JP3192212B2 - Color television signal processing circuit - Google Patents

Color television signal processing circuit

Info

Publication number
JP3192212B2
JP3192212B2 JP13014592A JP13014592A JP3192212B2 JP 3192212 B2 JP3192212 B2 JP 3192212B2 JP 13014592 A JP13014592 A JP 13014592A JP 13014592 A JP13014592 A JP 13014592A JP 3192212 B2 JP3192212 B2 JP 3192212B2
Authority
JP
Japan
Prior art keywords
luminance signal
signal
frequency component
signals
hue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13014592A
Other languages
Japanese (ja)
Other versions
JPH05300535A (en
Inventor
重人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP13014592A priority Critical patent/JP3192212B2/en
Publication of JPH05300535A publication Critical patent/JPH05300535A/en
Application granted granted Critical
Publication of JP3192212B2 publication Critical patent/JP3192212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はR,G,Bの映像信号を
輝度信号と色差信号に変換して処理するカラーテレビジ
ョン信号処理回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color television signal processing circuit for converting an R, G, B video signal into a luminance signal and a color difference signal for processing.

【0002】[0002]

【従来の技術】現在のテレビジョン方式が送像側でガン
マ補正を行なっていることによる影響を簡単に説明す
る。現在のテレビジョン方式ではR,G,Bの3原色信
号ER,EG,EBを輝度信号EYと色差信号EQ,EIに変
換したのち,色差信号を帯域制限した上で,色副搬送波
を変調して輝度信号EYに重畳している。これらを式で
示すと, EY=0.3ER+0.59EG+0.11EBQ=0.41(EB−EY)+0.48(ER−EY) EI=−0.27(EB−EY)+0.74(ER−EY) となる。例えばカラーテレビジョン信号をEMとする
と, EM=EY+0.493(EB−EY)sinωt +0.877(ER−EY)cosωt となる。
2. Description of the Related Art The effect of the current television system performing gamma correction on the image transmitting side will be briefly described. In the current television system, after converting the three primary color signals E R , E G , E B of R , G , B into a luminance signal E Y and color difference signals E Q , E I , the color difference signal is band-limited. It is superimposed on the luminance signal E Y by modulating a chrominance subcarrier. These are expressed by the following equations: E Y = 0.3E R + 0.59E G + 0.11E B E Q = 0.41 (E B −E Y ) +0.48 (E R −E Y ) E I = −0 .27 (E B -E Y ) +0.74 (E R -E Y ). For example, when a color television signal E M, the E M = E Y +0.493 (E B -E Y) sinωt +0.877 (E R -E Y) cosωt.

【0003】色差信号は高域成分が制限されているた
め,ER,EG,EBの各信号の高域成分は輝度信号EY
けで伝送される。例えば,送像側で赤純色の被写体を写
した場合,ER信号の高域,低域成分を各々ERH,ERL
とし,輝度信号のそれをEYH,EYLとすると,ER=E
RL+ERH,EG=EB=0であるから,受像機側で再生さ
れるER信号は,ERL+EYHとなる。またEYHはEG,E
B信号としても再生される。さて,本来ガンマ補正はC
RTの発光特性を補正するものであるから受像機で再生
されたER信号には
[0003] Since the color difference signals are high-frequency component is limited, E R, the high frequency component of E G, each signal E B is transmitted only with the luminance signal E Y. For example, when a red pure color object is photographed on the image transmission side, the high-frequency and low-frequency components of the E R signal are respectively represented by E RH and E RL.
And if the luminance signal is E YH , E YL , E R = E
RL + E RH, because it is E G = E B = 0, E R signal reproduced by the receiver side, the E RL + E YH. E YH is E G , E
It is also reproduced as a B signal. By the way, originally gamma correction is C
Since it corrects the emission characteristics of the RT, the E R signal reproduced by the receiver

【0004】[0004]

【数1】なる処理が加味されるべきであり,またEG
B信号として,再生されるEYH信号にも同様のガンマ
補正が施されるべきである。しかし,現行のテレビジョ
ン方式では,ER,EG,EB信号の段階で
Equation 1 should be taken into account, and E G ,
As E B signals, it should be subjected to the same gamma correction in E YH signal reproduced. However, in the current television system, E R, E G, at the stage of E B signals

【0005】[0005]

【数2】となるようなガンマ補正が行なわれている。こ
のため,前述のような赤純色で飽和度の高い被写体の場
合を考えると,受像機側で再生されるER信号は ER=ERL+0.3ERH となる。
The gamma correction is performed such that For this reason, considering the above-described case of a pure red object having a high degree of saturation, the E R signal reproduced on the receiver side is E R = E RL + 0.3E RH .

【0006】このER信号に高周波成分が乗っている
と,この高周波信号は,送像側のガンマ補正回路でER
信号の低域成分のレベルに応じて増減され,この場合通
常0.45乗される。一方,受像機ではこの高周波信号
はCRTの発光特性により2.22乗され,送受合わせ
たゲインは1倍となる。一方,この高周波信号はEG
B信号としても再生されるわけであるが,この場合元
々のEG,EB信号レベルは共に0であるので,再生
G,EB信号は EG=EB=0.3ERH となる。
If a high-frequency component is superimposed on the E R signal, the high-frequency signal is sent to a gamma correction circuit on the image transmission side to generate an E R signal.
It is increased or decreased according to the level of the low frequency component of the signal, and in this case, it is usually raised to the power of 0.45. On the other hand, in the receiver, the high-frequency signal is raised to the power of 2.22 due to the light emission characteristics of the CRT, and the combined gain becomes one. On the other hand, this high-frequency signal is E G ,
Although not be reproduced as E B signal, in this case the original E G, since E B signal levels are both are 0, reproduction E G, E B signal and E G = E B = 0.3E RH Become.

【0007】さて,このERHは前述したようにガンマ補
正回路で0.45乗させている。ER信号の場合はCR
Tの発光特性により2.22乗され,送受合わせたゲイ
ンは1倍となったわけであるが,このEG,EB信号の場
合は信号レベルが0に近いのでCRT上では発光しな
い。すなわち,この場合高周波成分はEG,EB信号とし
て再生されないことになり,高周波信号はER信号だけ
から再生され,そのレベルは元の0.3倍に減少する。
同様に,緑純色,青純色の被写体のような,飽和度の高
いケースでおこる。つまり現行のテレビジョン方式では
色飽和度の高い信号で解像度は劣化する。
The ERH is raised to the power of 0.45 by the gamma correction circuit as described above. CR for E R signal
T is 2.22 square by the emission characteristics of, but gain the combined transmission and reception is not 1 lead times, does not emit light is on CRT Since E G, the signal level in the case of E B signal close to zero. That is, in this case high frequency components will not be reproduced as E G, E B signal, the high frequency signal is reproduced from only E R signal, the level is reduced to the original 0.3 times.
Similarly, it occurs in a case with a high degree of saturation, such as a pure green or blue pure subject. That is, in the current television system, the resolution is degraded by a signal having a high color saturation.

【0008】本問題を解決する従来の方法として特開昭
63−67890がある。この構成を図5に示し,以下
この方法を説明すると,ガンマ補正回路4〜6でガンマ
補正を施したR,G,B信号をマトリクス回路8に供給
し,この回路で輝度信号Y′を合成する。この輝度信号
Y′はハイパスフィルタ11とローパスフィルタ12を
通してそれぞれ輝度信号YH′,輝度信号YL′を得る。
また,ガンマ補正前のR,G,B信号をマトリクス回路
7で得た輝度信号にガンマ補正回路9でガンマ補正を施
して,ローパスフィルタ10を通した輝度信号YLを得
る。そして割算回路15でYL/YL′を計算し,この出
力と上記輝度信号YH′を乗算回路18で乗算したもの
と,上記輝度信号YL′とを加算回路19で加算して補
正輝度信号を得るというものである。
As a conventional method for solving this problem, there is JP-A-63-67890. This configuration is shown in FIG. 5, and the method will be described below. The R, G, and B signals subjected to gamma correction by gamma correction circuits 4 to 6 are supplied to a matrix circuit 8, and the luminance signal Y 'is synthesized by this circuit. I do. The luminance signal Y 'each luminance signal Y H through high pass filter 11 and low pass filter 12' to obtain the luminance signal Y L '.
Further, the gamma correction circuit 9 performs gamma correction on the luminance signal obtained by the matrix circuit 7 for the R, G, and B signals before gamma correction, thereby obtaining a luminance signal Y L that has passed through the low-pass filter 10. Then, the division circuit 15 calculates Y L / Y L ′, multiplies this output by the multiplication circuit 18 by the luminance signal Y H ′, and adds the luminance signal Y L ′ by the addition circuit 19. This is to obtain a corrected luminance signal.

【0009】本方式を用いると,色飽和度の高い高彩度
画像では補正係数YL/YL′は1以上のゲインとなるた
め,輝度信号の高域成分YHが増幅され,現行のテレビ
ジョン方式において高彩度画像の解像度が改善される。
また,赤純色で飽和度100%の被写体に対する高周波
成分は1.9倍,同じく青純色で飽和度100%の被写
体に対しては,約3.4倍に増幅される。しかし,本方
式では次のような問題が生じる。例えば,入力信号源が
カメラの場合青色信号のS/Nが悪いため,大きなゲイ
ンをかけると,青色の被写体に対する送像側の輝度信号
出力のS/Nが非常に悪くなる。
When this method is used, the correction coefficient Y L / Y L ′ has a gain of 1 or more in a high-saturation image with high color saturation, so that the high-frequency component Y H of the luminance signal is amplified and the current television is amplified. In this way, the resolution of high chroma images is improved.
The high-frequency component of a subject having a pure red color and a saturation of 100% is amplified by 1.9 times, and the subject of a pure blue color having a saturation of 100% is amplified by about 3.4 times. However, this method has the following problems. For example, when the input signal source is a camera, the S / N of the blue signal is poor. Therefore, when a large gain is applied, the S / N of the luminance signal output on the image transmission side for a blue subject becomes very poor.

【0010】[0010]

【発明が解決しようとする課題】前述の従来技術には,
例えば青色の被写体のような,飽和度100%での青色
の信号では,S/Nが悪い上に,約3.4倍の利得を上
げるため,高周波のノイズ成分が急激に増加する欠点が
ある。本発明は,青色の色相に対して,選択的に補正ゲ
インを抑えることにより,青色の被写体に対する信号の
S/Nを改善した装置の実現を目的とする。
The above-mentioned prior art includes the following.
For example, for a blue signal such as a blue object with a saturation of 100%, the S / N is poor and the gain is increased by about 3.4 times, so that there is a drawback that the high frequency noise component sharply increases. . An object of the present invention is to realize a device in which the S / N of a signal for a blue object is improved by selectively suppressing a correction gain for a blue hue.

【0011】[0011]

【課題を解決するための手段】本発明では,上記目的を
達成するため,R,G,B入力信号から色飽和度及び色
相を検出する手段と,上記R,G,B信号をそれぞれガ
ンマ補正した後所定の割合で混合し輝度信号を合成する
手段と,この輝度信号の高域成分を抽出する手段と,抽
出した輝度信号の高域成分に対する増幅率を上記色飽和
度及び色相を検出する手段の出力により制御する手段を
用いることを特徴とする。
According to the present invention, in order to achieve the above object, means for detecting color saturation and hue from R, G, B input signals, and gamma correction of the R, G, B signals, respectively. Means for mixing the luminance signal at a predetermined ratio and synthesizing the luminance signal; means for extracting the high-frequency component of the luminance signal; It is characterized in that means for controlling based on the output of the means is used.

【0012】[0012]

【作用】その結果,特定の色例えば青色の色相に対して
選択的に高域補正ゲインを抑え,その色の被写体の高彩
度画像の高域補正に伴うS/Nの劣化を抑えることがで
きる。
As a result, it is possible to selectively suppress the high-frequency correction gain for a specific color, for example, a blue hue, and to suppress the deterioration of the S / N due to the high-frequency correction of the high chroma image of the subject of the color.

【0013】[0013]

【実施例】本発明の実施例を図1により説明する。ガン
マ補正前のR,G,B信号1〜3をそれぞれガンマ補正
回路4〜6でガンマ補正した後,マトリクス回路8で輝
度信号Y′,色差信号I′,Q′を得る。ここで輝度信
号Y′はハイパスフィルタ11とローパスフィルタ12
によって色差信号の遮断周波数で高域成分YH′と低域
成分YL′に分離し,色差信号I′及びQ′はローパス
フィルタ13,14で色差信号の遮断周波数で帯域制限
する。また,ガンマ補正前のR,G,B信号1〜3はマ
トリクス回路7に供給し,ここで輝度信号YSを得る。
そして,YSをガンマ補正して輝度信号Yを得,ローパ
スフィルタ10を通して低域成分YLを得る。ガンマ補
正前のR,G,B信号は,色相ディペンデント回路16
にも供給され,出力として色相ディペンデントゲインG
aを得る。
An embodiment of the present invention will be described with reference to FIG. After the R, G, and B signals 1 to 3 before gamma correction are gamma corrected by gamma correction circuits 4 to 6, respectively, a matrix circuit 8 obtains a luminance signal Y 'and color difference signals I', Q '. Here, the luminance signal Y 'is supplied to the high-pass filter 11 and the low-pass filter 12.
Separated by a cutoff frequency of the color difference signal 'and low-frequency component Y L' high frequency components Y H in the color difference signals I 'and Q' are band-limited by the cutoff frequency of the color difference signal by the low pass filters 13 and 14. Further, the gamma correction before the R, G, B signal 1-3 is supplied to a matrix circuit 7, wherein obtaining a luminance signal Y S.
Then, to obtain a luminance signal Y and gamma corrected Y S, to obtain a low-frequency component Y L low pass filter 10. The R, G, and B signals before gamma correction are output to a hue dependent circuit 16.
And output as hue dependent gain G
obtain a.

【0014】これらの求めた,Y及びY′の低域成分Y
L,YL′を供給する割算回路15でYL/YL′の比率を
算出する。この比率と色相ディペンデントゲインGa
供給する乗算回路17でGa・YL/YL′の補正ゲイン
を算出する。そして乗算回路17の出力を用いて輝度信
号YH′の利得の制御を乗算回路18で行なう。この乗
算回路18の出力と,輝度信号YL′を加算回路19で
加算し,その出力を色信号I′,Q′と共にエンコーダ
20に送り,複合カラーテレビジョン信号を得る。
The low-frequency components Y of Y and Y 'thus determined
The ratio of Y L / Y L 'is calculated by the division circuit 15 for supplying L and Y L '. A multiplication circuit 17 that supplies this ratio and the hue dependent gain G a calculates a correction gain of G a · Y L / Y L '. The multiplication circuit 18 controls the gain of the luminance signal Y H ′ using the output of the multiplication circuit 17. The output of the multiplication circuit 18 'are added in the addition circuit 19, color signals I and its output' luminance signal Y L, sends to the encoder 20 together with Q ', obtain a composite color television signal.

【0015】ここで色相ディペンデント回路を図3によ
り説明する。元の信号R,G,Bより色相割出し回路2
1で無彩色成分を取り除き,補色,原色の成分に分離す
る。この出力をベクトル角度割出し回路22で補色,原
色のレベル量から三角関数の定理を用いて位相角度を導
く。そしてこの角度を,変換テーブル23で所望のゲイ
ン特性に変換することで,色相ディペンデント回路を実
現することが出来る。
Here, the hue dependent circuit will be described with reference to FIG. Hue indexing circuit 2 from original signals R, G, B
In step 1, the achromatic component is removed and separated into complementary and primary color components. The phase angle is derived from this output by the vector angle determination circuit 22 from the level amounts of the complementary color and the primary color by using the trigonometric function theorem. Then, by converting this angle into a desired gain characteristic by the conversion table 23, a hue dependent circuit can be realized.

【0016】以上の動作により,本発明では図2に示す
ように青色の色相に対して,輝度信号YH′の補正ゲイ
ンを色相ディペンデントゲインで調整して,S/Nの劣
化を抑えて,図4に示すような,R,G,B各飽和度に
対する高周波成分の補正が行なわれる。例えば,従来例
のところで説明した青色の被写体で純色の飽和度100
%(B=1,R=G=0)の場合,微少な高周波成分が
乗っていたとすると,補正ゲインは3.4倍となる。し
たがって,従来方式ではもともとノイズ成分の多い青色
の被写体では,S/Nの劣化が大きな問題であった。一
方,本発明を用いるとノイズ成分の多い青色の被写体の
場合のみ補正ゲインを適度に抑え,他の赤,緑被写体で
は従来の補正ゲインを同じにして,受像側で劣化した解
像度を適度に補正する。
With the above operation, the present invention adjusts the correction gain of the luminance signal Y H ′ with the hue dependent gain for the blue hue as shown in FIG. 2 to suppress the deterioration of S / N. Thus, high-frequency components are corrected for the respective degrees of saturation of R, G, and B as shown in FIG. For example, in the case of the blue object described in the conventional example, the saturation degree of pure color is 100%.
% (B = 1, R = G = 0), assuming that a very high frequency component is present, the correction gain becomes 3.4 times. Therefore, in the conventional method, deterioration of S / N is a serious problem for a blue subject having a large amount of noise components. On the other hand, when the present invention is used, the correction gain is appropriately suppressed only in the case of a blue subject having many noise components, and the other conventional red and green subjects have the same conventional correction gain to appropriately correct the resolution deteriorated on the image receiving side. I do.

【0017】[0017]

【発明の効果】以上のように本発明を用いると,現行テ
レビジョン方式における高彩度画像の解像度の劣化を忠
実に補正し,S/Nの悪い青色の被写体に対しては,補
正ゲインを下げて,S/Nの良い高画質を得ることがで
きる。
As described above, when the present invention is used, the deterioration of the resolution of a high chroma image in the current television system is faithfully corrected, and the correction gain is lowered for a blue object having a poor S / N. , S / N and high image quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】色相ディペンデントの補正ゲイン特性を示す図
である。
FIG. 2 is a diagram illustrating a correction gain characteristic of hue dependent.

【図3】色相ディペンデント回路の実施例を示すブロッ
ク図である。
FIG. 3 is a block diagram illustrating an embodiment of a hue dependent circuit.

【図4】本発明の補正ゲイン特性を示す図である。FIG. 4 is a diagram showing a correction gain characteristic of the present invention.

【図5】従来例を示すブロック図である。FIG. 5 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1〜3 R,G,B入力端子 4,5,6,9 ガンマ補正回路 7,8 マトリクス回路 11 ローパスフィルタ 12,13,14 ローパスフィルタ 15 割算回路 16 色相ディペンデント回路 17,18 乗算回路 19 加算回路 20 エンコーダ 21 色相割出し回路 22 ベクトル角度割出し回路 23 変換テーブル 1-3 R, G, B input terminals 4, 5, 6, 9 Gamma correction circuit 7, 8 Matrix circuit 11 Low pass filter 12, 13, 14 Low pass filter 15 Division circuit 16 Hue dependent circuit 17, 18 Multiplication circuit 19 Addition Circuit 20 Encoder 21 Hue Indexing Circuit 22 Vector Angle Indexing Circuit 23 Conversion Table

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R,G,B入力信号から色飽和度及び色
相を検出する手段と,上記R,G,B信号をそれぞれガ
ンマ補正した後所定の割合で混合し輝度信号を合成する
手段と,この輝度信号の高域成分を抽出する手段と,抽
出した輝度信号の高域成分に対する増幅率を上記色飽和
度及び色相を検出する手段の出力により制御する手段を
有することを特徴とするカラーテレビジョン信号処理回
路。
1. A means for detecting a color saturation and a hue from an R, G, B input signal, and a means for gamma-correcting the R, G, B signals and then mixing them at a predetermined ratio to synthesize a luminance signal. Means for extracting a high-frequency component of the luminance signal, and means for controlling an amplification factor for the high-frequency component of the extracted luminance signal by an output of the means for detecting the color saturation and the hue. Television signal processing circuit.
【請求項2】 R,G,B信号をマトリクス変換して第
1の輝度信号YSを得る手段と,第1の輝度信号YSをガ
ンマ補正して第2の輝度信号Yを得る手段と,上記R,
G,B信号をそれぞれガンマ補正した信号をマトリクス
変換して第3の輝度信号Y′を得る手段と,第3の輝度
信号Y′から高域成分YH′,低域成分YL′に分離する
手段と,第2の輝度信号Yの低域成分のみ取り出した第
4の輝度信号YLを得る手段と,上記R,G,B信号か
ら青色の色相に対してディペンデントゲインを抽出する
手段と,これら第4の輝度信号YLと第3の輝度信号の
低域成分YL′との比率に色相ディペンデントゲインを
加味させて,第3の輝度信号の高域成分YH′に対する
利得を制御する手段とを有することを特徴とするカラー
テレビジョン信号処理回路。
Wherein R, G, and means for obtaining a first luminance signal Y S B signals by matrix conversion, and means for obtaining a first luminance signal Y S and gamma correction second luminance signal Y , Above R,
G, the separation B signals 'means for obtaining a third luminance signal Y' third luminance signal Y and the gamma correction signal to matrix conversion respectively high frequency components from the Y H ', the low-frequency component Y L' in extracting means, and means for obtaining a fourth luminance signal Y L taken out only the low-frequency component of the second luminance signal Y, the R, G, and dependent gain to blue hue from B signals to means and, these fourth luminance signal Y L and the low frequency component Y L of the third luminance signal 'in ratio by considering the hue dependent gain of the high frequency component Y H of the third luminance signal' Means for controlling the gain of the color television signal.
JP13014592A 1992-04-23 1992-04-23 Color television signal processing circuit Expired - Lifetime JP3192212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13014592A JP3192212B2 (en) 1992-04-23 1992-04-23 Color television signal processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13014592A JP3192212B2 (en) 1992-04-23 1992-04-23 Color television signal processing circuit

Publications (2)

Publication Number Publication Date
JPH05300535A JPH05300535A (en) 1993-11-12
JP3192212B2 true JP3192212B2 (en) 2001-07-23

Family

ID=15027050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13014592A Expired - Lifetime JP3192212B2 (en) 1992-04-23 1992-04-23 Color television signal processing circuit

Country Status (1)

Country Link
JP (1) JP3192212B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900419B2 (en) * 2009-05-20 2012-03-21 カシオ計算機株式会社 Image processing apparatus and image processing program

Also Published As

Publication number Publication date
JPH05300535A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
KR100504975B1 (en) Color Correction Device for Video Cameras
US5767899A (en) Image pickup device
JPH0810940B2 (en) Luminance signal forming circuit
JP4489262B2 (en) Color reproduction correction circuit for color display and color display
EP0262623B1 (en) Luminance signal forming circuit
US5349381A (en) Video camera with aperture correction having reduced power consumption
JP3192212B2 (en) Color television signal processing circuit
JP3579217B2 (en) Gamma (γ) correction circuit for TV receiver
JP3192211B2 (en) Color television signal processing circuit
JPH09224186A (en) Video camera and control correcting device
JP2517934B2 (en) Luminance signal forming circuit
JPS6219114B2 (en)
JPS6226234B2 (en)
JPH04298191A (en) Luminance signal synthesis circuit
JPS63275285A (en) Compensation system for gamma correction on image-sending side of television signal
JP2739991B2 (en) Luminance signal correction method for color television
JPS6219115B2 (en)
JP2810310B2 (en) High-frequency compensation device for chroma image
JPS6083488A (en) Camera signal processing circuit
JPH07143516A (en) Video signal compressor
JPH1070733A (en) Contour emphasis circuit for color video signal
JPH044693A (en) Video signal processing unit
JPH04335791A (en) Color signal demodulation circuit
JPH06141327A (en) Digital camera equipment
JPH02234592A (en) Color television signal transmission system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

EXPY Cancellation because of completion of term