two temperature measuring elements 21 is limited in advance.

なお、上記実施例では固定子コイル3を水素ガスで冷却
するタービン発電機について説明したが、固定子コイル
3を水や油で冷却するタービン発電機にも応用できる。
In the above embodiment, a turbine generator in which the stator coil 3 is cooled with hydrogen gas has been described, but the present invention can also be applied to a turbine generator in which the stator coil 3 is cooled with water or oil.

また、冷却媒体の温度を直接測定するほかに、各固定子
コイル間に埋込んだ測温索子によって各固定子コイルの
温度を測定するようにしてもよい。
In addition to directly measuring the temperature of the cooling medium, the temperature of each stator coil may be measured using a temperature measuring cord embedded between each stator coil.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、複数の固定子コイル
内の冷却媒体通路の出口ごとの冷却媒体温度を独自の測
温素子によって測定し、この測定した2以上の温度につ
いてそれぞれ温度差を求め、この温度差のいずれかが電
機子電流の大きさに応じ予め設定した警報値を越えた場
合には、固定子コイルに異常があると判断して警報する
ようにしたので、発電機、特に固定子コイルの冷却不足
による熱的あるいは絶縁的障害の発生を未然に防止でき
るとともに、−発電機の信頓性を向上できる。
As described above, according to the present invention, the coolant temperature at each outlet of the coolant passage in a plurality of stator coils is measured using a unique temperature measuring element, and the temperature difference between the two or more measured temperatures is calculated. If either of these temperature differences exceeds a preset alarm value depending on the magnitude of the armature current, it is determined that there is an abnormality in the stator coil and an alarm is issued. In particular, it is possible to prevent thermal or insulation failures due to insufficient cooling of the stator coil, and to improve the reliability of the generator.

また、上記警報による自動監視によって、運転員の労働
負担の軽減が図れる等の効果が得られる。
Moreover, the automatic monitoring using the above-mentioned warning can provide effects such as reducing the labor burden on the operator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方式実施に用いられる回転電機の冷却
媒体温度監視装置の構成図、第2図は冷却媒体の温度差
監視回路図、第3図は第2図の回路動作の流れを示すフ
ローチャート、第4図は電機子電流に対する設定警報(
直の関係を示すグラフ、第5図は本発明の基礎となる従
来のタービン発電機の構造および冷却ガス通流系統を示
す説明図、第6図は同じく固定子コイル付近の断面図、
第7図は従来の冷却媒体温度監視回路の説明図、第8図
は同じ〈従来の電機子電流に対する設定警報値の関係を
示すグラフである。 図において、3は固定子コイル、4は回転子、7はガス
クーラ、12は固定子鉄心、16は通風管、21は測温
素子、23は詐報装置、24は温度差監視回路、27は
電流変成器、30は指示計器。 なお、各図中同一符号は同一、または相当部分を示す。
Fig. 1 is a block diagram of a cooling medium temperature monitoring device for a rotating electric machine used to implement the method of the present invention, Fig. 2 is a circuit diagram for monitoring a temperature difference in the cooling medium, and Fig. 3 shows the flow of the circuit operation in Fig. 2. The flowchart shown in Figure 4 shows the setting alarm for armature current (
5 is an explanatory diagram showing the structure and cooling gas flow system of a conventional turbine generator, which is the basis of the present invention, and FIG. 6 is a sectional view of the vicinity of the stator coil.
FIG. 7 is an explanatory diagram of a conventional coolant temperature monitoring circuit, and FIG. 8 is a graph showing the relationship between the set alarm value and the armature current in the same conventional case. In the figure, 3 is a stator coil, 4 is a rotor, 7 is a gas cooler, 12 is a stator core, 16 is a ventilation pipe, 21 is a temperature measuring element, 23 is a fraud device, 24 is a temperature difference monitoring circuit, and 27 is a Current transformer, 30 is an indicator. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)固定子コイル内部に設けた冷却媒体通路に冷却媒
体を流すことによつてこの固定子コイルを冷却するよう
にした回転電機において、上記冷却体通路の出口におけ
る冷却媒体温度を固定子コイルごとに測定し、この測定
した2以上の温度についてそれぞれ温度差を求め、この
求めた温度差のいずれかが発電機出力に応じて予め設定
した警報値を越えたとき警報を発するようにしたことを
特徴とする回転電機の冷却媒体温度監視方式。
(1) In a rotating electric machine in which the stator coil is cooled by flowing a cooling medium through a cooling medium passage provided inside the stator coil, the temperature of the cooling medium at the outlet of the cooling medium passage is determined by the stator coil. The temperature difference between the two or more measured temperatures is determined, and an alarm is issued when any of the determined temperature differences exceeds a preset alarm value depending on the generator output. A cooling medium temperature monitoring method for rotating electric machines characterized by:
(2)冷却媒体通路出口における冷却媒体温度を測定す
る測温素子は、冷却媒体の温度差の少ない部位の2個ず
つの測温素子を選び、これら各測温素子間の測定温度差
を警報値と比較するようにしたことを特徴とする特許請
求の範囲第1項記載の回転電機の冷却媒体温度監視方式
(2) For the temperature measuring elements that measure the coolant temperature at the outlet of the coolant passage, select two temperature measuring elements each in areas where there is a small temperature difference in the coolant, and alarm the measured temperature difference between these temperature measuring elements. 2. A cooling medium temperature monitoring method for a rotating electric machine according to claim 1, wherein the cooling medium temperature of a rotating electric machine is compared with a value.
(3)発電機出力は、この出力の供給を受ける主変圧器
に継がる母線に入れた電流変成器から得るようにしたこ
とを特徴とする特許請求の範囲第1項記載の回転電機の
冷却媒体温度監視方式。
(3) Cooling of the rotating electric machine according to claim 1, characterized in that the generator output is obtained from a current transformer installed in a bus bar connected to the main transformer that receives this output. Medium temperature monitoring method.
JP59207007A 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine Pending JPS6188739A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59207007A JPS6188739A (en) 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine
CH4253/85A CH673729A5 (en) 1984-10-04 1985-10-02
DE3535550A DE3535550C2 (en) 1984-10-04 1985-10-04 Coolant temperature monitoring for rotating electrical machines
US06/784,302 US4733225A (en) 1984-10-04 1985-10-04 Cooling medium temperature monitoring system for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207007A JPS6188739A (en) 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS6188739A true JPS6188739A (en) 1986-05-07

Family

ID=16532649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207007A Pending JPS6188739A (en) 1984-10-04 1984-10-04 Monitoring system of cooling medium temperature for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS6188739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133854A (en) * 1986-11-21 1988-06-06 Mitsubishi Electric Corp Temperature monitoring method for cooling medium of rotary electric machine
JPH06315247A (en) * 1993-04-28 1994-11-08 Mitsubishi Electric Corp Refrigerant temperature monitoring system for rotating electric machine
CN115753176A (en) * 2023-01-09 2023-03-07 湖南博匠信息科技有限公司 VPX equipment liquid cooling parameter testing method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164174A (en) * 1978-06-16 1979-12-27 Mitsubishi Electric Corp Temperature monitor device of generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164174A (en) * 1978-06-16 1979-12-27 Mitsubishi Electric Corp Temperature monitor device of generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133854A (en) * 1986-11-21 1988-06-06 Mitsubishi Electric Corp Temperature monitoring method for cooling medium of rotary electric machine
JPH06315247A (en) * 1993-04-28 1994-11-08 Mitsubishi Electric Corp Refrigerant temperature monitoring system for rotating electric machine
CN115753176A (en) * 2023-01-09 2023-03-07 湖南博匠信息科技有限公司 VPX equipment liquid cooling parameter testing method and system

Similar Documents

Publication Publication Date Title
KR940004778B1 (en) Temperature monitoring system for an electric generator
US6494617B1 (en) Status detection apparatus and method for fluid-filled electrical equipment
US6446027B1 (en) Intelligent analysis system and method for fluid-filled electrical equipment
EP2372882B1 (en) Stator coil coolant flow reduction monitoring
KR940001179B1 (en) Generator stator winding diognostic system
JP3485571B2 (en) Generator temperature monitoring method and device
US4733225A (en) Cooling medium temperature monitoring system for rotary electric machine
US20030011397A1 (en) Method for monitoring the radial gap between the rotor and the stator of electric generators and device for carrying out said method
EP1085635A2 (en) Fluid-filled electrical equipment intelligent analysis system and method
CN110674001B (en) Server, and temperature alarm method and system based on server
US11309773B2 (en) System and method for monitoring temperature of rotating electric machine
KR20130115977A (en) Apparatus for preventive maintenance of motor
JPS6188739A (en) Monitoring system of cooling medium temperature for rotary electric machine
JPH06315247A (en) Refrigerant temperature monitoring system for rotating electric machine
CN111562450B (en) System and method for monitoring service life of reactor
JPH05227644A (en) Transformer diagnosing equipment
JPS63133854A (en) Temperature monitoring method for cooling medium of rotary electric machine
JPH05284692A (en) Monitoring equipment for temperature of coil of rotating electric machine
JPS62110458A (en) Temperature monitor for coolant of generator
JPS6188741A (en) Monitoring system of cooling medium temperature for rotary electric machine
JPS6188740A (en) Monitoring system of cooling medium temperature for rotary electric machine
JPH05182838A (en) Abnormality monitoring device of oil-immersed electric equipment
RU2366059C1 (en) Method of controlling and diagnosing technical state of turbo-generators
JPH07151788A (en) Device and method for diagnosing fault of electromagnetic pump
CN116007774A (en) Transformer oil temperature fault monitoring device and method