JPS60140991A - Color video camera - Google Patents
Color video cameraInfo
- Publication number
- JPS60140991A JPS60140991A JP58251918A JP25191883A JPS60140991A JP S60140991 A JPS60140991 A JP S60140991A JP 58251918 A JP58251918 A JP 58251918A JP 25191883 A JP25191883 A JP 25191883A JP S60140991 A JPS60140991 A JP S60140991A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- color
- chroma
- level
- luminance signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 claims description 12
- 238000001615 p wave Methods 0.000 claims description 7
- 238000004040 coloring Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 7
- 238000009825 accumulation Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 206010047571 Visual impairment Diseases 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 244000020998 Acacia farnesiana Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 241000531897 Loma Species 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
Landscapes
- Color Television Image Signal Generators (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野 ゛
本発明は、線順次撮像方式の固体撮像素子を用いたカラ
ービデオカメラに関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field [0001] The present invention relates to a color video camera using a line-sequential imaging type solid-state imaging device.
背景技術
従来の撮像管に代え、残像がなく焼き付きもない固体撮
像素子(can)i用いたカラービデオカメラが提案さ
れ、より自然な色再現性と高画質を得るための種々の改
良がなされつつある。この種のCODカラービデオカメ
ラは、所要の解像度な得る上で色分離方式が鍵となって
おり、実用性が高いとされている位相分離方式や周波数
分離方式或いはステツブエネルギ方式等の各方式も、そ
れぞれ一長一短があるのが現状である。例えば、周波数
分離方式は、フレーム蓄積モードと組み合わせた場合、
インタレースに起因する等価残像や垂直限界解像度付近
のフリッカ等の問題があるため、画質への悪影響が避け
られず、またフィールド蓄積モードを採用した場合は、
垂直相関を利用しない分だけフレーム蓄積モード−較べ
て垂直解像度が劣るという問題があった。BACKGROUND ART A color video camera using a solid-state image sensor (CAN) i, which has no afterimage and no burn-in, has been proposed in place of the conventional image pickup tube, and various improvements have been made to obtain more natural color reproduction and high image quality. be. For this type of COD color video camera, the color separation method is the key to obtaining the required resolution, and various methods such as the phase separation method, frequency separation method, step energy method, etc., which are considered to be highly practical, are used. The current situation is that each has its advantages and disadvantages. For example, the frequency separation method, when combined with the frame accumulation mode,
Due to problems such as equivalent afterimages caused by interlacing and flicker near the vertical limit resolution, negative effects on image quality cannot be avoided, and when field accumulation mode is used,
The problem is that the vertical resolution is inferior compared to the frame accumulation mode because vertical correlation is not used.
特に、線順次撮像方式の固体撮像素子をフィールド蓄積
モードで用いる場合、垂直方向の2画素の信号電荷が混
合される結果、色多重化方式の自由度が制限されてしま
い、例えば従来のフレーム蓄積モードおよび一行同時読
み出し色フィルタを使用すると、カラー再生に必要な色
信号を得ることができないという事情があるため、フィ
ールド蓄積モードを用いて単板カラー化を行う場合、垂
直方向の2画素の信号電荷が混合されても、各フィール
ド、各ラインで輝度信号が等しく、かつコ水平ラインで
少なくとも2種類の色信号が得られる色フイルタ構成が
必要になるという課題があった0
この課題に応える試みとして、例えばテレビジョン学会
誌Vo1.37.&/θ(/り?3)の「フィールド蓄
積モードCODの単板カラー化方式」と題する論文に、
λ画素混合読み出し用色フィルタを用いたカラービデオ
カメラが紹介されている。第1図(A)、 (111は
、それぞれこの種の従来のカラービデオカメラの一例な
示す概略回路構成図及び従来のカラービデオカメラの色
フィルタの配列パターンな示す図である。In particular, when using a line-sequential imaging type solid-state image sensor in field accumulation mode, the signal charges of two pixels in the vertical direction are mixed, which limits the degree of freedom of the color multiplexing method. mode and single-row simultaneous readout color filters, it is not possible to obtain the color signals necessary for color reproduction. Therefore, when performing single-chip colorization using field accumulation mode, the vertical two-pixel signal cannot be obtained. Even when charges are mixed, a color filter configuration is required that provides equal luminance signals in each field and line, and at least two types of color signals in each horizontal line.Attempts to address this issue For example, the Journal of the Television Society Vol. 1.37. &/θ(/ri?3)'s paper entitled "Single plate colorization method for field accumulation mode COD",
A color video camera using a λ pixel mixed readout color filter is introduced. FIG. 1A (111) is a schematic circuit diagram showing an example of this type of conventional color video camera and a diagram showing the arrangement pattern of color filters of the conventional color video camera, respectively.
第1図(A)に示した従来のカラービデオカメラ/は、
コ画素混合読み出し用色フィルタコを固体撮像素子3と
組み合わせて使用しており、この色フィルタコは、同図
(B)に示す如く、2列ダ行のくり返し配列パターンを
有する。第1図(B)中、Mはマゼンタを、Cyはシア
ンを、Yeはイエローな表わし、光の3原色R(レッド
)、G(グリーン)、B(ブルー)との関係では、M=
R+B、07=G+B、Ye=G−1−Rとなる0色フ
ィルタ2の配列パターンは、7行目がM、G、M、G・
・・の繰り返しとすれば、コ行目がOy 、 Ye 、
Oy 、 Ye・・・の繰り返しとなるものであり、
3行目は7行目と逆でG。The conventional color video camera shown in FIG. 1(A) is
A color filter for co-pixel mixed readout is used in combination with the solid-state image sensor 3, and this color filter has a repeating array pattern of two columns and two rows, as shown in FIG. 3B. In Figure 1 (B), M stands for magenta, Cy stands for cyan, and Ye stands for yellow. In relation to the three primary colors of light, R (red), G (green), and B (blue), M =
In the arrangement pattern of the 0-color filter 2, where R+B, 07=G+B, Ye=G-1-R, the 7th row is M, G, M, G・
If we repeat..., then the column 0 is Oy, Ye,
It is a repetition of Oy, Ye...
The third line is G, the opposite of the seventh line.
M、G、M・・・の繰り返しとなり、4を行目は2行目
と同様*C7yYθ、 Oy 、 Ye・・・の繰り返
しとなる。M, G, M... are repeated, and the 4th line is the same as the 2nd line, *C7yYθ, Oy, Ye... are repeated.
ここで、AフィールドにおけるnラインI n−1−/
ラインの輝度信号をyAn ? YAn−1−/ #色
信号をCAn e CAn +/ t Aフィールドに
隣接するBフィールドにおけるnライン、n+/ライン
の輝度信号をYBn 、 YBn十/ r色信号をCB
n 、 OBn+/とすると、nラインの信号出力Sn
とn−1−/ラインの信号出力S n+/は、それぞれ
Sn” Yn+on sinωct
Sn+/= Yn+/ 十Cn−)−/sin (ωa
t +x )で表わされる。ただし、ωCは、固体撮像
素子3の読み出し周期fより決る色信号の搬送波角周波
数である。Here, n line I n-1-/ in A field
Line luminance signal yAn? YAn-1-/# The color signal is CAne CAn+/t The luminance signal of the n line and n+/ line in the B field adjacent to the A field is YBn, and the YBn+/r color signal is CB.
n, OBn+/, the signal output Sn of the n line
The signal output S n+/ of the
t+x). However, ωC is the carrier wave angular frequency of the color signal determined by the readout cycle f of the solid-state image sensor 3.
なお、各輝度信号成分Yn * Yn十/と各色信号成
分an t On+/は2
Ynミ(Ye + Mg) + (Oy+G )=2R
+jG+、2B
Yn+/ミ(Ye 十Mg)+ (Oy十G)= 2R
+JG −1−2B
On=(ye+ Mg) −(07+G)=2R−G
On + /ミCOy十Mg) (Ye+G)=、2B
−G
で表わされるため、各フィールド、各ライン間で。Note that each luminance signal component Yn * Yn +/ and each color signal component an t On+/ are 2 Yn (Ye + Mg) + (Oy + G) = 2R
+jG+, 2B Yn+/Mi (Ye 10Mg) + (Oy1G) = 2R
+JG -1-2B On=(ye+Mg) -(07+G)=2R-G On+/MiCOy0Mg) (Ye+G)=,2B
−G between each field and each line.
輝度信号成分Yn e Yn+/は等しい値をとる。ま
た。The luminance signal components Yne Yn+/ take equal values. Also.
コ水平ラインからコ種類の色信号0nsinωat と
On+781n(ωat+π)が得られるため、カラー
標準信号が合成できることになる。Since these types of color signals 0nsinωat and On+781n(ωat+π) are obtained from the horizontal line, a color standard signal can be synthesized.
しかして、信号出力Sn t Sn+/は9色信号成分
Cn l Cn+/が角周波数ωc(= 3.1r M
H2)で変調された形となっているため、中心周波数が
ωCで帯域幅が/ MHzの帯域p液処理を行なったあ
と、角周波数ωCの同期検波を行なえば9色差信号−2
1−G、、2B−Gを得ることかできることか判る。こ
うして得られた、色差信号2R−G、2B−Gは1色座
標軸上で2R−G、2B−Gに相当する位相の色副搬送
波で変調することにより、カラー化に必要な色信号が得
られることになる。以下、概説したカラー化方式に従う
映像処理プロセスな、第1図(A)とともに簡単に説明
する〇
まず1.被写体からの光は、レンズグツ赤外カットフィ
ルタ!9色フィルタコ等を通過後、固体撮像素子3上罠
結像す゛る。固体撮像素子3は、水晶発振素子を用いた
同期信号発生回路gに接続した駆動回路3aによって、
駆動される。固体撮像素子3の出力のうち、広帯域輝度
信号Y(=JR+jG十2B)は低域P波回路7を通す
ことにより、また色差信号0 (=−2R−G、 2B
−G)は帯域P波回路tと同期検波回路りを通すことに
より、それぞれ分離抽出される。Therefore, the signal output Sn t Sn+/ has nine color signal components Cn l Cn+/ with an angular frequency ωc (= 3.1r M
H2), so if you perform band p liquid processing with a center frequency of ωC and a bandwidth of /MHz, and then perform synchronous detection with an angular frequency of ωC, you will get 9 color difference signals -2.
It turns out that it is possible to obtain 1-G, 2B-G. The color difference signals 2R-G and 2B-G thus obtained are modulated by color subcarriers with phases corresponding to 2R-G and 2B-G on one color coordinate axis, thereby obtaining the color signals necessary for colorization. It will be done. Below, the video processing process according to the outlined colorization method will be briefly explained with reference to FIG. 1 (A). First, 1. The light from the subject is filtered through an infrared cut filter! After passing through nine color filters, etc., a trap image is formed on the solid-state image sensor 3. The solid-state image sensor 3 is driven by a drive circuit 3a connected to a synchronization signal generation circuit g using a crystal oscillator.
Driven. Among the outputs of the solid-state image sensor 3, the wideband luminance signal Y (=JR+jG+2B) is passed through the low-frequency P wave circuit 7, and the color difference signal 0 (=-2R−G, 2B
-G) are separated and extracted by passing through a band P wave circuit t and a synchronous detection circuit.
色差信号Cは9色温度補正用のホワイトバランス回路1
0を通ったあと、/水平走査期間の信号遅延を行な5/
H遅延回路//aと信号線路の並列接続回路に切り換え
周期が7水平走査周期の/H切り換え回路//1)が接
続された同時化回路//によって2.2種類の色差信号
2R−G、2B−Gとなる。Color difference signal C is 9 white balance circuit 1 for color temperature correction
After passing through 0, the signal is delayed for /horizontal scanning period and 5/
2. Two types of color difference signals 2R-G are generated by the synchronization circuit // in which the /H switching circuit //1) with a switching period of 7 horizontal scanning periods is connected to the parallel connection circuit of the H delay circuit //a and the signal line. , 2B-G.
これらの色差信号2R−G、2B−Gは、それぞれ変調
回路/J、 /3にて所定の色副搬送波で平衡変調され
、加算器/4で加算されたあと、クロマガンマ補正回路
4夕な経て2色・輝度混合用の加算器/lに供給される
。この色φ輝度混合用の加算器16には。These color difference signals 2R-G and 2B-G are balanced-modulated with predetermined color subcarriers in modulation circuits /J and /3, respectively, and added in adder /4, and then sent to chroma-gamma correction circuit 4. The signal is supplied to an adder/l for mixing two colors and luminance. In this adder 16 for color φ luminance mixing.
低域p波回路7にて分離抽出した広帯域輝度信号が、補
正回路/7を経て供給されており、従って複合同期信号
を加算することにより、加算器/AからはNTSO方式
のカラーテレビジョン信号が得られる。The wideband luminance signal separated and extracted by the low-frequency p-wave circuit 7 is supplied via the correction circuit /7, and therefore, by adding the composite synchronization signal, the NTSO color television signal is output from the adder /A. is obtained.
なお、ホワイトバランス回路10には、広帯域輝度信号
とは別系統の低域P波回路lざ及びブランキング処理用
の補正回路itを通った狭帯域輝度信号が、ホワイトバ
ランス用として供給される。Note that the white balance circuit 10 is supplied with a narrowband luminance signal for white balance that has passed through a low-frequency P-wave circuit IZA and a correction circuit IT for blanking processing, which are separate from the wideband luminance signal.
ところで、上記従来のカラービデオカメラ/は。By the way, the above-mentioned conventional color video camera/.
色信号処理系の最終段すなわち、変調回路/、2. /
3どうしの出力を混合する加算器/Qの次段に、クロマ
ガンマ補正回路13が接続しである。このクロマガンマ
補正回路/jは、カラー受像管の発光特性を電気的に直
線化するため、出力信号を人力信号の/
一乗ないし7乗に比例するよう補正するためのコ
回路であるが9色差信号2 R−Gと2B−Gは9個別
には補正量が若干異なるにも拘わらず、加算器Aで加算
したあと一様に補正する構成であるため。The final stage of the color signal processing system, that is, the modulation circuit/2. /
A chroma-gamma correction circuit 13 is connected to the next stage of the adder/Q that mixes the outputs of the three. This chroma-gamma correction circuit /j is a co-circuit for electrically linearizing the light emitting characteristics of the color picture tube, and for correcting the output signal to be proportional to the /1st power to the 7th power of the human input signal. 2RG and 2B-G have a configuration in which the correction amounts are uniformly corrected after being added by adder A, even though the correction amounts are slightly different for each of the nine.
適切なりロマガンマ補正が難しい欠点があった。There was a drawback that it was difficult to perform appropriate Roman gamma correction.
このため、従来のカシ−ビデオカメラ/は、明るいシー
ンで過度の輪郭強調がなされたり、暗いシーンで解像度
が低下することがある等の欠点があった。For this reason, conventional Cassie video cameras have had drawbacks such as excessive outline emphasis in bright scenes and a decrease in resolution in dark scenes.
発明の開示
本発明は、上記欠点を除去したものであり、線順次撮像
方式の撮像素子の出力に含まれる輝度信号成分のレベル
に応じて色信号処理回路のゲインを、線順次で変化せし
め、被写体が明るいほどゲインを小とし、被写体が暗く
なるにつれて、ゲインを大とすることにより1色信号処
理回路において正確なりロマガンマ補正を可能にしたカ
ラービデオカメラを提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention eliminates the above-mentioned drawbacks, and includes changing the gain of a color signal processing circuit in a line-sequential manner according to the level of a luminance signal component included in the output of an image sensor of a line-sequential imaging system, To provide a color video camera which enables accurate Roman-gamma correction in a single color signal processing circuit by decreasing the gain as the object becomes brighter and increasing the gain as the object becomes darker.
この目的を達成するため9本発明は、線順次撮像方式の
固体撮像素子と、該固体撮像素子の出力から色信号な分
離するP波回路と、該p波回路の出力を線順次で検波・
変調し9色差信号を形成する色信号処理回路と、前記固
体撮像素子の出力に含まれる輝度信号成分のレベルを検
出し、検出したレベルに応じて前記色信号処理回路のゲ
インを線順次で可変し、りpマガンマ補正を行なわしめ
るクロマガンマ補正用制御回路とを設けて構成したこと
を要旨とするものである。To achieve this object, the present invention provides a line-sequential imaging type solid-state imaging device, a P-wave circuit that separates color signals from the output of the solid-state imaging device, and a line-sequential detection and detection system for the output of the P-wave circuit.
A color signal processing circuit that modulates and forms nine color difference signals, and detects the level of a luminance signal component included in the output of the solid-state image sensor, and varies the gain of the color signal processing circuit line-sequentially according to the detected level. However, the gist of the present invention is that a control circuit for chroma-gamma correction is provided to perform rip-magamma correction.
本発明によれば、線順次撮像方式の固体撮像素子の出力
に含まれる輝度信号成分のレベルに応じて2色信号処理
回路のゲインを線順次で可変し。According to the present invention, the gain of the two-color signal processing circuit is varied line-sequentially in accordance with the level of the luminance signal component included in the output of the solid-state image sensor of the line-sequential imaging method.
クロマガンマ補正する構成としたから、固体撮像素子の
線順次出力をそれぞれ対応する色差信号ごとにクロマガ
ンマ補正することができ、これにより色差信号を加算し
たあとでクロマガンマ補正する場合と比較し、より正確
なりロマガンマ補正が可能であり、暗いシーンでの色再
現性の低下や。Since it is configured to perform chroma-gamma correction, it is possible to perform chroma-gamma correction for each corresponding color difference signal in the line-sequential output of the solid-state image sensor, which is more accurate than when performing chroma-gamma correction after adding the color difference signals. Loma gamma correction is possible, reducing color reproducibility in dark scenes.
明るいシーンでの過度の色付きを良好に防止できるのは
勿論1色信号処理回路のゲインを可変することにより2
色信号処理回路自体のダイナミックレンジを確保し9色
信号処理回路内ておける信号の伝送歪を抑え、NT80
方式に準拠する色信号の演算処理過程における偽色の発
生を良好に防止することができる等の優れた効果を奏す
る。Of course, excessive coloring in bright scenes can be effectively prevented by varying the gain of the 1-color signal processing circuit.
By ensuring the dynamic range of the color signal processing circuit itself and suppressing signal transmission distortion within the 9 color signal processing circuits, NT80
This has excellent effects such as being able to effectively prevent the occurrence of false colors in the process of calculating color signals in compliance with the system.
発明を実施するための最良の形態
以下1本発明の実施例について、第2図以下を参照して
説明する。第2図は2本発明のカラービデオカメラの一
実施例を示す概略回路構成図、第3図は、第2図に示し
たクロマガンマ補正用制御回路の制御特性な示す図、第
グ図は、第2図に示した色フィルタの一変形例の配列パ
ターンを示す図である。なお、第2図中、第1図(蜀と
同一構成部分には同一符号が付しである。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG. 2 and subsequent figures. FIG. 2 is a schematic circuit diagram showing an embodiment of the color video camera of the present invention, FIG. 3 is a diagram showing the control characteristics of the chroma-gamma correction control circuit shown in FIG. 2, and FIG. FIG. 3 is a diagram showing an arrangement pattern of a modified example of the color filter shown in FIG. 2; In addition, in FIG. 2, the same components as in FIG. 1 (Shu) are given the same reference numerals.
第2図中、カラービデオカメラ2/kL、従来と同じ配
列パターンの色フィルタJ+1用いているが。In FIG. 2, a color video camera 2/kL uses a color filter J+1 having the same arrangement pattern as the conventional one.
帯域P波回路!以降の色信号処理回路22におけるクロ
マガンマ補正の方法は、従来とは異なる優れたものであ
り2色差信号の同時化用として変調回路/2. /3の
次段にくし形フィルタJを用いた点や随所にアンプ回路
244. x、 、26等を配した点と併せ。Band P wave circuit! The subsequent chroma-gamma correction method in the color signal processing circuit 22 is different from the conventional method and is a modulation circuit/2. /3 uses a comb filter J at the next stage, and amplifier circuits 244. Combined with the points with x, , 26 etc.
画質の向上に寄与するものである。This contributes to improving image quality.
すなわち、固体撮像素子3と帯域P波回路tの間にはア
ンプ回路21が、また帯域P波回路♂と同期検波回路ワ
の間にはアンプ回路25が、さらに補正回路19とホワ
イトバランス回路10の間には、アンプ回路526がと
いうように、信号処理の各段階において適切な信号増幅
が行なわれるよう構成しである。また、アンプ回路jと
アンプ回路易については9色差信号2R−G、2B−G
に対応して/水平走査周期ごとにゲインが可変できるよ
5.同期信号発生回路ごからの水平同期信号により切り
換わるスイッチΔaと2Aaを介して、抵抗値が異なる
一対のゲイン可変抵抗RA e RB及びrA+rBが
接続しである。That is, an amplifier circuit 21 is provided between the solid-state image sensor 3 and the band P-wave circuit t, an amplifier circuit 25 is provided between the band P-wave circuit ♂ and the synchronous detection circuit wa, and a correction circuit 19 and a white balance circuit 10 are provided. In between, an amplifier circuit 526 is configured to perform appropriate signal amplification at each stage of signal processing. Also, for amplifier circuit j and amplifier circuit j, 9 color difference signals 2R-G, 2B-G
5. The gain can be varied for each horizontal scanning period in response to /. A pair of variable gain resistors RA e RB and rA+rB having different resistance values are connected via switches Δa and 2Aa which are switched by a horizontal synchronization signal from each synchronization signal generation circuit.
また、ホワイトバランス回路10以降の回路構成は、<
シ形フィルタηの採用により、簡単化されており、クシ
形フィルタ幻と加算器16の間に接続した帯域p波回路
27により色信号以外の不要信号が除去されるよう構成
しである。In addition, the circuit configuration after the white balance circuit 10 is <
The configuration is simplified by employing a comb-shaped filter η, and unnecessary signals other than color signals are removed by a band p-wave circuit 27 connected between the comb-shaped filter and the adder 16.
ここで、2gは、クロマガンマ補正用制御回路で。Here, 2g is a chroma-gamma correction control circuit.
アンプ回路21と5間に、帯域p波回路lを迂回して接
続しである。このクロマガンマ補正用制御回路2gは、
アンプ回路Jにおける輝度信号成分のレベルを検出し、
検出した輝度信号成分のレベルに応じ、第3図に示した
制御特性に従って、アンプ回路25のゲインを可変する
構成としである。すなわち、アンプ回路24Iにおける
輝度信号成分のレベルが大であるときは、アンプ回路j
のゲインを小とし、これにより明るいシーンでの色付き
の程度を軽減し、その逆にアンプ回路24Iにおける輝
度信号成分のレベルが小であるとぎは、アンプ回路25
のゲインを犬とし、これにより暗いシーンでの色が付き
にくい点な防止するよう動作する。It is connected between the amplifier circuits 21 and 5, bypassing the band p-wave circuit l. This chroma gamma correction control circuit 2g is
detecting the level of the luminance signal component in the amplifier circuit J;
The configuration is such that the gain of the amplifier circuit 25 is varied in accordance with the control characteristics shown in FIG. 3 in accordance with the level of the detected luminance signal component. That is, when the level of the luminance signal component in the amplifier circuit 24I is high, the amplifier circuit j
When the level of the luminance signal component in the amplifier circuit 24I is small, the level of the luminance signal component in the amplifier circuit 24I is small, thereby reducing the degree of coloration in bright scenes.
This works to increase the gain of the camera and prevent it from becoming discolored in dark scenes.
このように、アンプ回路2Il、 23間にクロマガン
マ補正用制御回路2gが設けであるため、低輝度から高
輝度まで色再現性を高めることができ、解像度と画質の
優れた画像を得ることができる。特に。In this way, since the chroma-gamma correction control circuit 2g is provided between the amplifier circuits 2Il and 23, color reproducibility can be improved from low brightness to high brightness, and images with excellent resolution and quality can be obtained. . especially.
アンプ回路、25は、線順次でゲインな可変するため。The amplifier circuit 25 is for line-sequential gain variation.
色差信号に最終段でクロマガンマ補正する従来方式に比
較して、より正確なりロマガンマ補正が可能である。ま
た、アンプ回路jにおける増幅により2色信号処理回路
22のダイナミックレンジな確保することができるので
9色信号処理回路2.2内における信号の伝送歪な抑え
ることができ、特に高輝度時の偽色の発生を確実に防止
することかできる。Compared to conventional methods that perform chroma-gamma correction on color difference signals at the final stage, more accurate chroma-gamma correction is possible. In addition, since the dynamic range of the two-color signal processing circuit 22 can be ensured by the amplification in the amplifier circuit j, it is possible to suppress signal transmission distortion within the nine-color signal processing circuit 2.2, and especially to reduce false alarms at high brightness. It is possible to reliably prevent the occurrence of color.
なお9本実施例の場合、同期検波回路?とホワイトバラ
ンス回路ioの間に、同期検波に用いた搬送波な抑圧す
るための低域F波回路22が接続しである。In addition, in the case of this embodiment, the synchronous detection circuit? A low-frequency F wave circuit 22 for suppressing the carrier wave used for synchronous detection is connected between the white balance circuit io and the white balance circuit io.
また9本実施例では、広帯域輝度信号に対して。9 In this embodiment, for a wideband luminance signal.
低域p波回路20次段にガンマ補正回路、?0を設ける
ことにより、ガンマ補正するよう構成してあり。Low-frequency p-wave circuit 20 Next stage is gamma correction circuit? By providing 0, it is configured to perform gamma correction.
さらにガンマ補正回路300次段に輪郭補正回路31を
設け、前記した補正回路/qの出力により作動する唾直
エツジ補正回路32が輪郭補正回路31を制御す“る構
成としである。Further, a contour correction circuit 31 is provided next to the gamma correction circuit 300, and the contour correction circuit 31 is controlled by a straight edge correction circuit 32 which is activated by the output of the correction circuit /q.
また9本実施例では、第1図(B)に示した配列パター
ンの色フィルタコを用いたカ9色フィルタコ以外にも2
例えば第ダ図に示した配列パターンなもつ色フィルタグ
2を用いてもよい。第弘図中。In addition to the nine color filters using the color filter array pattern shown in FIG.
For example, a color filter tag 2 having the arrangement pattern shown in FIG. 2 may be used. In the middle of Hirozu.
W は了R−1−G−1−Bを表わし、Yθ はG十ゴ
Rを表わす。W represents R-1-G-1-B, and Yθ represents G-R.
以上説明したように、上記構成になるカラービデオカメ
ラ21によれば、線順次撮像方式の固体撮像素子3の出
力に含まれる輝度信号成分のレベルに応じて1色信号処
理回路、nのゲインを線順次で可変し、クロマガンマ補
正する構成としたから。As explained above, according to the color video camera 21 having the above configuration, the gain of one color signal processing circuit, n, is adjusted according to the level of the luminance signal component included in the output of the solid-state image sensor 3 of the line sequential imaging method. This is because it is configured to vary line-by-line and perform chroma-gamma correction.
固体撮像素子30線順次出力を、それぞれ対応する色差
信号ごとにクロマガンマ補正することができ、これによ
り色差信号を加算したあとでクロマガンマ補正する場合
と比較し、より正確なりロマガンマ補正が可能であり、
暗いシーンでの色再現性の低下や、明るいシーンでの過
度の色付きを良好に防止できるのは勿論9色信号処理回
路二〇ゲインを可変することにより9色信号処理回路Ω
自体のダイナミックレンジな確保し2色信号処理回路、
2コ内における信号の伝送歪を抑え、NTSO方式に準
拠する色信号の演算処理過程における偽色の発生を良好
に防止することができる。It is possible to perform chroma-gamma correction on the sequential output of 30 lines of the solid-state image sensor for each corresponding color difference signal, which enables more accurate chroma-gamma correction than when performing chroma-gamma correction after adding the color difference signals.
Of course, it can effectively prevent a decline in color reproducibility in dark scenes and excessive coloration in bright scenes.9 color signal processing circuit 20By varying the gain, 9 color signal processing circuit Ω
Two-color signal processing circuit that ensures its own dynamic range,
It is possible to suppress signal transmission distortion within the two channels, and to effectively prevent the occurrence of false colors in the color signal arithmetic processing process based on the NTSO system.
第1図(A)、 (B)は、それぞれ従来のカラービデ
オカメラの一例を示す概略回路構成図及び従来のカラー
ビデオカメラの色フィルタの配列パターンを示す図、第
2図は9本発明のカラービデオカメラの一実施例を示す
概略回路構成図、第3図は、第一図に示したクロマガン
マ補正用制御回路の制御特性な示す図、第7図は、第2
図に示した色フィルタの一変形例の配列パターンを示す
図である02、ダ2・・・色フィルタ、3・・・固体撮
像素子、?・・・帯域p波回路、22・・・色信号処理
回路、2g・・・クロマガンマ補正用制御回路。
一/j−
507−1(A) and 1(B) are a schematic circuit diagram showing an example of a conventional color video camera and a diagram showing an arrangement pattern of color filters of the conventional color video camera, respectively, and FIG. 2 is a diagram showing an example of a conventional color video camera. FIG. 3 is a schematic circuit diagram showing an embodiment of a color video camera; FIG. 3 is a diagram showing the control characteristics of the chroma-gamma correction control circuit shown in FIG. 1; FIG.
02, Da2...Color filter, 3...Solid-state image sensor, ? . . . band p-wave circuit, 22 . . . color signal processing circuit, 2g . . . chroma gamma correction control circuit. 1/j- 507-
Claims (1)
力から色信号を分離するp波回路と、該P波回路の出力
を線順次で検波・変調し、色差信号な形成する色信号処
理回路と、前記固体撮像素子の出力に含まれる輝度信号
成分のレベルを検出し、検出したレベルに応じて前記色
信号処理回路のゲインを線順次で可変し、クロマガンマ
補正を行なわしめるクロマガンマ補正用制御回路とな設
けてなるカラービデオカメラ。A solid-state imaging device with a line-sequential imaging method, a p-wave circuit that separates color signals from the output of the solid-state imaging device, and color signal processing that detects and modulates the output of the p-wave circuit in a line-sequential manner to form a color difference signal. a chroma-gamma correction control that detects the level of a luminance signal component included in the output of the circuit and the solid-state image sensor, varies the gain of the color signal processing circuit line-sequentially in accordance with the detected level, and performs chroma-gamma correction. A color video camera that is equipped with a circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58251918A JPS60140991A (en) | 1983-12-27 | 1983-12-27 | Color video camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58251918A JPS60140991A (en) | 1983-12-27 | 1983-12-27 | Color video camera |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60140991A true JPS60140991A (en) | 1985-07-25 |
JPH059992B2 JPH059992B2 (en) | 1993-02-08 |
Family
ID=17229898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58251918A Granted JPS60140991A (en) | 1983-12-27 | 1983-12-27 | Color video camera |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60140991A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4697208A (en) * | 1985-06-13 | 1987-09-29 | Olympus Optical Co., Ltd. | Color image pickup device with complementary color type mosaic filter and gamma compensation means |
JPS6489691A (en) * | 1987-09-29 | 1989-04-04 | Sharp Kk | Image pickup device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4918424A (en) * | 1972-04-17 | 1974-02-18 | ||
JPS5017133A (en) * | 1973-06-12 | 1975-02-22 |
-
1983
- 1983-12-27 JP JP58251918A patent/JPS60140991A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4918424A (en) * | 1972-04-17 | 1974-02-18 | ||
JPS5017133A (en) * | 1973-06-12 | 1975-02-22 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4697208A (en) * | 1985-06-13 | 1987-09-29 | Olympus Optical Co., Ltd. | Color image pickup device with complementary color type mosaic filter and gamma compensation means |
JPS6489691A (en) * | 1987-09-29 | 1989-04-04 | Sharp Kk | Image pickup device |
JPH0716252B2 (en) * | 1987-09-29 | 1995-02-22 | シャープ株式会社 | Imaging device |
Also Published As
Publication number | Publication date |
---|---|
JPH059992B2 (en) | 1993-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5767899A (en) | Image pickup device | |
JPH07184097A (en) | Image pickup device | |
JPH0352276B2 (en) | ||
JPS61502229A (en) | How to improve the resolution of color television cameras | |
JPH05130632A (en) | Video signal processing circuit | |
JPS6129196B2 (en) | ||
US4827331A (en) | Color TV camera with circuit for adjusting the white balance of red, green, and blue signals generated from a narrow-band luminance signal and line-sequential color-difference signals | |
KR970007799B1 (en) | Luminance signal forming circuit | |
JPH0884348A (en) | Image pickup device | |
JPS60140991A (en) | Color video camera | |
US4559554A (en) | Color television camera with a single image pickup tube featuring improved rendition of bright monochromatic objects | |
US3946431A (en) | Synchronized demodulation of the chrominance signal with switched carrier phase angles | |
JP2846317B2 (en) | Color imaging device | |
JPS60140990A (en) | Video tape recorder incorporating camera | |
JP2655436B2 (en) | Color solid-state imaging device | |
SU1300657A1 (en) | Device for suppressing the flickering of horizontal colour boundaries of television picture | |
JPS6129287A (en) | Color solid-state image pickup device | |
JP3024815B2 (en) | Color erasure method for highlights in color cameras | |
JPS61167296A (en) | Solid-state color image pickup device | |
JPH0156593B2 (en) | ||
JPH0632443B2 (en) | White balance adjustment device for television cameras | |
JPH05236492A (en) | Color video camera | |
JPS63198495A (en) | Video camera | |
JPH0139273B2 (en) | ||
JPH09154146A (en) | Solid-state color image pickup device |