JPH044693A - Video signal processing unit - Google Patents

Video signal processing unit

Info

Publication number
JPH044693A
JPH044693A JP2105455A JP10545590A JPH044693A JP H044693 A JPH044693 A JP H044693A JP 2105455 A JP2105455 A JP 2105455A JP 10545590 A JP10545590 A JP 10545590A JP H044693 A JPH044693 A JP H044693A
Authority
JP
Japan
Prior art keywords
luminance signal
signal
gamma correction
signals
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2105455A
Other languages
Japanese (ja)
Inventor
Norio Murata
宣男 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP2105455A priority Critical patent/JPH044693A/en
Publication of JPH044693A publication Critical patent/JPH044693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To reduce the circuit scale and to realize the device with low cost and power consumption by employing a means applying gamma correction to a luminance signal, a means extracting only a high frequency luminance signal form the luminance signal subjected to gamma correction, and a means adding both the low and high frequency luminance signals. CONSTITUTION:R, G, B input signals 1-3 are divided into two respectively, one is fed to low pass filters(LPF) 4-6 and they are subjected to band limit to a chrominance signal band (0-1.5MHz). Moreover, the other R, G, B input signals 1-3 are fed to a matrix circuit 11 directly, in which they are mixed in a ratio of 0.3:0.59:0.11 to obtain a luminance signal before gamma correction. Then a luminance signal Y' subjected to gamma correction is fed to a high pass filter(HPF) 13, in which the signal is converted into a high frequency luminance signal YH whose chrominance signal band component is cut. The high frequency luminance signal TH and the low frequency luminance signal YL are added by an adder circuit 14 to obtain the luminance signal Y.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカラー映像信号処理装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a color video signal processing device.

〔発明の概要〕[Summary of the invention]

本発明は現行カラーテレビジョンシステムが送信側にお
いてガンマ補正を行っているため、定輝度原理が成立し
なくなり9色飽和度の高い画像の解像度が低下するとい
う欠点を補正することを目的とし、R,G、B信号から
輝度信号を合成する際。
The purpose of the present invention is to correct the drawback that the current color television system performs gamma correction on the transmitting side, so the constant brightness principle does not hold and the resolution of images with high nine-color saturation decreases. , G, and B signals when synthesizing a luminance signal.

低域成分はR,G、B信号に個別にガンマ処理を加えて
これを一定の割合で混合して合成し、高域成分に関して
はR,G、B信号を一定の割合で混合してからガンマ処
理を施し、この出力から高域成分のみを抽出するという
方法を用いることで。
The low-frequency components are synthesized by applying gamma processing to the R, G, and B signals individually and mixing them at a fixed ratio.For the high-frequency components, the R, G, and B signals are mixed at a fixed ratio and then synthesized. By applying gamma processing and extracting only the high frequency components from this output.

上記色飽和度の高い画像の解像度劣化を防止するもので
ある。
This is to prevent resolution deterioration of the above-mentioned image with high color saturation.

〔従来の技術〕[Conventional technology]

まず、現行のテレビジョンシステムが送信側でガンマ補
正を行っていることによる影響を簡単に説明する。NT
SC,PAL等の現行テレビジョン方式では、R,G、
B信号から輝度信号Yと色差信号を合成し、輝度信号Y
に、帯域制限を加えた色差信号を色副搬送波で変調して
重畳している。
First, we will briefly explain the effects of gamma correction performed on the transmission side in current television systems. N.T.
In current television systems such as SC and PAL, R, G,
The luminance signal Y and the color difference signal are synthesized from the B signal, and the luminance signal Y
A band-limited chrominance signal is modulated with a chrominance subcarrier and superimposed on the chrominance signal.

このため、R,G、B各信号の帯域成分は、輝度信号Y
によりのみ伝送される高域成分となる。即ち、R信号の
低域成分、高域成分を各々RL、RH1輝度信号Yのそ
れらをt YLIYHとすると1元々のR信号は、RL
+RHであるが、受像機側で再生されるR信号は、RL
+Y14となる。さて本来、ガンマ補正はブラウン管の
発光特性を補正するものであるから、上記受像機で再生
されたR信号Rには。
Therefore, the band components of each R, G, and B signal are the luminance signal Y
This is a high-frequency component that is transmitted only by That is, if the low-frequency component and high-frequency component of the R signal are respectively RL, and those of the RH1 luminance signal Y are tYLIYH, then the original R signal is RL.
+RH, but the R signal reproduced on the receiver side is RL
+Y14. Now, since gamma correction originally corrects the light emission characteristics of the cathode ray tube, the R signal R reproduced by the above-mentioned receiver has the following.

R= (R’) + (Y’)H・・・・・・・・・・
・・・・・・・・・・・(1)となるようなガンマ処理
が施されるべきである。
R= (R') + (Y')H・・・・・・・・・
・・・・・・・・・・・・Gamma processing should be performed so that (1) is obtained.

ところが実際には、このガンマ補正は、送信側でR,G
、B信号の段階のR信号において。
However, in reality, this gamma correction is performed on R and G on the transmitting side.
, in the R signal at the stage of the B signal.

R’ =R’・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・(2
)となるように行われている。このため、今R信号のレ
ベルが1 (100%)で、G、B信号のレベルがOだ
った場合を考えると、輝度信号Yは、R,G。
R'=R'・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(2
). Therefore, if we consider a case where the level of the R signal is 1 (100%) and the levels of the G and B signals are O, the luminance signal Y will be R and G.

B信号を各々0.3 : 0.59 : 0.11の比
で混合して合成されるので、この送信側でガンマ処理が
施されたR信号R′を、実際に受像機で再生したR信号
R′は。
Since the B signals are mixed and synthesized at a ratio of 0.3: 0.59: 0.11, the R signal R', which has been gamma-processed on the transmitting side, is converted into the R signal actually reproduced by the receiver. The signal R' is.

に示すような特性となっている。このため、いまこの1
00%のR信号に微小な高周波成分が乗っていたとして
も、この成分は0.45倍に圧縮されるので、上記再生
R信号R′は。
It has the characteristics shown in. For this reason, now this 1
Even if there is a minute high frequency component on the 00% R signal, this component is compressed by 0.45 times, so the reproduced R signal R' is.

R’  =R+ 0.135RH・・・・・・・・・・
・・・・・・・・・・・・(4)γ     L となる。一方、前に述べたように、受像機側でガンマ補
正を行うとすれば、前記(1)式から。
R'=R+ 0.135RH・・・・・・・・・
・・・・・・・・・・・・(4) γ L . On the other hand, as mentioned earlier, if gamma correction is to be performed on the receiver side, then from equation (1) above.

R,= (R’)L+((0,3R)’)□・・・・・
・・・・・・・・(5)となり、入力レベルが0.3で
ある付近のγカーブの傾斜は約1であるので。
R,= (R')L+((0,3R)')□・・・・・・
(5), since the slope of the γ curve near the input level of 0.3 is approximately 1.

R,=RL+ 0.3RH・・・・・・・・・・・・・
・・・・・・・・・・・・・(6)となる。即ち、送信
側でガンマ補正を施すと受像機側で補正した場合に比べ
、前記ケースの場合。
R,=RL+0.3RH・・・・・・・・・・・・
・・・・・・・・・・・・(6) That is, in the above case, when gamma correction is performed on the transmitter side, compared to when it is corrected on the receiver side.

信号の高域成分のレスポンスが0.13510.3に劣
化してしまう。
The response of the high frequency component of the signal deteriorates to 0.13510.3.

本問題を解決する従来の方法として、特開昭63−67
890号公報に示されている技術がある。
As a conventional method to solve this problem, JP-A-63-67
There is a technique disclosed in Japanese Patent No. 890.

この構成を第3図に示し、以下この方法を説明する。This configuration is shown in FIG. 3, and this method will be explained below.

マトリクス回路11において、ガンマ補正回路7〜9で
各々ガンマ補正を施したR、G、B信号を所定の割合で
混合して輝度信号Y′を合成する。
In the matrix circuit 11, the R, G, and B signals each subjected to gamma correction by the gamma correction circuits 7 to 9 are mixed at a predetermined ratio to synthesize a luminance signal Y'.

またマトリクス回路10では、ガンマ補正前のR2O,
B信号を所定の割合で混合し、これにガンマ補正回路1
2でガンマ補正を加えた輝度信号Y′を得る。そして割
算回路21でY’ /Y’ を計算し、この値を変換回
路23で所定の値に変換した後、高域通過フィルタ(H
PF)22を通した輝度信号YHに乗算器24で掛は合
わせ、低域通過フィルタ(LPF)20を通した輝度信
号YLと加算回路25で加算し、補正輝度信号Yを得る
というものである。
In addition, in the matrix circuit 10, R2O before gamma correction,
B signals are mixed at a predetermined ratio, and gamma correction circuit 1 is applied to this mixture.
2, a luminance signal Y' to which gamma correction has been added is obtained. Then, the division circuit 21 calculates Y'/Y', and the conversion circuit 23 converts this value into a predetermined value, followed by a high-pass filter (H
The multiplier 24 multiplies the luminance signal YH passed through the PF) 22, and adds it to the luminance signal YL passed through the low-pass filter (LPF) 20 in the adder circuit 25 to obtain a corrected luminance signal Y. .

本方式を用いると、送信側ガンマ補正に起因する色飽和
度の高い信号の解像度劣化を補正することができるが2
割算器と乗算器を必要とすることから9回路規模が大き
くなることが避けられず。
Using this method, it is possible to correct resolution deterioration of signals with high color saturation caused by gamma correction on the transmitting side.
Since a divider and a multiplier are required, the scale of the 9 circuits inevitably increases.

装置の大きさ、コスト、電力等の増加が問題となる。Problems include increases in device size, cost, power, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記送信側ガンマ補正に起因する色飽
和度の高い画像信号の解像度劣化を、複雑な計算2回路
構成を用いずに行えるようにすることであり9回路規模
が小さく、電力、コストの低い装置の実現を可能にする
ものである。
An object of the present invention is to enable resolution deterioration of an image signal with high color saturation caused by the above-mentioned gamma correction on the transmitting side to be performed without using a complex calculation circuit configuration with two circuits, and with a small circuit scale and power consumption. This makes it possible to realize a low-cost device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、R,G、B各信号の
低域成分のみを抽出する手段、当該低域成分にガンマ補
正を施す手段と、このガンマ補正を施した各信号を所定
の比率で混合し低域輝度信号を合成する手段、帯域制限
を施さない上記R9G、B信号を所定の割合で混合し、
輝度信号を合成する手段、当該輝度信号にガンマ補正を
施す手段、このガンマ補正を施した輝度信号から、高域
輝度信号のみを抽出する手段及び上記低域、高域面輝度
信号を加算する手段を用いるものである。
In order to achieve the above object, the present invention includes a means for extracting only the low frequency components of each R, G, and B signal, a means for applying gamma correction to the low frequency components, and a means for applying gamma correction to each signal subjected to the gamma correction. A means for synthesizing a low-range luminance signal by mixing at a ratio, mixing the R9G and B signals without band limitation at a predetermined ratio,
means for synthesizing luminance signals, means for gamma-correcting the luminance signals, means for extracting only high-frequency luminance signals from the gamma-corrected luminance signals, and means for adding the low-frequency and high-frequency surface luminance signals. is used.

〔作用〕[Effect]

本発明は、現行のテレビジョンシステムにおいて高域成
分は輝度信号によってのみ伝送されるこ、とを考慮し、
R,G、B信号から輝度信号を合成する際、低域成分に
ついてはR,G、B信号の段階で個別にガンマ補正を行
った後金成し、高域成分については帯域制限を施さない
R,G、B信号を合成した後ガンマ補正を施し、ガンマ
補正された輝度信号を得ることで2色飽和度の高い信号
の解像度劣化がなく9回路規模の増大をきたすこともな
く、受像機側でガンマ補正を行った場合と同じ効果を生
じさせるものである。
The present invention takes into account that in current television systems, high-frequency components are transmitted only by luminance signals,
When synthesizing a luminance signal from R, G, and B signals, the low-frequency components are gamma-corrected separately at the R, G, and B signal stages, and the high-frequency components are synthesized using R without any band limitation. , G, and B signals and then performs gamma correction to obtain a gamma-corrected luminance signal.Therefore, there is no deterioration in the resolution of signals with high two-color saturation, there is no increase in the circuit size, and the receiver side This produces the same effect as when gamma correction is performed.

〔実施例〕〔Example〕

第1図に本発明の一実施例を示し、以下本発明の動作を
詳しく説明する。R,G、B入力信号1〜3はそれぞれ
2つに分けられ、それらの一方は各低域通過フィルタ(
LPF)4〜6に送られ。
An embodiment of the present invention is shown in FIG. 1, and the operation of the present invention will be explained in detail below. The R, G, and B input signals 1 to 3 are each divided into two parts, one of which is passed through each low-pass filter (
LPF) sent to 4-6.

それぞれ色信号帯域(O〜1.5MHz程度)に帯域制
限される。これらの出力は、各ガンマ補正回路7〜9に
送られ、受像機側のブラウン管の発光特性を逆補正する
ため第2図に示すような特性のガンマ補正を施される。
Each is band-limited to a color signal band (about 0 to 1.5 MHz). These outputs are sent to each gamma correction circuit 7 to 9, and are subjected to gamma correction with characteristics as shown in FIG. 2 in order to reversely correct the emission characteristics of the cathode ray tube on the receiver side.

本処理を施された各信号は。Each signal that has undergone this processing is as follows.

マトリクス回路10に送られ、R,G、B信号が各々、
0.3 : 0.59 : 0.11の比率で混合され
、低域輝度信号YLとなる。さらにもう一方のR,G、
B入力信号1〜3は、直接マトリクス回路11にも送ら
れ、ガンマ補正を施されない状態で上記と同じ<、R,
G、B信号が0.3 : 0.59:0.11の比率で
混合され、ガンマ補正前の輝度信号となる。この輝度信
号はガンマ補正回路12で第2図に示すような特性のガ
ンマ処理が施される。その後、このガンマ補正が施され
た輝度信号Y′は高域通過フィルタ(HPF)13に送
られ。
The R, G, and B signals are sent to the matrix circuit 10, respectively.
They are mixed at a ratio of 0.3:0.59:0.11 to form a low-band luminance signal YL. Furthermore, the other R, G,
The B input signals 1 to 3 are also directly sent to the matrix circuit 11, and the same <, R,
The G and B signals are mixed at a ratio of 0.3:0.59:0.11 to produce a luminance signal before gamma correction. This luminance signal is subjected to gamma processing with characteristics as shown in FIG. 2 in the gamma correction circuit 12. Thereafter, this gamma-corrected luminance signal Y' is sent to a high-pass filter (HPF) 13.

上記色信号帯域の成分をカットされた高域輝度信号Y)
Iに変換される。この高域輝度信号YH及び前記低域輝
度信号YLは加算回路14で加算され、輝度信号Yを得
る。以上のように本発明では、高域成分には輝度信号の
状態でガンマ補正が施されるので、こうして得られた輝
度信号に色差信号を色副搬送波で変調したものを重畳し
て伝送した場合は、受像機側でガンマ補正を施さないで
ブラウン管上に再生しても9色飽和度の高い信号の解像
度劣化がないため、受像機側でガンマ補正を施した場合
と同等の画像が得られることになる。
High-frequency luminance signal Y with components of the above color signal band cut)
It is converted to I. This high-frequency luminance signal YH and the low-frequency luminance signal YL are added by an adder circuit 14 to obtain a luminance signal Y. As described above, in the present invention, gamma correction is applied to the high frequency component in the state of the luminance signal, so when a color difference signal modulated by a color subcarrier is superimposed on the luminance signal obtained in this way and transmitted. Even when reproduced on a cathode ray tube without performing gamma correction on the receiver side, there is no degradation in the resolution of signals with high 9-color saturation, so an image equivalent to that obtained when gamma correction is performed on the receiver side can be obtained. It turns out.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明を用いれば2乗算器2割算器等を使
って、複雑な計算を行うことなく、現行テレビシジョン
方式の送信側ガンマ補正による問題が、小規模、低コス
トの回路で解決できるという大きな効果がある。
As described above, by using the present invention, problems caused by gamma correction on the transmitting side of the current television system can be solved using a small-scale, low-cost circuit without performing complicated calculations using a square multiplier and a divider by 2. This has the great effect of being able to solve this problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図。 第2図はガンマ補正特性を説明する図、第3図は従来の
方式を説明するブロック図である。 7〜9,12:ガンマ補正回路、4〜6:低域通過フィ
ルタ(LPF)、10.11 :マトリクス回路、13
:高域通過フィルタ(HPF)、14:加算器。 2\ ’?JL ヘール
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a diagram illustrating gamma correction characteristics, and FIG. 3 is a block diagram illustrating a conventional system. 7 to 9, 12: Gamma correction circuit, 4 to 6: Low pass filter (LPF), 10.11: Matrix circuit, 13
: High-pass filter (HPF), 14: Adder. 2\'? JL Hale

Claims (1)

【特許請求の範囲】[Claims] 1、R、G、B映像信号を所定の割合で混合して輝度信
号を合成する映像信号処理装置において、それぞれ所定
の帯域制限をしガンマ補正を施した上記R、G、B映像
信号を所定の割合で混合して低域輝度信号を合成する手
段と、帯域制限およびガンマ補正を施さない上記R、G
、B映像信号を所定の割合で混合しガンマ補正を加えた
後、所定帯域の高域輝度信号を抽出する手段と、これら
低域輝度信号と高域輝度信号を加算して輝度信号を合成
する手段を有することを特徴とする映像信号処理装置。
1. In a video signal processing device that mixes R, G, and B video signals at a predetermined ratio to synthesize a luminance signal, the R, G, and B video signals, each having a predetermined band limit and gamma correction, are means for synthesizing a low-band luminance signal by mixing at a ratio of
, a means for extracting a high-frequency luminance signal of a predetermined band after mixing B video signals at a predetermined ratio and applying gamma correction, and adding these low-frequency luminance signals and high-frequency luminance signals to synthesize a luminance signal. 1. A video signal processing device, comprising: means.
JP2105455A 1990-04-23 1990-04-23 Video signal processing unit Pending JPH044693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105455A JPH044693A (en) 1990-04-23 1990-04-23 Video signal processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105455A JPH044693A (en) 1990-04-23 1990-04-23 Video signal processing unit

Publications (1)

Publication Number Publication Date
JPH044693A true JPH044693A (en) 1992-01-09

Family

ID=14408064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105455A Pending JPH044693A (en) 1990-04-23 1990-04-23 Video signal processing unit

Country Status (1)

Country Link
JP (1) JPH044693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327826A (en) * 1997-07-23 1999-02-03 Sony Corp Contour enhancing circuit
JP2013505661A (en) * 2009-09-22 2013-02-14 サムスン エレクトロニクス カンパニー リミテッド Video signal generating apparatus and method for minimizing crosstalk between luminance signal and color difference signal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327826A (en) * 1997-07-23 1999-02-03 Sony Corp Contour enhancing circuit
GB2327826B (en) * 1997-07-23 1999-09-01 Sony Corp Video signal processing circuit
US6243083B1 (en) 1997-07-23 2001-06-05 Sony Corporation Video signal processing circuit
JP2013505661A (en) * 2009-09-22 2013-02-14 サムスン エレクトロニクス カンパニー リミテッド Video signal generating apparatus and method for minimizing crosstalk between luminance signal and color difference signal

Similar Documents

Publication Publication Date Title
JP2773900B2 (en) Video processing device for NTSC color television camera
JPH0810940B2 (en) Luminance signal forming circuit
JP2867095B2 (en) Color component signal processing unit
JPH044693A (en) Video signal processing unit
JPH08294137A (en) Projector
JP2509346B2 (en) Color television image processing device
JPH04298191A (en) Luminance signal synthesis circuit
JP3192211B2 (en) Color television signal processing circuit
JP2810310B2 (en) High-frequency compensation device for chroma image
JPH07143516A (en) Video signal compressor
JP3163972B2 (en) Video signal processing device and projection display device
JPH0365865A (en) Output circuit for muse decoder
JPH0369478B2 (en)
JPS63275285A (en) Compensation system for gamma correction on image-sending side of television signal
JP2667496B2 (en) Color television transmission luminance signal correction circuit
JPS6367890A (en) Color television broadcasting equipment
JP3253316B2 (en) TV signal transmission equipment
JPS6219115B2 (en)
JPH05300535A (en) Color television signal processing circuit
JPH10233966A (en) Solid-state image pickup device
JPH1070733A (en) Contour emphasis circuit for color video signal
JPH0418512B2 (en)
JPH0411445A (en) Picture reader
JPH02234592A (en) Color television signal transmission system
JPH04335791A (en) Color signal demodulation circuit