JPH1070733A - Contour emphasis circuit for color video signal - Google Patents

Contour emphasis circuit for color video signal

Info

Publication number
JPH1070733A
JPH1070733A JP8223930A JP22393096A JPH1070733A JP H1070733 A JPH1070733 A JP H1070733A JP 8223930 A JP8223930 A JP 8223930A JP 22393096 A JP22393096 A JP 22393096A JP H1070733 A JPH1070733 A JP H1070733A
Authority
JP
Japan
Prior art keywords
circuit
signals
signal
color
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8223930A
Other languages
Japanese (ja)
Inventor
Shigeto Abe
重人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP8223930A priority Critical patent/JPH1070733A/en
Publication of JPH1070733A publication Critical patent/JPH1070733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform the resolution compensation of an excellent S/N without the need of a matrix circuit and a gamma circuit by easily obtaining the arithmetic operation of a color saturation. SOLUTION: A maximum color level judgement circuit 5 compares R, G and B video signal levels and outputs the hue signals θSEL of a highest level and highest color level signals CMAX. A second color level judgement circuit outputs the second color level signals CCNT of the signals of a second highest level. By a division circuit 7 and a subtraction circuit 8, the arithmetic operation of 1-(CMAX/CCNT) is performed and the color saturation PW is obtained from it. A weighting circuit 9 outputs contour control signals DG for which the weight of a color saturation coefficient PW is changed by the maximum hue signals θSEL. Contour correction signals DHG obtained by controlling contour signals DH from a contour signal generation circuit 4 by the contour control signals DG are added to video signals R, G and B and R, G and B video signals to which contour emphasis is executed corresponding to the color saturation are obtained from a video signal addition circuit 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カラーテレビジョ
ンカメラにおける輪郭信号処理回路に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contour signal processing circuit in a color television camera.

【0002】[0002]

【従来の技術】まず、現行のテレビジョンシステムが送
信側でガンマ補正を行っていることによる影響を簡単に
説明する。NTSC,PAL等のテレビジョン方式で
は、輝度信号と色差信号の形に合成された3原色カラー
映像信号を、色差信号に帯域制限を加えた上、色副搬送
波で変調して輝度信号に重畳している。このため、R,
G,B各信号の高域成分は、輝度信号によってのみ伝送
される。すなわち、R信号の低域成分、高域成分を、各
々RL,RH、輝度信号のそれをYL,YH とすると、受
信側で再生されるR信号は、RL+YH となり、また Y
Hは、G,B信号としても再生される。さて、本来、ガ
ンマ補正はブラウン管の発光特性を補正するものである
から、受信側で再生されたR信号には、 R=(RL
H) , γ=0.45となるような処理が加えられ
るべきであり、また、G,B信号として再生されるYH
信号にも、同様のガンマ補正が施されるべきである。
2. Description of the Related Art First, a brief description will be given of the effect of the current television system performing gamma correction on the transmission side. In television systems such as NTSC and PAL, a three-primary-color video signal synthesized in the form of a luminance signal and a color-difference signal is band-limited to the color-difference signal, modulated by a color subcarrier, and superimposed on the luminance signal. ing. Therefore, R,
The high frequency components of the G and B signals are transmitted only by the luminance signal. That is, the low-frequency component of the R signal, the high frequency component, each R L, R H, it Y L of the luminance signal, when Y H, R signal reproduced by the receiving side, R L + Y H becomes, Also Y
H is also reproduced as G and B signals. By the way, since the gamma correction originally corrects the emission characteristics of the cathode ray tube, the R signal reproduced on the receiving side includes R = ( RL +
Y H ), γ = 0.45, and Y H reproduced as G and B signals should be added.
A similar gamma correction should be applied to the signal.

【0003】しかし実際の現行のテレビジョンシステム
では、R,G,B信号の段階で、 R’=R0.45 となるようなガンマ補正が行われている。このため、い
ま、R信号のレベルが1(100%)、G,B信号のレベ
ルが0であるようなケースを考えると、輝度信号はR,
G,B信号を、0.3:0.59:0.11の比で合成
されたものなので、再生されるR信号は、R=RL
0.3RH となる。さて、このR信号に微少な高周波
成分が乗っていたとすると、この高周波信号は、図2に
示すような特性を有する送信側のガンマ補正回路で、R
信号の低域信号レベルに応じて増減され、この場合、通
常0.45倍される。一方、受信側では、この高周波信
号は、ブラウン管の発光特性により2.2倍され、送受
合わせたゲインは1倍となる。
However, in an actual current television system, gamma correction is performed so that R '= R 0.45 at the stage of R, G, B signals. Therefore, considering the case where the level of the R signal is 1 (100%) and the levels of the G and B signals are 0, the luminance signal is R,
Since the G and B signals are synthesized at a ratio of 0.3: 0.59: 0.11, the reproduced R signal is R = R L +
0.3 RH . Now, assuming that a small high-frequency component is superimposed on the R signal, the high-frequency signal is transmitted to the R-side gamma correction circuit having characteristics as shown in FIG.
It is increased or decreased according to the low-band signal level of the signal, and in this case, it is usually multiplied by 0.45. On the receiving side, on the other hand, this high-frequency signal is multiplied by 2.2 due to the light emission characteristics of the cathode ray tube, and the combined gain becomes 1 time.

【0004】また、この高周波信号は、G,B信号とし
ても再生されるわけであるが、このケースの場合、元々
のG,B信号レベルが共に0であるので、再生G,B信
号はG=0.3RH , B=0.3RH となる。な
お、該RH 信号は、前述したようにガンマ補正回路で
0.45倍されている。ここで、上記R信号の場合はブ
ラウン管の発光特性により2.2倍され、送受合わせた
ゲインは1倍となったわけであるが、このG,B信号の
場合は信号レベルが0に近いので、ブラウン管のゲイン
は0に近い。即ち、この場合高周波信号は、G,B信号
としても再生されないことになり、高周波信号はR信号
だけから再生され、そのレベルは元の0.3倍に減少す
る。同様のことはG,B信号だけがレベルの高いケース
でも起こる。つまり、現行のテレビジョンシステムでは
色飽和度の高い信号に対する解像度は低い。
The high-frequency signal is also reproduced as G and B signals. In this case, since the original G and B signal levels are both 0, the reproduced G and B signals are G signals. = 0.3R H , B = 0.3R H. The RH signal is multiplied by 0.45 by the gamma correction circuit as described above. Here, in the case of the above-mentioned R signal, the gain is increased by a factor of 2.2 due to the emission characteristics of the cathode-ray tube, and the gain of the transmitted and received signals is increased by 1. However, since the signal levels of the G and B signals are close to 0, The gain of a CRT is close to zero. That is, in this case, the high-frequency signal is not reproduced even as the G and B signals, and the high-frequency signal is reproduced only from the R signal, and its level is reduced to 0.3 times the original level. The same occurs in the case where only the G and B signals have a high level. That is, in the current television system, the resolution for a signal with high color saturation is low.

【0005】本問題を解決する従来の方法として、特開
昭63−67890号公報に記載された技術がある。
この構成を図5に示し、以下この方法を説明する。マト
リクス回路22により、ガンマ補正回路18〜20でガ
ンマ補正を施したR,G,B信号を所定の割合で混合し
て輝度信号Yを合成する。また、マトリクス回路21で
は、ガンマ補正前のR,G,B信号1〜3を所定の割合
で混合し、ガンマ補正回路23でガンマ補正を加えた輝
度信号Y’を得る。そして、除算回路26でY/Y’を
計算し、この値を変換回路27で所定の値に変換した
後、乗算器28で高域通過フィルタ25を通した輝度信
号YH と掛け合わせ、加算回路29で低域通過フィルタ
24を通した輝度信号YL と加算し、補正された輝度信
号Yを得るというものである。本方式を用いると、色飽
和度が高く上述した送信側ガンマ補正の影響で解像度の
劣化する被写体信号に対しては、Y/Y’が大きな値を
とるため高域輝度信号YH が増幅され、送信側ガンマ補
正に基ずく色飽和度の高い信号の解像度劣化を補正する
ことができる。しかし、本方式では除算器と乗算器を必
要とすることから、回路規模が大きくなることが避けら
れず、装置の大きさ、コスト、電力等の増加が問題とな
る。
As a conventional method for solving this problem, there is a technique described in Japanese Patent Application Laid-Open No. 63-67890.
This structure is shown in FIG. 5, and the method will be described below. The matrix circuit 22 mixes the R, G, and B signals subjected to gamma correction by the gamma correction circuits 18 to 20 at a predetermined ratio to synthesize a luminance signal Y. Further, the matrix circuit 21 mixes the R, G, and B signals 1 to 3 before gamma correction at a predetermined ratio, and obtains a luminance signal Y ′ to which the gamma correction is performed by the gamma correction circuit 23. Then, the division circuit 26 calculates the Y / Y ', this after a value has been converted into a predetermined value in the conversion circuit 27, by multiplying the luminance signal Y H through a high-pass filter 25 in the multiplier 28, adder The circuit 29 adds the luminance signal Y L passed through the low-pass filter 24 to obtain a corrected luminance signal Y. Using the present method, for the subject signal color saturation is degraded affected by the resolution of the high above-described transmission-side gamma correction, the high frequency luminance signal Y H for Y / Y 'takes a large value is amplified In addition, it is possible to correct the degradation of the resolution of a signal having a high color saturation based on the transmission-side gamma correction. However, since this method requires a divider and a multiplier, it is inevitable that the circuit scale becomes large, and there is a problem in that the size, cost, power, etc. of the device increase.

【0006】[0006]

【発明が解決しようとする課題】現行テレビ方式の欠点
である高彩度画像に対する解像度劣化を補正する前述の
従来技術では、ガンマ前のR,G,B信号から輝度信号
を合成し、これをガンマ補正する構成のため、専用のマ
トリクス回路とガンマ回路が必要であった。また、原理
的に解像度補償は色飽和度だけが基準で色相が選べない
ため、S/Nの悪いB信号に過度に補正がかかる欠点を
有していた。本発明の目的は、色飽和度と色相の演算を
簡単に求めることを可能とすることで、専用のマトリク
ス回路とガンマ回路を不要とし、さらに解像度補償を行
なう被写体の色選択を可能にし、S/Nの良い補正を可
能にすることにある。
In the above-mentioned prior art for correcting the deterioration of resolution for a high chroma image, which is a drawback of the current television system, a luminance signal is synthesized from R, G, B signals before gamma, and this is gamma corrected. This requires a dedicated matrix circuit and gamma circuit. Further, in principle, resolution compensation has a drawback in that a hue cannot be selected based on only the color saturation, so that a B signal having a poor S / N is excessively corrected. An object of the present invention is to make it possible to easily calculate the color saturation and hue, thereby eliminating the need for a dedicated matrix circuit and gamma circuit, and further enabling the color selection of a subject for which resolution compensation is to be performed. / N.

【0007】[0007]

【課題を解決するための手段】本発明では上記目的を達
成するため、R,G,B映像信号から輪郭信号を抽出す
る手段と、上記R,G,B映像信号の中から最大レベル
の信号を判定する手段と、2番目のレベルの信号を判定
する手段と、当該最大レベルの信号と2番目のレベルの
信号のレベル比を計算する手段と、当該計算比率と最大
レベルの信号の種類により、上記輪郭信号のゲインを制
御する手段と、当該ゲイン制御後の輪郭信号をR,G,
B映像信号に加算する手段を有する構成としたものであ
る。
According to the present invention, in order to achieve the above object, a means for extracting a contour signal from R, G, B video signals, and a signal of the highest level among the R, G, B video signals are provided. Means for determining the signal of the second level, means for calculating the level ratio of the signal of the maximum level to the signal of the second level, and means for calculating the level ratio between the signal of the maximum level and the signal of the maximum level. Means for controlling the gain of the contour signal, and converting the contour signal after the gain control into R, G,
This is a configuration having means for adding to the B video signal.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施例を、図1
を用いて詳細に説明する。入力端子1〜3から入力され
たR,G,Bの3原色信号は、輪郭信号発生回路4と最
大色レベル判定回路5と2番色レベル判定回路6及び映
像信号加算回路11に供給される。輪郭信号発生回路4
は、R,G,B映像信号の輪郭成分DH を抽出する。最
大色レベル判定回路5は、R,G,B映像信号レベルを
比較して、最もレベルの高い色を判定し、最大色判定結
果(R,G,Bの何れか)θSEL と最大色レベルCMAX
出力する。2番色レベル判定回路6は、R,G,B映像
信号レベルを比較して、2番目にレベルの高い信号を判
定し、2番色レベルCCNTを出力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIG.
This will be described in detail with reference to FIG. The R, G, and B primary color signals input from the input terminals 1 to 3 are supplied to the contour signal generation circuit 4, the maximum color level determination circuit 5, the second color level determination circuit 6, and the video signal addition circuit 11. . Contour signal generation circuit 4
Extracts the contour component D H of the R, G, B video signal. The maximum color level determination circuit 5 compares the R, G, and B video signal levels to determine the color with the highest level. The maximum color determination result (any of R, G, and B) θ SEL and the maximum color level Outputs CMAX . The second color level determination circuit 6 compares the R, G, and B video signal levels to determine a signal having the second highest level, and outputs a second color level CCNT .

【0009】上記最大色レベルCMAX と2番色レベルC
CNT は、除算回路7に供給される。この除算回路7は、
MAX /CCNT を計算し、この計算結果CDIV を出力す
る。減算回路8は、"1"から、上記除算結果CDIV を減
算し、色飽和度PW を得る。また、最大色判定結果θ
SEL と色飽和度PW は重み付け回路9に入力される。当
該重み付け回路9は、最大色判定結果θSEL により色飽
和度係数PW の重みを変化させた輪郭制御信号DG を出
力する。上記輪郭信号DH と輪郭信号制御信号DG は、
乗算回路10に供給され、輪郭信号DH のゲインを輪郭
信号制御信号DG で制御し、輪郭補正信号DHGを得る。
映像信号加算回路11は該輪郭補正信号DHGを映像信号
R,G,Bに加算する。この結果、映像信号加算回路1
1の出力端子からは、色飽和度に応じて輪郭強調を施さ
れたR,G,B信号出力が得られる。
The maximum color level C MAX and the second color level C
The CNT is supplied to the division circuit 7. This division circuit 7
C MAX / C CNT is calculated, and the calculation result C DIV is output. The subtraction circuit 8 subtracts the division result C DIV from “1” to obtain the color saturation P W. Also, the maximum color judgment result θ
The SEL and the color saturation P W are input to the weighting circuit 9. The weighting circuit 9 outputs a contour control signal D G where the maximum color determination result theta SEL to change the weight of the color saturation coefficient P W. The contour signal DH and the contour signal control signal DG are:
It is supplied to the multiplier circuit 10, the gain of the contour signal D H is controlled by the contour signal control signal D G, obtaining a contour correction signal D HG.
The video signal addition circuit 11 adds the contour correction signal DHG to the video signals R, G, B. As a result, the video signal adding circuit 1
From the output terminal of No. 1, R, G, and B signal outputs obtained by performing edge enhancement in accordance with the color saturation are obtained.

【0010】次に、色飽和度について詳しく説明する。
色飽和度PW は、図2に示すように、R,G,B信号
のうち最もレベルの高い色のレベルをa,2番目にレベ
ルの高い色のレベルをbとした場合、次式で表される。
aは原色成分(最大色レベル)、bは補色成分(2番色レ
ベル)として定義され、 PW =(a−b)/a=1−b/a となる。したがって、上記したように各判定回路5,6
により判定した、最大色レベルと2番色レベルとを除算
した結果を、減算回路8で、"1"から減算した結果は、
この色飽和度情報となる。また、同じ色飽和度でも、前
記送信側ガンマ補正と輝度信号での高域信号伝送による
解像度劣化の影響は異なる。即ち、G信号に比べ、R,
B信号の色飽和度が高いときの解像度劣化は大きい。ま
た、B信号については解像度劣化も問題となるが、これ
を過度に補正すると、S/Nの劣化が問題になる。よっ
て、本発明ではこれを考慮し、上記したように最大色判
定結果で色飽和度係数の重みを変化させている。
Next, the color saturation will be described in detail.
Color saturation P W, as shown in FIG. 2, R, G, if the color levels of the highest level the color levels of the high level to a, 2 th of the B signal and is b, the following equation expressed.
a is defined as a primary color component (maximum color level), b is defined as a complementary color component (second color level), and P W = (ab) / a = 1-b / a. Therefore, as described above, each of the determination circuits 5, 6
The result obtained by subtracting the result obtained by dividing the maximum color level and the second color level from “1” by the subtraction circuit 8 is as follows:
This is the color saturation information. Further, even with the same color saturation, the influence of resolution degradation due to the transmission-side gamma correction and high-frequency signal transmission of a luminance signal is different. That is, compared to the G signal, R,
When the color saturation of the B signal is high, the resolution degradation is large. In addition, the resolution degradation of the B signal is also a problem, but if this is excessively corrected, the degradation of the S / N becomes a problem. Therefore, in consideration of this, the present invention changes the weight of the color saturation coefficient in the maximum color determination result as described above.

【0011】次に、図3を用いて上記の重み付け回路9
について詳しく説明する。この回路は、色飽和度情報P
W を入力とし、これに所定の重み付けを行う3個のテー
ブル14〜16とセレクタ17で構成されている。ここ
で、色飽和度PW は、図4に示すように、変換テーブル
14〜16にそれぞれ設定された、R,G,B信号用の
重み付け(各色飽和度に対応するゲイン値)を、それぞれ
加えられる。これらの出力は、最大色判定結果θSEL
応じ、セレクタ17により、最大色がRなら変換テーブ
ル14、Gなら変換テーブル15、Bなら変換テーブル
16の出力が選択され、輪郭制御信号DG として出力さ
れる。以上の動作により、本発明では、色飽和度を、マ
トリクス回路もガンマ回路も用いずに求めることがで
き、さらに同じ飽和度でも色選択が可能のため、S/N
の劣化が少ない解像度補正が可能になる。
Next, the weighting circuit 9 will be described with reference to FIG.
Will be described in detail. This circuit uses the color saturation information P
It is composed of three tables 14 to 16 for inputting W and giving a predetermined weight thereto, and a selector 17. Here, as shown in FIG. 4, the color saturation P W is obtained by dividing the weights (gain values corresponding to the respective color saturations) for the R, G, and B signals set in the conversion tables 14 to 16 respectively. Added. These outputs, depending on the maximum color determination result theta SEL, the selector 17, the output of the converter if the maximum color R table 14, G if conversion table 15, B if the conversion table 16 is selected, as the contour control signal D G Is output. According to the above operation, in the present invention, the color saturation can be obtained without using the matrix circuit and the gamma circuit, and the color can be selected even with the same saturation.
This makes it possible to perform resolution correction with little deterioration.

【0012】[0012]

【発明の効果】以上説明した如く、本発明では、色飽和
度の演算を簡単に求めることにより、マトリクス回路も
ガンマ回路も必要としない。さらに同じ色飽和度でも、
色選択が可能のため、B信号に対してもS/N劣化の少
ない解像度補正が可能となる。
As described above, according to the present invention, since the calculation of the color saturation is easily obtained, neither a matrix circuit nor a gamma circuit is required. Even with the same color saturation,
Since color selection is possible, resolution correction with little S / N degradation can be performed on the B signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】色飽和度の定義を説明するための図。FIG. 2 is a diagram for explaining the definition of a color saturation.

【図3】本発明の重み付け回路の構成を示すブロック
図。
FIG. 3 is a block diagram showing a configuration of a weighting circuit according to the present invention.

【図4】色飽和度とゲイン特性の一例を示す特性図。FIG. 4 is a characteristic diagram showing an example of color saturation and gain characteristics.

【図5】従来の解像度補正回路の一例を示すブロック
図。
FIG. 5 is a block diagram showing an example of a conventional resolution correction circuit.

【符号の説明】[Explanation of symbols]

1〜3,12〜13:入力端子、4:輪郭信号発生回
路、5:最大色レベル判定回路、6:2番色レベル判定
回路、7:除算回路、8:減算回路、9:重み付け回
路、10:乗算器、11:映像信号加算回路、14〜1
6:変換テーブル、17:セレクタ。
1-3, 12-13: input terminals, 4: contour signal generation circuit, 5: maximum color level determination circuit, 6: second color level determination circuit, 7: division circuit, 8: subtraction circuit, 9: weighting circuit, 10: multiplier, 11: video signal addition circuit, 14-1
6: conversion table, 17: selector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R,G,B映像信号から輪郭信号を抽出
する手段と、上記R,G,B映像信号の中から最大レベ
ルの信号を判定する手段と、2番目のレベルの信号を判
定する手段と、上記最大レベルの信号と2番目のレベル
の信号のレベル比を計算する手段と、当該計算比率と最
大レベルの信号の種類により、上記輪郭信号のゲインを
制御する手段と、当該ゲイン制御後の輪郭信号を上記
R,G,B映像信号に加算する手段を有することを特徴
とするカラー映像信号の輪郭強調回路。
1. A means for extracting a contour signal from an R, G, B video signal, a means for determining a signal having a maximum level from among the R, G, B video signals, and a signal for determining a second level signal Means for calculating the level ratio between the maximum level signal and the second level signal; means for controlling the gain of the contour signal according to the calculation ratio and the type of the maximum level signal; A contour enhancement circuit for a color video signal, comprising means for adding a contour signal after control to the R, G, B video signal.
JP8223930A 1996-08-26 1996-08-26 Contour emphasis circuit for color video signal Pending JPH1070733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8223930A JPH1070733A (en) 1996-08-26 1996-08-26 Contour emphasis circuit for color video signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8223930A JPH1070733A (en) 1996-08-26 1996-08-26 Contour emphasis circuit for color video signal

Publications (1)

Publication Number Publication Date
JPH1070733A true JPH1070733A (en) 1998-03-10

Family

ID=16805947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8223930A Pending JPH1070733A (en) 1996-08-26 1996-08-26 Contour emphasis circuit for color video signal

Country Status (1)

Country Link
JP (1) JPH1070733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035945A (en) * 2010-11-16 2011-02-17 Canon Inc Signal processing apparatus and signal processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035945A (en) * 2010-11-16 2011-02-17 Canon Inc Signal processing apparatus and signal processing method

Similar Documents

Publication Publication Date Title
JP4489262B2 (en) Color reproduction correction circuit for color display and color display
KR920006173B1 (en) Apparatus for correcting errors in color signal transitions
JPH1070733A (en) Contour emphasis circuit for color video signal
JP3579217B2 (en) Gamma (γ) correction circuit for TV receiver
JPH09224186A (en) Video camera and control correcting device
JP2001061160A (en) Color correction device
JP2815474B2 (en) Image processing device
JP3192211B2 (en) Color television signal processing circuit
JPH0316078B2 (en)
JPH01154694A (en) Compensating circuit for picture sending gamma correction of television signal
CA2284935C (en) Contour emphasizing circuit
JP3192212B2 (en) Color television signal processing circuit
JP3253316B2 (en) TV signal transmission equipment
JP3714877B2 (en) Image display device and program
JP2638186B2 (en) Color television signal transmission system
JP2896007B2 (en) Digital camera signal processing circuit
JP3641402B2 (en) Color correction circuit and color correction method
JPH11284880A (en) Image pickup device
JPH10233966A (en) Solid-state image pickup device
GB2293514A (en) Luminance signal coding; correcting for failure of constant luminance
JP3357439B2 (en) Video signal processing device
JP2810310B2 (en) High-frequency compensation device for chroma image
JPH04298191A (en) Luminance signal synthesis circuit
JP2739991B2 (en) Luminance signal correction method for color television
JP3434329B2 (en) Color imaging device