JPH06315247A - Refrigerant temperature monitoring system for rotating electric machine - Google Patents

Refrigerant temperature monitoring system for rotating electric machine

Info

Publication number
JPH06315247A
JPH06315247A JP12314393A JP12314393A JPH06315247A JP H06315247 A JPH06315247 A JP H06315247A JP 12314393 A JP12314393 A JP 12314393A JP 12314393 A JP12314393 A JP 12314393A JP H06315247 A JPH06315247 A JP H06315247A
Authority
JP
Japan
Prior art keywords
temperature
alarm
temperature difference
cooling medium
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12314393A
Other languages
Japanese (ja)
Inventor
Akifumi Izumi
昭文 泉
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Mitsubishi Electric Corp
Priority to JP12314393A priority Critical patent/JPH06315247A/en
Publication of JPH06315247A publication Critical patent/JPH06315247A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the reliability of a rotating electric machine by determining the temperature difference between more than one temperature measured for each stator and producing an alarm based on the difference between the temperature difference and a standard temperature difference thereby preventing troubles caused by insufficient cooling of the stator coil. CONSTITUTION:Temperature measuring elements 21 provided for every plurality of stator coils detect the refrigerant temperatures T1-Tn at the outlets of refrigerant channels, and a current transformer 27 detects an armature current Iph. Each detection signal is read into a RAM in an operating unit 29 through a converting element 25 and a converter 28. The operating unit 29 compares the temperature difference with a standard temperature difference under normal operating condition being determined from the operating data in the past. If the difference deviates from an alarm level, a signal is delivered to an alarm 23 which notifies an operator that the stator coil is abnormal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固定子コイル内部に
設けた冷却媒体通路の出口における冷却媒体温度を監視
する回転電機の冷却媒体温度監視方式に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling medium temperature monitoring system for a rotating electric machine for monitoring the cooling medium temperature at the outlet of a cooling medium passage provided inside a stator coil.

【0002】[0002]

【従来の技術】図6は従来のタービン発電機を示す断面
図であり、図において、1は発電機のフレーム、2は固
定子鉄心、3は固定子コイル、4は回転子、5は回転子
4の回転軸4a両端を支える軸受、6は回転子4の一端
部外周に突設したブロワ、7は水素ガスクーラである。
上記フレーム1は機内に水素ガスを封入しておくため気
密構造になっている。
2. Description of the Related Art FIG. 6 is a sectional view showing a conventional turbine generator, in which 1 is a frame of a generator, 2 is a stator core, 3 is a stator coil, 4 is a rotor, and 5 is a rotor. A bearing that supports both ends of the rotary shaft 4a of the child 4, a blower 6 projecting from the outer periphery of one end of the rotor 4, and a hydrogen gas cooler 7 are provided.
The frame 1 has an airtight structure because hydrogen gas is sealed in the machine.

【0003】また、G1 は低温の水素ガスの流れの方向
を示す矢印、G2 は固定子コイル3の内部における水素
ガスの流れの方向を示す矢印、G3 は固定子コイル3内
部に設けた冷却媒体通路の出口における水素ガスの流れ
の方向を示す矢印、G4 は回転子コイル内部における水
素ガスの流れの方向を示す矢印である。
G 1 is an arrow indicating the direction of low-temperature hydrogen gas flow, G 2 is an arrow indicating the direction of hydrogen gas flow inside the stator coil 3, and G 3 is provided inside the stator coil 3. The arrow indicating the direction of the hydrogen gas flow at the outlet of the cooling medium passage, and G 4 are the arrows indicating the direction of the hydrogen gas flow inside the rotor coil.

【0004】次に、この水素ガスによる冷却作用につい
て述べると、水素ガスはフレーム1内に封止されてお
り、回転子4の回転によってブロワ6により水素ガスク
ーラ7に送られて冷却される。冷却された低温の水素ガ
スは矢印G1 の向きに流れ、固定子コイル3のガス入口
から固定子コイル3の内部を軸方向(矢印G2 方向)に
通過して、固定子コイル3の抵抗損失などによる発生熱
を奪い、温度の高い水素ガスとなって固定子コイル3の
冷却媒体通路の出口から矢印G3 方向に排出される。一
方、回転子4の回転子コイルに入った低温の水素ガスは
この回転子コイルの両端から中央部に向って軸方向(矢
印G4 )に流れ、その回転子コイルに生じた発生熱を奪
い、温度の高い水素ガスとなってその回転子コイルの中
央部から排出される。これらの高温の水素ガスはブロワ
6によって水素ガスクーラ7に送られ、冷却水と熱交換
を行って低温ガスとなり、再び上記の各矢印G1 ,G
2 ,G3 ,G4 の方向に循環する。
Next, the cooling action by the hydrogen gas will be described. The hydrogen gas is sealed in the frame 1, and is sent to the hydrogen gas cooler 7 by the blower 6 by the rotation of the rotor 4 to be cooled. The cooled low-temperature hydrogen gas flows in the direction of arrow G 1 , passes through the inside of the stator coil 3 from the gas inlet of the stator coil 3 in the axial direction (direction of arrow G 2 ), and the resistance of the stator coil 3 is reduced. The heat generated due to loss or the like is taken away, and the hydrogen gas having a high temperature is discharged from the outlet of the cooling medium passage of the stator coil 3 in the arrow G 3 direction. On the other hand, the low-temperature hydrogen gas that has entered the rotor coil of the rotor 4 flows in the axial direction (arrow G 4 ) from both ends of the rotor coil toward the center, and removes the heat generated in the rotor coil. , Becomes a high-temperature hydrogen gas and is discharged from the central portion of the rotor coil. These high-temperature hydrogen gas is sent to the hydrogen gas cooler 7 by the blower 6 and exchanges heat with the cooling water to become a low-temperature gas, and again the above-mentioned arrows G 1 , G
It circulates in the directions of 2 , G 3 , and G 4 .

【0005】また、図7は固定子コイル3付近の構造を
示す断面図であり、図において、12は固定子鉄心、1
3は固定子スロットであり、このスロット13に固定子
コイル3が挿入されている。14は固定子コイル3の対
地絶縁部材、15は固定子コイル導体、16はこの導体
15内に埋設された通風管である。この通風管16は固
定子コイルの全長にわたって設けられ、この通風管16
内を水素ガスが通過することによって固定子コイル3を
冷却する。固定子コイル3はスペーサ18,19を介在
して、スロットウエッジ20により固定子スロット13
内に脱出しないように保持されている。
FIG. 7 is a sectional view showing the structure in the vicinity of the stator coil 3, in which 12 is a stator core and 1 is a stator core.
Reference numeral 3 is a stator slot, and the stator coil 3 is inserted into this slot 13. Reference numeral 14 is a ground insulating member of the stator coil 3, 15 is a stator coil conductor, and 16 is a ventilation pipe embedded in the conductor 15. This ventilation pipe 16 is provided over the entire length of the stator coil.
The stator coil 3 is cooled by passing hydrogen gas inside. The stator coil 3 includes spacers 18 and 19 and a slot wedge 20 to fix the stator slots 13 to each other.
It is held so as not to escape inside.

【0006】また、図8は冷却媒体温度の監視回路を示
す説明図であり、図において、21は測温素子、22は
記録計、23は警報装置である。この回路では、水素ガ
スが固定子コイル3内部を通過する際に固定子コイル3
の熱を吸収し、冷却媒体通路の出口、つまり通風管16
の出口から排出される。この際、複数の固定子コイル3
の冷却媒体通路のうち、出口に設けた測温素子21を用
いて出口から排出される水素ガスの温度を測定する。測
温素子21から出力される温度信号は記録計22および
警報装置23に入力される。
FIG. 8 is an explanatory view showing a cooling medium temperature monitoring circuit. In the figure, 21 is a temperature measuring element, 22 is a recorder, and 23 is an alarm device. In this circuit, when the hydrogen gas passes through the inside of the stator coil 3, the stator coil 3
Of the cooling medium passage, that is, the ventilation pipe 16
Is discharged from the exit of. At this time, the plurality of stator coils 3
Among the cooling medium passages, the temperature of the hydrogen gas discharged from the outlet is measured using the temperature measuring element 21 provided at the outlet. The temperature signal output from the temperature measuring element 21 is input to the recorder 22 and the alarm device 23.

【0007】警報装置23はすべての測温素子21から
の温度信号を常に一括監視し、このうちいずれかの測温
素子21で検出した温度が予め設定した警報値を超えた
場合に警報を発する。そしてこの警報値は発電機の負荷
の大きさ、すなわち電機子電流の大きさに関係なく測温
データのみに依存して一定の値に定められている。図9
は電機子電流と冷却媒体通路の出口における冷却媒体温
度および警報値との関係を示すグラフである。なお、こ
こでは定格電機子電流における上記冷却媒体温度の上昇
を1(p.u.)と表してある。
The alarm device 23 constantly monitors the temperature signals from all the temperature measuring elements 21 and issues an alarm when the temperature detected by any of the temperature measuring elements 21 exceeds a preset alarm value. . The alarm value is set to a constant value depending on only the temperature measurement data regardless of the magnitude of the load on the generator, that is, the magnitude of the armature current. Figure 9
6 is a graph showing the relationship between the armature current, the cooling medium temperature at the outlet of the cooling medium passage, and the alarm value. In addition, here, the rise of the cooling medium temperature at the rated armature current is represented as 1 (pu).

【0008】[0008]

【発明が解決しようとする課題】従来の回転電機の冷却
媒体温度監視方式は以上のように構成されているので、
複数の固定子コイル3の各測温素子21で検出した温度
信号のうちいずれかが上記警報値を越えることにより警
報が発生されるまで固定子コイル3の異常を発見するの
が困難であり、かつ異常発生後の迅速な処置ができない
という問題点があった。
Since the conventional cooling medium temperature monitoring system for a rotary electric machine is constructed as described above,
It is difficult to detect an abnormality in the stator coil 3 until an alarm is issued when any of the temperature signals detected by the temperature measuring elements 21 of the plurality of stator coils 3 exceeds the above alarm value. In addition, there is a problem that it is not possible to take prompt measures after the occurrence of an abnormality.

【0009】また、固定子コイルの冷却媒体通路の出口
における冷却媒体温度は電機子電流の大きさに応じて変
化するが、上記警報値が電機子電流に関係なく一定であ
るため電機子電流の小さい領域では警報値とのひらきが
大きくなり、電機子が相当以上に温度上昇しなければ固
定子コイルの異常を正しく判断できないという欠点があ
り、逆に電機子電流が大きい領域では冷却媒体温度の上
昇により、誤って警報を発しやすくなるという問題点が
あった。
Further, the temperature of the cooling medium at the outlet of the cooling medium passage of the stator coil changes according to the magnitude of the armature current. However, since the alarm value is constant regardless of the armature current, There is a drawback that the alarm value becomes large in a small area and the abnormality of the stator coil cannot be correctly judged unless the temperature of the armature rises by a considerable amount. There was a problem that the rise would make it easier to give an alarm by mistake.

【0010】さらに、警報発生前に固定子コイル3の異
常を発見するため、従来では電機子電流の変化と上記温
度記録計に表示される全ての温度値の時間変化を見比べ
て運転員が判断していたので、運転員の常時監視による
疲労が著しく、固定子コイル3が異常であるかどうかの
判断も多分に経験に頼るところがあり、誤判断するおそ
れがあった。
Further, in order to detect the abnormality of the stator coil 3 before the alarm is issued, conventionally, the operator judges by comparing the change of the armature current with the time change of all the temperature values displayed on the temperature recorder. As a result, fatigue caused by the constant monitoring of the operator is remarkable, and it may depend on experience to judge whether the stator coil 3 is abnormal or not.

【0011】この発明は上記のような問題点を解消する
ためになされたもので、回転電機、特に固定子コイルの
冷却不足による熱的または絶縁的障害の発生を未然に防
止することができるとともに、該回転電機の信頼性を向
上させることができる回転電機の冷却媒体温度監視方式
を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and can prevent the occurrence of thermal or insulation failure due to insufficient cooling of the rotating electric machine, especially the stator coil. An object of the present invention is to provide a cooling medium temperature monitoring system for a rotating electric machine, which can improve the reliability of the rotating electric machine.

【0012】[0012]

【課題を解決するための手段】この発明に係る回転電機
の冷却媒体温度監視方式は、冷却媒体通路の出口におけ
る冷却媒体温度を固定子コイルごとに測定し、この測定
した2以上の温度についてそれぞれ温度差を求め、この
温度差と、予め過去の運転データから求めておいた正常
な運転状態における標準的な温度差とを比較してその差
を求め、これら温度差間の差が予め設定された警報値を
越えて逸脱した場合に警報を発するようにしたものであ
る。
The cooling medium temperature monitoring system for a rotating electric machine according to the present invention measures the cooling medium temperature at the outlet of the cooling medium passage for each stator coil, and for each of the measured two or more temperatures. The temperature difference is calculated, and this temperature difference is compared with the standard temperature difference in a normal operating condition that was previously calculated from the past operation data to obtain the difference, and the difference between these temperature differences is preset. The alarm is issued when the vehicle deviates beyond the alarm value.

【0013】[0013]

【作用】この発明における回転電機の冷却媒体温度監視
方式は、固定子ごとに測定した2以上の温度についてそ
れぞれ温度差を求め、この温度差と標準的温度差との差
が予め設定された警報値を越えたと判定した場合に警報
を発する。これより、回転電機、特に固定子コイルの冷
却不足による熱的または絶縁的障害の発生を未然に防止
する。従って、回転電機の信頼性が向上する。
According to the cooling medium temperature monitoring method for a rotating electric machine of the present invention, a temperature difference is obtained for each of two or more temperatures measured for each stator, and an alarm is set in advance for the difference between this temperature difference and the standard temperature difference. If it is determined that the value has been exceeded, an alarm will be issued. As a result, the occurrence of thermal or insulation failure due to insufficient cooling of the rotating electric machine, particularly the stator coil, is prevented. Therefore, the reliability of the rotating electric machine is improved.

【0014】[0014]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図について説明
する。図1において、21は各固定子コイル3内に設け
た冷却媒体通路の出口に設けた測温素子、22は多数の
測温素子21に接続した測温用の記録計、23は同様に
接続した警報装置で、音や光を用いて表示するものが用
いられる。また、上記測温素子21には測定する2つの
温度差を処理演算する温度差監視回路24が接続され、
この温度差監視回路24の出力に基づいて警報装置23
の動作を制御する構成となっている。
Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. In FIG. 1, 21 is a temperature measuring element provided at the outlet of a cooling medium passage provided in each stator coil 3, 22 is a temperature measuring recorder connected to a large number of temperature measuring elements 21, and 23 is similarly connected. An alarm device that uses sound or light to display is used. Further, a temperature difference monitoring circuit 24 for processing and calculating two temperature differences to be measured is connected to the temperature measuring element 21,
Based on the output of the temperature difference monitoring circuit 24, the alarm device 23
Is configured to control the operation of.

【0015】図2はかかる温度差監視回路24を示す回
路図であり、測温素子21の測温信号が、測温抵抗体の
抵抗値変化あるいはサーモカップルの発生電圧の変化と
して、ケーブルを介して固定子コイル3ごとに設けた各
変換素子25に入力される。各変換素子25では、例え
ばこの入力信号を演算器29で処理可能なデジタル信号
等として出力し、演算器29に入力する。なお、27は
電流変成器である。
FIG. 2 is a circuit diagram showing the temperature difference monitoring circuit 24. The temperature measurement signal from the temperature measurement element 21 is transmitted through a cable as a change in the resistance value of the resistance temperature detector or a change in the voltage generated by the thermocouple. And input to each conversion element 25 provided for each stator coil 3. In each conversion element 25, for example, this input signal is output as a digital signal or the like that can be processed by the calculator 29, and is input to the calculator 29. In addition, 27 is a current transformer.

【0016】一方、発電機の電機子電流は、発電電力を
主変圧器(図示省略)に導く母線に入れた電流変成器2
7により検出し、この検出電流を変換器28に入力し、
この変換器28は上記電機子電流の大きさに対応した信
号としてこれを演算器29に入力するようになってい
る。30は指示計器で、演算器29の出力としての上記
温度差や電機子電流の大きさが運転員に常時示されるよ
うになっている。また、警報装置23は演算器29の出
力により警報を発生するものである。
On the other hand, the armature current of the generator is a current transformer 2 that is inserted in a bus bar that guides the generated power to a main transformer (not shown).
7 and inputs the detected current to the converter 28,
The converter 28 inputs the signal as a signal corresponding to the magnitude of the armature current to the calculator 29. Reference numeral 30 is an indicating instrument, and the temperature difference as the output of the calculator 29 and the magnitude of the armature current are constantly shown to the operator. The alarm device 23 issues an alarm by the output of the computing unit 29.

【0017】次に、上記構成の冷却媒体温度監視装置
を、図3に示すフローチャートに基づき説明する。 (a)まず、複数の固定子コイル3ごとに設けた測温素
子21により各冷却媒体通路の出口における冷却媒体温
度T1 〜Tn を検出するとともに、電流変成器27から
電機子電流Iphを検出し、これらの各検出信号を変換素
子25および変換器28を介して演算器29のRAMに
読み込む。
Next, the cooling medium temperature monitoring device having the above structure will be described with reference to the flow chart shown in FIG. (A) First, the temperature measuring element 21 provided for each of the plurality of stator coils 3 detects the cooling medium temperatures T 1 to T n at the outlet of each cooling medium passage, and the armature current I ph from the current transformer 27. Is detected and these detection signals are read into the RAM of the arithmetic unit 29 via the conversion element 25 and the converter 28.

【0018】(b)RAMに読み込んだ上記の電機子電
流と予めROMに格納した定格電機子電流とからプロセ
ッサにおいてp.u.変換した電流値Iを演算する。
(B) From the armature current read in the RAM and the rated armature current stored in the ROM in advance, p. u. The converted current value I is calculated.

【0019】(c)測温素子21,21,・・・の中か
ら予め選定した2つの測温素子21,21について温度
差ΔT=Ti −Tk を算出する。 (d)演算器29のROMには、例えば図4に示すよう
に、予め過去の運転データをもとに作成した標準温度差
ΔTs と電流値Iの関係が例えばΔTs =f(I)とし
て記憶されているので、この関係と計測した電流Iから
対応する標準的温度差ΔTs を演算する。
(C) The temperature difference ΔT = T i -T k is calculated for the two temperature measuring elements 21, 21 selected in advance from the temperature measuring elements 21, 21 ,. (D) In the ROM of the computing unit 29, as shown in FIG. 4, for example, the relationship between the standard temperature difference ΔT s and the current value I created based on the past operation data is, for example, ΔT s = f (I). Therefore, the corresponding standard temperature difference ΔT s is calculated from this relationship and the measured current I.

【0020】(e)測温素子21から求めた温度差ΔT
と標準の温度差ΔTs との差の絶対値ΔTA =|ΔT−
ΔTs |を求める。発電機の固定子コイルが正常な状態
であれば、この差ΔTA はほぼ0に等しくなる。 (f)次に、ΔTA について、その値が予め設定した警
報設定値ΔTANN より大きいか否かを判定する。
(E) Temperature difference ΔT obtained from the temperature measuring element 21
Absolute value of the difference between the standard temperature difference ΔT s and ΔT A = | ΔT-
Calculate ΔT s |. If the stator coil of the generator is in a normal state, this difference ΔT A will be approximately equal to zero. (F) Next, for ΔT A , it is determined whether or not the value is larger than a preset alarm set value ΔT ANN .

【0021】[0021]

【数1】 [Equation 1]

【0022】(g)上記判定の結果、ΔTA ≧ΔTANN
が成立した場合には、演算器29は上記警報装置23に
信号を送って、固定子コイルが異常であることを運転者
に警報することになる。 上記(c)から(g)までの説明は、素子の温度をTi
とTk について例にとったが、他の素子の組合せについ
ても同様に処理を行う。
(G) As a result of the above judgment, ΔT A ≧ ΔT ANN
If the above condition is satisfied, the arithmetic unit 29 sends a signal to the alarm device 23 to warn the driver that the stator coil is abnormal. The above explanations from (c) to (g) refer to the temperature of the element as T i
Although T and T k are taken as an example, the same processing is performed for other combinations of elements.

【0023】次に、この冷却媒体温度監視装置の精度に
ついて、具体的な数字を基に説明する。上記監視方式で
は、電機子電流I=0.7p.u.のときにTi ,Tk
の標準的温度差ΔTs =Ti −Tk が−5.1℃であ
り、警報設定値TANN は2.0℃に設定されているとす
る。この時、片方のコイルに異常が発生してTi =5
6.0℃、Tk =55.1℃となったとする。この場
合、ΔT=Ti −Tk =56.0−55.1=0.9℃
であり、ΔTA =|ΔT−ΔTs |=|0.9+5.1
|=6.0℃となり、ΔTA は警報設定値TANN を越え
て警報が発生される。
Next, the accuracy of this cooling medium temperature monitoring device will be described based on specific numbers. In the above monitoring method, the armature current I = 0.7 p. u. Then T i , T k
The standard temperature difference ΔT s = T i −T k of −5.1 ° C. is −5.1 ° C., and the alarm set value T ANN is set to 2.0 ° C. At this time, an abnormality occurs in one coil and T i = 5
It is assumed that the temperature becomes 6.0 ° C. and T k = 55.1 ° C. In this case, ΔT = T i −T k = 56.0−55.1 = 0.9 ° C.
And ΔT A = | ΔT−ΔT s | = | 0.9 + 5.1
| = 6.0 ° C., ΔT A exceeds the alarm set value T ANN, and an alarm is issued.

【0024】一方、従来の監視方式では、温度差ΔTの
みにより監視している。
On the other hand, in the conventional monitoring method, the temperature is monitored only by the temperature difference ΔT.

【0025】[0025]

【数2】 [Equation 2]

【0026】従って、上式により警報発信の是非を判定
しなくてはならず、また誤警報を防ぐためにTANN は正
常運転時の|ΔT|より大きな値にしなくてはならな
い。このため、上記の場合にはTANN を5.1℃以上に
する必要があるが、計測された温度差は|ΔT|=0.
9℃であるため|ΔT|≦TANN となり警報は発生され
ず、早期の異常検出ができない。
Therefore, it is necessary to judge whether the alarm is to be issued or not by the above formula, and T ANN must be set to a value larger than | ΔT | in normal operation in order to prevent a false alarm. Therefore, in the above case, T ANN needs to be 5.1 ° C. or higher, but the measured temperature difference is | ΔT | = 0.
Since the temperature is 9 ° C., | ΔT | ≦ T ANN occurs and no alarm is generated and early abnormality detection cannot be performed.

【0027】また、固定子コイル3出口の冷却媒体温度
は工作上の誤差などのために定格発電機電流において通
常5℃程度の差がある。このため、測温素子相互から求
めた温度差だけで固定子コイルを監視する場合は、誤警
報を回避するために通常発生している5℃程度の温度差
に計測誤差を加えたよりも大きい値を警報設定値にする
必要があり精度の高い監視ができないが、この実施例に
よれば、通常発生している温度差、すなわち正常運転時
に発生する温度差を過去の運転データを基に標準的な温
度差として求め、測温素子から入力されてきた温度差か
らこの標準温度差を差し引いた値を監視することによっ
て警報設定値の中に通常発生する温度差を含める必要が
なく、より精度の良い監視ができる効果がある。
Further, the temperature of the cooling medium at the outlet of the stator coil 3 usually has a difference of about 5 ° C. in the rated generator current due to a working error or the like. Therefore, when the stator coil is monitored only by the temperature difference obtained from the temperature measuring elements, a value larger than the temperature difference of about 5 ° C that is usually generated to avoid a false alarm and a measurement error added. However, according to the present embodiment, the temperature difference that occurs normally, that is, the temperature difference that occurs during normal operation is standardized based on past operation data. It is not necessary to include the temperature difference that normally occurs in the alarm set value by monitoring the value obtained by subtracting this standard temperature difference from the temperature difference input from the temperature measuring element, and it is possible to obtain a more accurate temperature difference. It has the effect of good monitoring.

【0028】例えば発電機電流が1p.u.のときに実
測の温度差が5.1℃であり、演算装置内で求めた標準
的温度差が5.0℃であるとすると、測温素子の温度差
だけ求めて監視する場合は警報設定値を5.1℃より大
きくする必要があるが、この実施例の方法では|5.1
−5.0|=0.1℃であり、警報設定値を1℃として
も誤警報を発生することなく精度良い監視ができる。
For example, if the generator current is 1 p. u. If the actual measured temperature difference is 5.1 ° C and the standard temperature difference calculated in the arithmetic unit is 5.0 ° C, the alarm setting is required when only the temperature difference of the temperature measuring element is monitored. The value needs to be larger than 5.1 ° C., but | 5.1 in the method of this embodiment.
Since −5.0 | = 0.1 ° C., even if the alarm set value is 1 ° C., accurate monitoring can be performed without generating a false alarm.

【0029】実施例2.ところで、各固定子コイル3の
温度は電機子電流Iが増加するにつれて大きくなり、同
時に各測温素子21において計測された温度のバラツキ
も大きくなる。このため、計測された温度差と標準的な
温度差の差ΔTA も電機子電流Iが増加するに伴い大き
くなり、電機子電流Iの大きい運転状態のもとでは誤警
報を発する可能性が増す。
Example 2. By the way, the temperature of each stator coil 3 increases as the armature current I increases, and at the same time, the variation in the temperature measured by each temperature measuring element 21 also increases. Therefore, the difference ΔT A between the measured temperature difference and the standard temperature difference also increases as the armature current I increases, and there is a possibility that a false alarm will be issued under an operating condition in which the armature current I is large. Increase.

【0030】この誤警報を防止するために、上記実施例
では警報設定値を電流値Iと無関係に一定としていた
が、この警報設定値を図5に示すように、電機子電流に
応じて設定することによって電機子電流が高い運転状態
においても誤警報の発生を防止することができる。一
方、電流値が低い運転状態においては、より精密なレベ
ルでの監視を行うことができる。
In order to prevent this false alarm, the alarm set value is set to be constant irrespective of the current value I in the above embodiment. However, as shown in FIG. 5, the alarm set value is set according to the armature current. By doing so, it is possible to prevent the false alarm from being generated even in an operating state where the armature current is high. On the other hand, in an operating state where the current value is low, it is possible to monitor at a more precise level.

【0031】実施例3.商用発電機は通常3相交流発電
機が使用されるが、その場合は発電機の電流としてはu
相,v相,w相の3種類の電流が計測される。また、固
定子コイル3も同様に、u相,v相,w相の3種類のコ
イルがあり、例えばu相コイルの温度はu相電流によっ
て決まる。これらのことから、出口ガス温度の温度差を
求める場合に、各相ごとに温度差を求め、標準的温度差
を求める演算においても各相電流に対して標準的温度差
を求めるようにすることが考えられる。
Example 3. A commercial three-phase AC generator is usually used as the commercial generator, and in that case, the generator current is u
Three kinds of currents of phase, v phase and w phase are measured. Similarly, the stator coil 3 also has three types of coils of u phase, v phase, and w phase, and the temperature of the u phase coil is determined by the u phase current, for example. From these facts, when calculating the temperature difference of the outlet gas temperature, calculate the temperature difference for each phase, and also calculate the standard temperature difference for each phase current even in the calculation to calculate the standard temperature difference. Can be considered.

【0032】すなわち、例えば固定子コイル出口ガス温
度T1 〜T6 のうち、T1 とT2 はu相、T3 とT4
v相、T5 とT6 はw相であるとすると、温度差をT1
−T2 ,T3 −T4 ,T5 −T6 の3種類演算して、各
々に対しての標準的温度差を計測された各相電流に対し
て演算し、各相ごとに計測温度差と標準的温度差の差を
求めて警報発生を判断することができる。実際の発電機
電流は負荷の影響によって必ずしもバランスしてはおら
ず、各相の電流値は異なる場合が多く、上記の方法によ
り、より高い精度で標準的温度差を求めることができる
ので監視精度を向上させることができる。
That is, for example, among the stator coil outlet gas temperatures T 1 to T 6 , it is assumed that T 1 and T 2 are u phase, T 3 and T 4 are v phase, and T 5 and T 6 are w phase. , The temperature difference is T 1
-T 2, T 3 -T 4, 3 kinds calculates and of T 5 -T 6, calculated to standard temperature difference measured phase currents with respect to each, the measured temperature for each phase The difference between the difference and the standard temperature difference can be obtained to determine the alarm occurrence. The actual generator current is not always balanced due to the influence of the load, and the current value of each phase is often different.By using the above method, the standard temperature difference can be obtained with higher accuracy. Can be improved.

【0033】なお、上記実施例1〜3では、固定子コイ
ル3を水素ガスで冷却するタービン発電機について説明
したが、固定子コイル3を水や油で冷却するタービン発
電機にも応用することができる。また、冷却媒体の温度
を直接測定するほかに、各固定子コイル間に埋め込んだ
測定素子によって各固定子コイルの温度を測定するよう
にしてもよい。
In the above first to third embodiments, the turbine generator in which the stator coil 3 is cooled with hydrogen gas has been described, but the present invention can also be applied to a turbine generator in which the stator coil 3 is cooled with water or oil. You can In addition to directly measuring the temperature of the cooling medium, the temperature of each stator coil may be measured by a measuring element embedded between each stator coil.

【0034】[0034]

【発明の効果】以上のように、この発明によれば、冷却
媒体通路の出口における冷却媒体温度を固定子コイルご
とに測定し、この測定した2以上の温度についてそれぞ
れ温度差を求め、この温度差と、予め求められた正常な
運転状態における標準的な温度差との差を求め、これら
温度差間の差が、予め設定された警報値を越えた場合に
警報を発生するように構成したので、回転電機、特に固
定子コイルの冷却不足による熱的あるいは絶縁的障害の
発生を未然に防止することができるとともに、該回転電
機の信頼性を向上させることがきる効果がある。これに
より、精度のよい監視が可能となり、該回転電機の異常
の早期発見、事故の未然防止、または運転員の負担軽減
が図れる効果がある。
As described above, according to the present invention, the temperature of the cooling medium at the outlet of the cooling medium passage is measured for each stator coil, and a temperature difference is obtained for each of the measured two or more temperatures. The difference between the temperature difference and the standard temperature difference in a normal operating condition is calculated, and an alarm is generated when the difference between the temperature differences exceeds a preset alarm value. Therefore, it is possible to prevent the occurrence of thermal or insulating failure due to insufficient cooling of the rotating electric machine, particularly the stator coil, and to improve the reliability of the rotating electric machine. As a result, it is possible to perform accurate monitoring, and it is possible to early detect an abnormality in the rotating electric machine, prevent an accident, or reduce the burden on the operator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の方式実施に用いられる回転
電機の冷却媒体温度監視装置を示す構成図である。
FIG. 1 is a configuration diagram showing a cooling medium temperature monitoring device for a rotary electric machine used for system implementation of Example 1 of the present invention.

【図2】冷却媒体の温度差監視回路を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a temperature difference monitoring circuit for a cooling medium.

【図3】冷却媒体の温度差監視回路の動作を示すフロー
チャートである。
FIG. 3 is a flowchart showing an operation of a cooling medium temperature difference monitoring circuit.

【図4】電機子電流に対する2測温素子間の温度差の関
係の一例を示すグラフ図である。
FIG. 4 is a graph showing an example of a relationship of a temperature difference between two temperature measuring elements with respect to an armature current.

【図5】電機子電流に対する設定された警報値の関係の
一例を示すグラフ図である。
FIG. 5 is a graph showing an example of a relationship between a set alarm value and an armature current.

【図6】従来のタービン発電機の構造及び冷却ガス通風
系統を示す説明図である。
FIG. 6 is an explanatory view showing a structure of a conventional turbine generator and a cooling gas ventilation system.

【図7】従来のタービン発電機の固定子コイル付近の断
面図である。
FIG. 7 is a cross-sectional view around a stator coil of a conventional turbine generator.

【図8】従来の冷却媒体温度監視回路を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a conventional cooling medium temperature monitoring circuit.

【図9】従来の電機子電流に対する設定された警報値の
関係を示すグラフ図である。
FIG. 9 is a graph showing a relationship between a set alarm value and a conventional armature current.

【符号の説明】[Explanation of symbols]

3 固定子コイル 3 Stator coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固定子コイルの内部に設けられた冷却媒
体通路に冷却媒体を流すことによって前記固定子コイル
を冷却すると共に、前記冷却媒体通路の出口における冷
却媒体の温度を測定することにより前記冷却媒体の温度
を監視する回転電機の冷却媒体温度監視方式において、
前記冷却媒体通路の出口における冷却媒体温度を固定子
コイルごとに測定し、この測定した2以上の温度につい
てそれぞれ温度差を求め、この温度差と、予め求められ
た正常な運転状態における標準的な温度差との差を求
め、これら温度差間の差が、予め設定された警報値を越
えた場合に警報を発生するようにしたことを特徴とする
回転電機の冷却媒体温度監視方式。
1. The stator coil is cooled by flowing a cooling medium through a cooling medium passage provided inside a stator coil, and the temperature of the cooling medium at the outlet of the cooling medium passage is measured to measure the temperature of the cooling medium. In the cooling medium temperature monitoring method of the rotating electric machine that monitors the temperature of the cooling medium,
The temperature of the cooling medium at the outlet of the cooling medium passage is measured for each stator coil, a temperature difference is obtained for each of the measured two or more temperatures, and this temperature difference and a standard value obtained in advance in a normal operating state are used. A method for monitoring the temperature of a cooling medium for a rotating electric machine, wherein a difference from a temperature difference is obtained, and an alarm is generated when the difference between the temperature differences exceeds a preset alarm value.
JP12314393A 1993-04-28 1993-04-28 Refrigerant temperature monitoring system for rotating electric machine Pending JPH06315247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12314393A JPH06315247A (en) 1993-04-28 1993-04-28 Refrigerant temperature monitoring system for rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12314393A JPH06315247A (en) 1993-04-28 1993-04-28 Refrigerant temperature monitoring system for rotating electric machine

Publications (1)

Publication Number Publication Date
JPH06315247A true JPH06315247A (en) 1994-11-08

Family

ID=14853261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12314393A Pending JPH06315247A (en) 1993-04-28 1993-04-28 Refrigerant temperature monitoring system for rotating electric machine

Country Status (1)

Country Link
JP (1) JPH06315247A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418659A1 (en) * 2002-11-07 2004-05-12 Siemens Aktiengesellschaft Monitoring system for parallel-connected stator windings
US7260446B2 (en) * 2005-02-08 2007-08-21 Mikron Agie Charmilles Ag Temperature protection method for machine tool
JP2012093353A (en) * 2010-10-22 2012-05-17 General Electric Co <Ge> System with fiber optic purity sensor
CN109520563A (en) * 2018-10-31 2019-03-26 国网山东省电力公司电力科学研究院 A kind of water inner cold motor stator bar strand chocking-up degree determines system and method
CN111552331A (en) * 2020-05-14 2020-08-18 海马新能源汽车有限公司 Cooling control method and cooling control system
US11309773B2 (en) 2018-11-02 2022-04-19 Mitsubishi Heavy Industries, Ltd. System and method for monitoring temperature of rotating electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188739A (en) * 1984-10-04 1986-05-07 Mitsubishi Electric Corp Monitoring system of cooling medium temperature for rotary electric machine
JPS62110458A (en) * 1985-11-08 1987-05-21 Mitsubishi Electric Corp Temperature monitor for coolant of generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188739A (en) * 1984-10-04 1986-05-07 Mitsubishi Electric Corp Monitoring system of cooling medium temperature for rotary electric machine
JPS62110458A (en) * 1985-11-08 1987-05-21 Mitsubishi Electric Corp Temperature monitor for coolant of generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418659A1 (en) * 2002-11-07 2004-05-12 Siemens Aktiengesellschaft Monitoring system for parallel-connected stator windings
US7260446B2 (en) * 2005-02-08 2007-08-21 Mikron Agie Charmilles Ag Temperature protection method for machine tool
JP2012093353A (en) * 2010-10-22 2012-05-17 General Electric Co <Ge> System with fiber optic purity sensor
CN109520563A (en) * 2018-10-31 2019-03-26 国网山东省电力公司电力科学研究院 A kind of water inner cold motor stator bar strand chocking-up degree determines system and method
CN109520563B (en) * 2018-10-31 2021-05-28 国网山东省电力公司电力科学研究院 System and method for determining blockage degree of stator bar strand of internal water cooling motor
US11309773B2 (en) 2018-11-02 2022-04-19 Mitsubishi Heavy Industries, Ltd. System and method for monitoring temperature of rotating electric machine
CN111552331A (en) * 2020-05-14 2020-08-18 海马新能源汽车有限公司 Cooling control method and cooling control system
CN111552331B (en) * 2020-05-14 2021-09-17 海马新能源汽车有限公司 Cooling control method and cooling control system

Similar Documents

Publication Publication Date Title
KR940004778B1 (en) Temperature monitoring system for an electric generator
EP0209364B1 (en) Generator stator winding diagnostic system
EP2372882B1 (en) Stator coil coolant flow reduction monitoring
US8405339B2 (en) System and method for detecting fault in an AC machine
JP3485571B2 (en) Generator temperature monitoring method and device
US4733225A (en) Cooling medium temperature monitoring system for rotary electric machine
US20030011397A1 (en) Method for monitoring the radial gap between the rotor and the stator of electric generators and device for carrying out said method
KR20190014074A (en) Diagnostic equipment of motors
KR101332113B1 (en) Apparatus for preventive maintenance of motor
JPH06315247A (en) Refrigerant temperature monitoring system for rotating electric machine
US11309773B2 (en) System and method for monitoring temperature of rotating electric machine
JPH05284692A (en) Monitoring equipment for temperature of coil of rotating electric machine
JPH06101910B2 (en) Cooling medium temperature monitoring method for generator
Hudon et al. On-line rotor temperature measurements
KR100530467B1 (en) On-line check system for induction motors
RU2366059C1 (en) Method of controlling and diagnosing technical state of turbo-generators
SU855875A1 (en) Device for diagnosis of electric machine thermal state
JPH07151788A (en) Device and method for diagnosing fault of electromagnetic pump
EP3648336B1 (en) Motor parallel winding differential current protection and associated method
JPH07128394A (en) Dielectric deterioration monitoring/diagnosing system for electric equipment
KR20200130405A (en) Electric motor diagnostic device
SU1467675A1 (en) Electric machine with device for diagnosing excitation winding
JP3128989B2 (en) Temperature measurement device
JP2004023986A (en) Temperature monitoring system of stator winding of generator
Demos On-line rectifier analyzer end user experiences