JPS6188688A - Color image pickup device - Google Patents

Color image pickup device

Info

Publication number
JPS6188688A
JPS6188688A JP59209638A JP20963884A JPS6188688A JP S6188688 A JPS6188688 A JP S6188688A JP 59209638 A JP59209638 A JP 59209638A JP 20963884 A JP20963884 A JP 20963884A JP S6188688 A JPS6188688 A JP S6188688A
Authority
JP
Japan
Prior art keywords
signal
circuit
color
output
gamma correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209638A
Other languages
Japanese (ja)
Inventor
Kenro Sone
賢朗 曽根
Susumu Hashimoto
進 橋本
Masanori Omae
大前 昌軌
Masao Hiramoto
政夫 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59209638A priority Critical patent/JPS6188688A/en
Publication of JPS6188688A publication Critical patent/JPS6188688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To minimize the reduction in saturation of a high brightness part by using a luminance signal and a chrominance signal obtained through gamma correction to apply gamma correction to a chrominance carrier signal from the carrier while being modulated by the chrominance signal. CONSTITUTION:A color difference signal of a detection circuit 24 and an output of a low-pass filter 30 are inputted to a white balance circuit 25 to adjust the white balance of a picture. An output of the white balance circuit 25 is reproduced by using a 1H delay circuit 26 and a 1H switching circuit 27 so as to be synchronized with two color difference signals. The color difference signal is modulated by a chrominance subcarrier at a balanced modulation circuit 28 and becomes a chrominance carrier signal. gamma correction is conducted by using an output of a luminance signal gamma correction circuit 51 to apply gain control to the chrominance carrier signal at a chrominance signal gamma correction circuit 52. The output of the chrominance signal gamma correction 52 is mixed with an output of the luminance signal gamma correction circuit 51 by a mixing circuit 29, and synchronizing signal is added to obtain a decoded color signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガンマ補正をおこないうるカラー撮像装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a color imaging device capable of performing gamma correction.

(従来例の構成とその問題点) 周知のとおり、カラー画像送受システムには、NTSC
方式、PAL方式、SECAM方式等の方式が各国で採
用されている。これらのいずれの方式においてもカラー
受像管の信号電圧対発光出力特性の非直線性を補正する
ガンマ(以下γと略す)補正回路を送像側のカメラに備
えるように定められている。
(Conventional configuration and its problems) As is well known, color image transmission/reception systems use NTSC
The PAL system, the SECAM system, and other systems have been adopted in various countries. In any of these systems, it is prescribed that the camera on the image sending side is equipped with a gamma (hereinafter abbreviated as γ) correction circuit for correcting the nonlinearity of the signal voltage versus light emission output characteristic of the color picture tube.

以下の説明においてはNTSC方式を用いる。In the following description, the NTSC system will be used.

第1図は代表的な、赤(以下Rと略す)、緑(以下Gと
略す)、青(以下Bと略す)の3原色を用いるカラービ
デオカメラの構成を説明するための図であり、1,2.
3はそれぞれR,G、B用の撮像デバイス、4,5.6
はそれぞれR,G。
FIG. 1 is a diagram for explaining the configuration of a typical color video camera that uses three primary colors: red (hereinafter abbreviated as R), green (hereinafter abbreviated as G), and blue (hereinafter abbreviated as B). 1, 2.
3 is an imaging device for R, G, and B, respectively, 4, 5.6
are R and G, respectively.

B用のγ補正回路を含む信号処理回路、7,8゜9はそ
れぞれ輝度信号、1色差信号(以下■信号と略す)、Q
色差信号(以下Q信号と略す)を合成するためのマトリ
クス回路、10.11はそれぞれ、 ゛■倍信号Q信号
を色副搬送波で変調し、■及びQ搬送色信号を得る平衡
変調回路、12は輝度信号、■及びQ搬送色信号、同期
信号等を合成する混合回路である。
A signal processing circuit including a γ correction circuit for B, 7 and 8° 9 are a luminance signal, 1 color difference signal (hereinafter abbreviated as ■ signal), Q
Matrix circuits 10 and 11 for synthesizing color difference signals (hereinafter abbreviated as Q signals) are respectively balanced modulation circuits 12 that modulate the double signal Q signal with a color subcarrier and obtain ■ and Q carrier color signals. is a mixing circuit that synthesizes a luminance signal, (2) and Q carrier color signals, a synchronization signal, etc.

第1図の構成を持つカラーカメラにおいては、1,2,
3に示す各撮像デバイスから得られるR2O,B信号に
対しそれぞれ独立に、4,5.6に示す各信号処理回路
においてγ補正を施すことができる。
In a color camera having the configuration shown in Fig. 1, 1, 2,
γ correction can be applied to the R2O and B signals obtained from each imaging device shown in 3 independently in each signal processing circuit shown in 4 and 5.6.

しかし、第1図に示す構成は、業務用等の3管式カラー
ビデオカメラに相当するもので、たとえば家庭用小型ビ
デオカメラ実現のためには、その型状、重量、調整、取
り扱いの容易さ、価格等の点で難点が多い。
However, the configuration shown in Figure 1 corresponds to a three-tube color video camera for commercial use, etc., and in order to realize a compact video camera for home use, for example, the configuration, weight, adjustment, and ease of handling are required. , there are many difficulties in terms of price, etc.

現在、家庭用等の簡易型カラービデオカメラの主流とな
っているのは、一つの撮像デバイスより、輝度情報と色
情報を多重化してとり出す方式である。
Currently, the mainstream of simple color video cameras for home use is a method that multiplexes and extracts luminance information and color information from a single imaging device.

たとえば特開昭59−137909号に述べられている
ようなカラーフィルタを撮像デバイスの一種である固体
撮像素子に適用し、カラーカメラを構成した場合、簡単
な回路構成で超小型のカラービデオカメラを実現するこ
とができる。
For example, if a color filter as described in JP-A-59-137909 is applied to a solid-state image sensor, which is a type of imaging device, to configure a color camera, an ultra-small color video camera can be created with a simple circuit configuration. It can be realized.

第2図は前記特開昭59−137909号に述べられて
いるカラーフィルタを備えた固体撮像装置(以下カラー
撮像素子と略す)を用いたカラービデオカメラの信号処
理回路例である。カラー撮像素子20の出力信号Aはロ
ーパスフィルタ21、プロセス回路22を通り輝度信号
として混合回路29に導かれる。
FIG. 2 shows an example of a signal processing circuit for a color video camera using a solid-state imaging device (hereinafter abbreviated as color imaging device) equipped with a color filter as described in Japanese Patent Laid-Open No. 59-137909. The output signal A of the color image sensor 20 passes through a low-pass filter 21 and a process circuit 22, and is led to a mixing circuit 29 as a luminance signal.

また色差信号はカラー撮像素子20の出力信号を帯域フ
ィルタ23、検波回路24を用いて得られる。画像の白
バランスを調節するために検波回路24の出力とローパ
スフィルタ30の出力とを白バランス回路25に入力す
る。白バランス回路25の出力はこのままでは1水平期
間(以下IHと略す)毎に2種の色差信号が繰り返され
るので、IH遅延回路26、IH毎切換回路27を用い
て2本の色差信号に同時化し再生する。こうして得られ
た色差信号は平衡   ゛変調回路28において色副搬
送波で変調され、搬送色信号となる。さらに混合回路2
9で先の輝度信号と混合され同期信号等の付加をおこな
い複合カラー信号が得られる。
Further, a color difference signal is obtained by using an output signal of the color image sensor 20 using a bandpass filter 23 and a detection circuit 24. In order to adjust the white balance of the image, the output of the detection circuit 24 and the output of the low-pass filter 30 are input to a white balance circuit 25. As it is, the output of the white balance circuit 25 will repeat two types of color difference signals every horizontal period (hereinafter abbreviated as IH), so the IH delay circuit 26 and each IH switching circuit 27 are used to simultaneously output two color difference signals Convert and regenerate. The color difference signal thus obtained is modulated by a color subcarrier in a balanced modulation circuit 28 to become a carrier color signal. Furthermore, mixing circuit 2
At step 9, the signal is mixed with the previous luminance signal and a synchronization signal etc. are added to obtain a composite color signal.

第2図に示した信号処理回路例においては、γ補正回路
は含んでいない。
The example signal processing circuit shown in FIG. 2 does not include a γ correction circuit.

第2図の回路構成にγ補正回路を追加した回路構成例を
第3図に示す。第3図において20〜30に示すものは
第2図の同符号のものと同一のものである。
FIG. 3 shows an example of a circuit configuration in which a γ correction circuit is added to the circuit configuration of FIG. 2. Components 20 to 30 in FIG. 3 are the same as those with the same reference numerals in FIG.

IH毎切換回路27の2種の色差信号出力と、プロセス
回路22の輝度信号をデコーダ31に導き、3原色成分
(R,G、B)に分離する。分離したR2O,B信号を
それぞれγ補正回路4,5.e;で処理し、そののちマ
トリクス回路32で再び輝度信号と2種の色差信号に合
成する。この場合の2種の色差信号はIH毎切換回路2
7の出力である2種の色差信号と同一の原色成分である
必要はなく、たとえば、I、Q信号を合成してもよい。
Two types of color difference signal output from the IH switching circuit 27 and a luminance signal from the process circuit 22 are led to a decoder 31 and separated into three primary color components (R, G, B). The separated R2O and B signals are sent to γ correction circuits 4, 5, . After that, the matrix circuit 32 combines the luminance signal and two types of color difference signals again. In this case, the two types of color difference signals are determined by the IH switching circuit 2.
It is not necessary that the primary color components are the same as those of the two types of color difference signals outputted from 7, and for example, I and Q signals may be combined.

また輝度信号もプロセス回路22の出力である輝度信号
と同一の原色成分である必要はなく、輝度信号の原色成
分の補正を加えてもよい。マトリクス回路32の出力の
うち2種の色差信号は平衡変調回路28で色副搬送波で
変調され搬送色信号となりマトリクス回路22の出力で
ある輝度信号と混合回路29で混合され、同期信号等の
付加をおこない複合カラー信号が得られる。
Furthermore, the luminance signal does not need to have the same primary color components as the luminance signal output from the process circuit 22, and the primary color components of the luminance signal may be corrected. Out of the outputs of the matrix circuit 32, two types of color difference signals are modulated by color subcarriers in a balanced modulation circuit 28 to become a carrier color signal, which is mixed with a luminance signal which is an output of the matrix circuit 22 in a mixing circuit 29, and a synchronization signal etc. A composite color signal is obtained.

第3図に示した信号処理回路を用いると、第1図に示し
た信号処理回路と同様にR,G、Bそれぞれにγ補正を
施すことができる。この結果、正確にγ補正した複合カ
ラー信号を得ることが可能であるが、γ補正回路として
R,G、B独立な3回路が必要であり、さらにその前後
にデコーダ、マトリクス回路が必要で、各回路の相互調
整が複雑となり、家庭用の簡易型カラービデオカメラと
しての特徴である小型、低価格、調整、取扱いの容易さ
に反するものになる。
When the signal processing circuit shown in FIG. 3 is used, it is possible to perform γ correction on each of R, G, and B similarly to the signal processing circuit shown in FIG. As a result, it is possible to obtain an accurately gamma-corrected composite color signal, but three independent circuits for R, G, and B are required as gamma correction circuits, and decoders and matrix circuits are also required before and after the gamma correction circuits. The mutual adjustment of each circuit becomes complicated, which goes against the characteristics of a simple color video camera for home use: small size, low price, easy adjustment, and ease of handling.

第4図は、特願昭52−143300号に述べられてい
るガンマ補正方式を説明するための図である。第4図に
おいて20〜30に示すものは第2図の同符号のものと
同一のものである。
FIG. 4 is a diagram for explaining the gamma correction method described in Japanese Patent Application No. 52-143300. Components 20 to 30 in FIG. 4 are the same as those with the same reference numerals in FIG.

第4図の信号の流れは第2図の場合と同じであり、混合
回路29からの出力をγ補正回路41を通し複合カラー
信号を得るものである。
The signal flow in FIG. 4 is the same as that in FIG. 2, and the output from the mixing circuit 29 is passed through the γ correction circuit 41 to obtain a composite color signal.

第4図のγ補正回路は、単純で、簡易カラービデオカメ
ラ用として適当なものであるが、高輝度部分の色飽和度
が低下する等の問題点も有している。
The γ correction circuit shown in FIG. 4 is simple and suitable for use in a simple color video camera, but it also has problems such as a decrease in color saturation in high-brightness areas.

(発明の効果) 本発明は簡単な構成で、輝度信号及び搬送色信号にγ補
正を施し、小型、低価格、調整、取扱いの容易なカラー
撮像装置を実現するものである。
(Effects of the Invention) The present invention has a simple configuration, performs γ correction on a luminance signal and a carrier color signal, and realizes a color imaging device that is small, inexpensive, and easy to adjust and handle.

(発明の構成) この目的を達成するために、本発明のカラー撮像装置は
、γ補正して得られる補正された輝度信号および補正さ
れた色信号を用いて、搬送波が色信号によって変調され
て得られる搬送色信号にγ補正することから構成されて
いる。
(Structure of the Invention) In order to achieve this object, the color imaging device of the present invention uses a corrected luminance signal and a corrected color signal obtained by γ correction, and a carrier wave is modulated by the color signal. It consists of performing γ correction on the obtained carrier color signal.

(実施例の説明) 第5図に本発明の一実施例によるカラー固体撮像装置の
構成を示す。第5図において20〜30に示すものは第
2図の同符号のものと同一のものである。51は輝度信
号γ補正回路、52は色信号γ補正回路である。
(Description of Embodiment) FIG. 5 shows the configuration of a color solid-state imaging device according to an embodiment of the present invention. Items 20 to 30 in FIG. 5 are the same as those with the same symbols in FIG. 51 is a luminance signal γ correction circuit, and 52 is a color signal γ correction circuit.

カラー撮像素子20より得られた出力信号はローパスフ
ィルタ21、プロセス回路22を通り、輝度信号γ補正
回路51でγ補正を受けた後、混合回路29に導かれる
。また色差信号はカラー撮像素子20の出力信号を帯域
フィルタ23、検波回路24を用いて得られる。画像の
白バランスを調節するために検波回路24の出力とロー
パスフィルタ30の出力を白バランス回路25に入力す
る。白バランス回路25の出力はこのままではIH毎に
2種の色差信号がくりかえされるので、IH遅延回路2
6、IH毎切換回路27を用いて2本の色差信号に同時
化し再生する。こうして得られた色差信号は平衡変調回
路28において色副搬送波で変調され、搬送色信号とな
る。この搬送色信号を色信号γ補正回路52において、
輝度信号γ補正回路51の出力を用いて利得制御をおこ
ないγ補正をおこなう。色信号γ補正回路52の出力は
混合回路29において先の輝度信号γ補正回路51の出
力と混合され、さらに同期信号等の付加をおこない複合
カラー信号が得られる。
The output signal obtained from the color image sensor 20 passes through a low-pass filter 21 and a process circuit 22, undergoes γ correction in a luminance signal γ correction circuit 51, and then is guided to a mixing circuit 29. Further, a color difference signal is obtained by using an output signal of the color image sensor 20 using a bandpass filter 23 and a detection circuit 24. In order to adjust the white balance of the image, the output of the detection circuit 24 and the output of the low-pass filter 30 are input to a white balance circuit 25. If the output of the white balance circuit 25 is left as it is, two types of color difference signals will be repeated for each IH, so the IH delay circuit 2
6. Using the IH switching circuit 27, the two color difference signals are simultaneously generated and reproduced. The color difference signal thus obtained is modulated by the color subcarrier in the balanced modulation circuit 28 to become a carrier color signal. This carrier color signal is sent to the color signal γ correction circuit 52.
Gain control is performed using the output of the luminance signal γ correction circuit 51 to perform γ correction. The output of the color signal γ correction circuit 52 is mixed with the output of the luminance signal γ correction circuit 51 in a mixing circuit 29, and a synchronization signal and the like are further added to obtain a composite color signal.

第6図に輝度信号γ補正回路51の輝度信号γ補正入出
力特性61及び入力波形60、出力波形62の一例を示
す。第6図においては、輝度信号γ補正入出力特性61
はいわゆる2、2乗特性ではなく、2点の折れ線で近似
している。入力波形60が、輝度信号γ補正回路51を
通過すると出力波形62が得られる。
FIG. 6 shows an example of the luminance signal γ correction input/output characteristic 61, input waveform 60, and output waveform 62 of the luminance signal γ correction circuit 51. In FIG. 6, the luminance signal γ correction input/output characteristic 61
is not a so-called 2,2-square characteristic, but is approximated by a polygonal line at two points. When the input waveform 60 passes through the luminance signal γ correction circuit 51, an output waveform 62 is obtained.

第7図は色信号γ補正回路52の利得制御の一例を示す
。第7図において、搬送色信号72は、可変利得制御回
路73に入力され、利得制御信号71によって利得が制
御され、利得制御出力信号74が得られる。可変利得制
御回路72の利得制御特性は第8図(a)のように直線
的である必要はなく、同図(b)。
FIG. 7 shows an example of gain control of the color signal γ correction circuit 52. In FIG. 7, a carrier color signal 72 is input to a variable gain control circuit 73, whose gain is controlled by a gain control signal 71, and a gain control output signal 74 is obtained. The gain control characteristic of the variable gain control circuit 72 does not have to be linear as shown in FIG. 8(a), but is shown in FIG. 8(b).

(c)に示すように非直線的であってもよい。It may be non-linear as shown in (c).

また、第5図において色信号γ補正回路52の入力する
利得制御信号は、輝度信号γ補正回路51の出力だけで
はなく、γ補正前のプロセス回路22の出力、IH毎切
換回路27の出力のような色差信号出力、さらには、色
信号γ補正前の搬送色信号を検波した信号、またはそれ
らの組み合わせに適当な処理を行った信号を用いてもよ
い。
In FIG. 5, the gain control signal input to the color signal γ correction circuit 52 is not only the output of the luminance signal γ correction circuit 51, but also the output of the process circuit 22 before γ correction, and the output of the IH switching circuit 27. Further, a signal obtained by detecting a carrier color signal before color signal γ correction, or a signal obtained by appropriately processing a combination thereof may be used.

なお前述した実施例は固体撮像素子を用いて説明したが
、ビジコン等の撮像管を用いたカラービデオカメラにつ
いても本発明を適用することができる。
Although the above-mentioned embodiments have been explained using a solid-state image sensor, the present invention can also be applied to a color video camera using an image pickup tube such as a vidicon.

(発明の効果) 本発明においては、輝度信号と色信号の2系統にそれぞ
れ別々にγ補正を施すため、色信号γ補正回路へ入力す
る制御信号をコントロールすることによって高輝度部の
飽和度低下を最小限にとどめることができる。また輝度
信号、色信号の各γ補正回路はそれぞれ独立であるため
相互に微妙に調整する必要はなく調整の簡素化が可能で
ある。
(Effects of the Invention) In the present invention, in order to apply γ correction to the two systems of the luminance signal and the color signal separately, the saturation of the high brightness area is reduced by controlling the control signal input to the color signal γ correction circuit. can be kept to a minimum. Furthermore, since the γ correction circuits for the luminance signal and the chrominance signal are each independent, there is no need to delicately adjust each other, and the adjustment can be simplified.

この結果、カラービデオカメラの小型、軽量、低価格化
に有用であり、さらに再生画質の向上も望める。
As a result, it is useful for making color video cameras smaller, lighter, and less expensive, and it is also possible to improve playback image quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は赤緑青の3原色を用いるカラービデオカメラの
構成図、第2図は固体撮像素子を用いた単板式カラービ
デオカメラの構成図、第3図は赤緑青3原色に対してγ
補正を行う単板式カラービデオカメラの構成図、第4図
は複合カラー信号に対してγ補正を行う単板式カラービ
デオカメラの構成図、第5図は本発明によるγ補正を行
う単板式カラービデオカメラの実施例を示す構成図、第
6図は輝度信号のγ補正を説明する図、第7図は色差信
号のγ補正を説明する図、第8図は利得制御特性を説明
する図である。 特許出願人 松下電子工業株式会社 第6図
Fig. 1 is a block diagram of a color video camera that uses the three primary colors of red, green, and blue, Fig. 2 is a block diagram of a single-chip color video camera that uses a solid-state image sensor, and Fig. 3 is a block diagram of a color video camera that uses the three primary colors of red, green, and blue.
Fig. 4 is a block diagram of a single-chip color video camera that performs gamma correction on a composite color signal, and Fig. 5 shows a single-chip color video camera that performs gamma correction according to the present invention. A configuration diagram showing an embodiment of the camera, FIG. 6 is a diagram explaining γ correction of a luminance signal, FIG. 7 is a diagram explaining γ correction of a color difference signal, and FIG. 8 is a diagram explaining gain control characteristics. . Patent applicant: Matsushita Electronics Co., Ltd. Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)輝度信号と色信号を得る撮像手段、搬送波を前記
色信号により変調することによって搬送色信号を得る手
段、前記輝度信号と前記搬送波色信号を加算し、カラー
映像信号を得る加算手段を有し、前記輝度信号をあらか
じめ所定量ガンマ補正し、補正された輝度信号または、
前記色信号を用いて前記搬送色信号にガンマ補正を実施
することを特徴とするカラー撮像装置。
(1) An imaging means for obtaining a luminance signal and a color signal, a means for obtaining a carrier color signal by modulating a carrier wave with the color signal, and an addition means for adding the luminance signal and the carrier color signal to obtain a color video signal. and the luminance signal is gamma-corrected by a predetermined amount in advance, and the corrected luminance signal or;
A color imaging device characterized in that gamma correction is performed on the carrier color signal using the color signal.
(2)搬送色信号を用いて搬送色信号にガンマ補正を実
施することを特徴とする特許請求の範囲第(1)項記載
のカラー撮像装置。
(2) The color imaging device according to claim (1), wherein gamma correction is performed on the carrier color signal using the carrier color signal.
JP59209638A 1984-10-08 1984-10-08 Color image pickup device Pending JPS6188688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209638A JPS6188688A (en) 1984-10-08 1984-10-08 Color image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209638A JPS6188688A (en) 1984-10-08 1984-10-08 Color image pickup device

Publications (1)

Publication Number Publication Date
JPS6188688A true JPS6188688A (en) 1986-05-06

Family

ID=16576101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209638A Pending JPS6188688A (en) 1984-10-08 1984-10-08 Color image pickup device

Country Status (1)

Country Link
JP (1) JPS6188688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274289A (en) * 1987-05-01 1988-11-11 Fuji Photo Film Co Ltd Digital electronic still camera

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478621A (en) * 1977-12-05 1979-06-22 Matsushita Electric Ind Co Ltd Color pickup device
JPS58209288A (en) * 1982-05-31 1983-12-06 Nippon Kogaku Kk <Nikon> Gamma correction device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478621A (en) * 1977-12-05 1979-06-22 Matsushita Electric Ind Co Ltd Color pickup device
JPS58209288A (en) * 1982-05-31 1983-12-06 Nippon Kogaku Kk <Nikon> Gamma correction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274289A (en) * 1987-05-01 1988-11-11 Fuji Photo Film Co Ltd Digital electronic still camera

Similar Documents

Publication Publication Date Title
US4805011A (en) Luminance signal forming circuit for color tv camera which combines luminance signal derived from primary color signals with luminance signal derived from complementary color signals
US3681520A (en) System for improving the sharpness in a color television picture
JPH0678318A (en) Projection type liquid crystal display device
US4559554A (en) Color television camera with a single image pickup tube featuring improved rendition of bright monochromatic objects
JPS6188688A (en) Color image pickup device
JP2569046B2 (en) Method and apparatus for correcting luminance signal
JP3017873B2 (en) Black and white video signal output device
JPS5819089A (en) Luminance signal correcting system for color television camera
JP2532483B2 (en) Color TV transmission system
JPS601989A (en) Image pickup device
JPH0417486A (en) Solid-state color image pickup device
JP2667496B2 (en) Color television transmission luminance signal correction circuit
JPS6083488A (en) Camera signal processing circuit
JP3192212B2 (en) Color television signal processing circuit
JP2846317B2 (en) Color imaging device
JPS6219115B2 (en)
JPH06141247A (en) Solid image pickup device
KR100234742B1 (en) Device for compensating colour signal perimeter
SU1300657A1 (en) Device for suppressing the flickering of horizontal colour boundaries of television picture
JPH0628480B2 (en) Color camera
JPS6219114B2 (en)
JPS60140991A (en) Color video camera
JPS6238390Y2 (en)
JPS61247187A (en) Color difference correction device
JPS63117589A (en) Video signal processing circuit