JPS618853A - Layer-built fuel cell - Google Patents

Layer-built fuel cell

Info

Publication number
JPS618853A
JPS618853A JP59129474A JP12947484A JPS618853A JP S618853 A JPS618853 A JP S618853A JP 59129474 A JP59129474 A JP 59129474A JP 12947484 A JP12947484 A JP 12947484A JP S618853 A JPS618853 A JP S618853A
Authority
JP
Japan
Prior art keywords
fuel
gas
gas flow
flow path
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59129474A
Other languages
Japanese (ja)
Inventor
Hiroshi Ide
井出 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59129474A priority Critical patent/JPS618853A/en
Publication of JPS618853A publication Critical patent/JPS618853A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To promote uniformity of electrochemical reaction precisely, by varying the flow rate distribution in perpendicular direction to the gas flow direction in the flow passage flux in gas flow. CONSTITUTION:Fuel gas enters a manifold 4a for fuel inlet/outlet at the inlet side and thereafter enters a cell, the flow rate distribution in perpendicular direction to the gas flow direction being varied by a baffle plate 6. The fuel gas getting into the cell returns in a fuel-return-manifold 4b, after contributing to electrochemical reaction in a region S1, and in turn, uniformly enters the cell. After the fuel gas contributes to electrochemical reaction in a region S2, it flows to the outlet side of the manifold 4a for fuel inlet/outlet and is exhausted outside of the system. On the other hand, oxidizer gas is distributed uniformly in the cell from an oxidizer inlet side manifold 15a and flows to an oxidizer outlet side manifold 15b and is exhausted outside of the system, after contributing to electrochemical reaction in the regions S2 and S1 respectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は積層形燃料電池に関し、特に積層方向と直角
な面の面圧、温度、及び電流分布を均一化しようとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a stacked fuel cell, and particularly aims to equalize surface pressure, temperature, and current distribution on a surface perpendicular to the stacking direction.

〔従来技術〕 − 第1図は従来の積層形燃料電池の一部切欠いて内部を示
す斜視図であり、図において、(1)は燃料電極と酸化
剤電極間に電解質マトリックスを介在した単電池、(2
)は燃料電極に対設する燃料ガス流路(図示せず)と酸
化剤電極に対設する酸化剤ガス流路(図示せず)とを分
離するガス分離板、(3)は単電池(1)とガス分離板
(2)とを交互に複数個積層してs#:した積層体の上
下に配置した端板、(14a) l (141))、 
(15a)、 (15b)はそれぞれ上記積層体の側面
に配設され、燃料及び酸化剤ガスを積層体に設けた燃料
及び酸化剤ガス流路(図示せず)に供給。
[Prior Art] - Figure 1 is a partially cutaway perspective view showing the interior of a conventional stacked fuel cell. ,(2
) is a gas separation plate that separates a fuel gas flow path (not shown) provided opposite to the fuel electrode from an oxidant gas flow path (not shown) provided opposite to the oxidizer electrode, and (3) is a single cell ( End plates (14a) l (141)) arranged above and below a laminate made by alternately laminating a plurality of 1) and gas separation plates (2),
(15a) and (15b) are arranged on the side surfaces of the laminate, respectively, and supply fuel and oxidant gas to fuel and oxidant gas channels (not shown) provided in the laminate.

排出するマニホールドであり、(14a)は燃料入口側
−=t =ホールド、(14b)は燃料出口側マニホー
ルド、(15a)は酸化剤入口側マニホールド、(15
b)は酸化剤出口側マニホールドである。なお、矢印A
(14a) is the fuel inlet side - = t = hold, (14b) is the fuel outlet side manifold, (15a) is the oxidizer inlet side manifold, (15
b) is the oxidizer outlet side manifold. In addition, arrow A
.

Bはそれぞれ燃料および酸化剤ガスの流れる方向を示す
B indicates the direction in which the fuel and oxidizing gas flow, respectively.

次に動作について説明する。燃料および酸化剤入口側マ
ニホールド(14a)、 (15a)を介して燃料及び
酸化剤ガス流路に供給された燃料及び酸化剤ガスは、多
孔質の各電極に拡散し、電気化学反・応に寄与して水を
生成すると共に直流電力を発生する。
Next, the operation will be explained. The fuel and oxidant gas supplied to the fuel and oxidant gas flow path through the fuel and oxidant inlet manifolds (14a) and (15a) diffuse into each porous electrode and undergo an electrochemical reaction. It contributes to the production of water and DC power.

このとき発生した直流電力は、単電池(1)がガス分離
板(2)を介して直列に接続されているため、端板(3
)よシ外部の電気回路へ導かれる。なお、反応に寄与し
なかった未反応の燃料及び酸化剤ガスは、それぞれ該当
する出口側マニホールド(14b)、 (15b)から
外部−・排出される。
Since the unit cells (1) are connected in series through the gas separation plate (2), the DC power generated at this time is transmitted through the end plate (3).
) is then led to an external electrical circuit. Incidentally, unreacted fuel and oxidizing gas that did not contribute to the reaction are discharged to the outside from the corresponding outlet manifolds (14b) and (15b), respectively.

l      ところで、従来の積層形燃料電池では、
燃料及び酸化剤ガスが一定の流量分布で流れていたため
、単電池(1)平面内において、燃料及び酸イヒ剤ガス
の入口側に相当する部分と出口側に相当する部分とで燃
料及び酸化剤ガスの分圧が高いもの同志、低いもの同志
が重なるため、ガス分圧に依存する電気化学反応量が単
電池(1)平面内で非常に不均一となり、その結果電気
分布、温度分布9面圧の分布が不均一とkる。さらに、
この単電池(1)の積層体である積層形燃料電池におい
ては、上記不均一な電流、温度、及び面圧の分布が積層
方向に重なるため相乗作用を生じ、安定な電池特性が得
られない。
l By the way, in conventional stacked fuel cells,
Since the fuel and oxidizer gas were flowing with a constant flow rate distribution, the fuel and oxidant gas were flowing at a part corresponding to the inlet side of the fuel and oxidizer gas and a part corresponding to the outlet side in the plane of the unit cell (1). Because gases with high partial pressures overlap with gases with low gas partial pressures, the amount of electrochemical reaction that depends on the gas partial pressure becomes extremely uneven within the cell (1) plane, resulting in electrical distribution and temperature distribution on 9 planes. The pressure distribution may be uneven. moreover,
In the stacked fuel cell, which is a stack of single cells (1), the uneven current, temperature, and surface pressure distributions overlap in the stacking direction, resulting in a synergistic effect, making it impossible to obtain stable battery characteristics. .

第2図は上記諸物件を計算機を用いてシミュレートした
結果を示したものである。図では単電池(1)平面内に
おける電流分布を表わしている。図中のa、b、c、a
Vi第1図のそれと対応する。
Figure 2 shows the results of simulating the above properties using a computer. The figure shows the current distribution within the plane of the single cell (1). a, b, c, a in the diagram
Vi corresponds to that in FIG.

すなわち、第1図において、aで示す部分は燃料及び酸
化剤ガスの分圧が共に高く、上記電気化学反応が盛んで
あるので、発電量も多く、温度も高く、熱膨張によシ面
圧も高くなっている。     、弯この部分の電流値
(1+nax ) Id単電池平均電流値工に較べ+3
4チとなっている。高温で面圧が高くなったaの部分で
は、よシ反応が盛んとなる。他方、Cで示す部分は燃料
及び酸化剤ガスの分圧が共に低く反応量が少ないため、
発電量も少なく、温度1面圧も低くなっている。この部
分の電流値(工min )は〒に較べ一20%となって
いる。dとbで示す部分については、発電量、温度1面
圧共に両者の中間ぐらいである。発電量に起因する面内
の温度分布は、電池のタイプ、負荷量、ガス利用率等に
よシ異なるが、リン酸゛形燃料電池を例にとシ、負荷を
200mA/cm 、酸化剤利用率50チ、燃料利用率
75チとした場合の面内の温度差△T(Tmax−Tm
1n )は約14℃ぐらいになる。
In other words, in the part indicated by a in Fig. 1, the partial pressures of fuel and oxidant gas are both high, and the above electrochemical reaction is active, so the amount of electricity generated is large, the temperature is high, and the surface pressure is increased due to thermal expansion. The prices are also getting higher. , Current value at this part (1+nax) +3 compared to Id single cell average current value
It is 4 chi. In part a, where the surface pressure is high due to high temperature, the reaction becomes more active. On the other hand, in the part indicated by C, the partial pressures of fuel and oxidant gas are both low and the amount of reaction is small;
The amount of electricity generated is small, and the temperature per surface pressure is also low. The current value (min) in this part is 20% of that in 〒. Regarding the portions indicated by d and b, both the amount of power generation and the temperature per surface pressure are approximately between the two. The in-plane temperature distribution caused by the amount of power generated varies depending on the type of battery, load amount, gas utilization rate, etc., but using a phosphoric acid fuel cell as an example, the load is 200 mA/cm and the oxidizing agent is used. In-plane temperature difference △T (Tmax - Tm
1n) is approximately 14°C.

以上のように、従来の積層形燃料電池においては、積層
方向と直角な面の電流、温度、及び面圧の分布が不均一
であシ、積層方向でこの不均一さの相乗作用を生じるた
め、安定な電池特性が得られないという欠点があった。
As described above, in conventional stacked fuel cells, the distribution of current, temperature, and surface pressure on the plane perpendicular to the stacking direction is non-uniform, and this non-uniformity has a synergistic effect in the stacking direction. However, there was a drawback that stable battery characteristics could not be obtained.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、電気化学反応を均一に行なわせる
ように、ガスの流れ内の流路束におけるガスの流れ方向
に直角な方向の流量分布を変化させることKよシ、上記
電気化学反応の均一を精度良く促進させられる積層形燃
料電池を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and in order to uniformly perform the electrochemical reaction, the direction perpendicular to the direction of gas flow in the flow path bundle within the gas flow is It is an object of the present invention to provide a stacked fuel cell that can promote uniformity of the electrochemical reaction with high accuracy by changing the flow rate distribution.

(発明の実施例〕 以下、この発明の一実施例を図をもとに説明する。(Embodiments of the invention) An embodiment of the present invention will be described below with reference to the drawings.

第3図はこの発明の一実施例による積層形燃料電池の一
部切欠いて内部を示す斜視図である。図にオイテ、(4
a)ハ燃料入ロ、出口用マニホールド。
FIG. 3 is a partially cutaway perspective view showing the inside of a stacked fuel cell according to an embodiment of the present invention. In the figure, (4
a) C Fuel inlet and outlet manifold.

(4b)は燃料リターンマニホールド、(6)は燃料ガ
スの漆れの入口すなわち燃料入口用マニホールド(4a
)内罠設けられ、流路抵抗の分布を変えるため密度およ
び大きさを変えて明けられた多くの孔(6FL)を有す
る邪魔板、(7)は燃料入口、出口用マニホールド(4
a)の内部において入口側と出口側の燃料ガスが混合し
ないように分離する仕切板である。なお、邪魔板(6)
の孔(6a)は酸化剤ガス出口側に近い程大きく密に明
けられている。
(4b) is a fuel return manifold, (6) is a fuel gas inlet, that is, a fuel inlet manifold (4a
) is a baffle plate with many holes (6FL) of varying density and size to change the distribution of flow path resistance, (7) is a fuel inlet and outlet manifold (4).
This is a partition plate that separates the fuel gases on the inlet side and the outlet side so that they do not mix in the interior of a). In addition, the baffle board (6)
The holes (6a) are larger and more densely opened closer to the oxidant gas outlet side.

第4図は第3図に示すこの発明の一実施例による燃料電
池における単電池(1)平面内での電゛流分布について
計算機を用いてシミュレートした結果を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the results of a computer simulation of the current distribution within the plane of the single cell (1) in the fuel cell according to the embodiment of the present invention shown in FIG.

図において、破線は燃料ガスの入口側とリターン側とを
分離するラインを示し、その面積比は入口側:リターン
側−ブ:3の場合を示している0以下の説明では、面積
が7の側を領域Sl、面積が3の側を領域S2と称す。
In the figure, the broken line indicates the line separating the fuel gas inlet side and return side, and the area ratio is inlet side: return side - b: 3. In the following explanation, the area is 7. The side with an area of 3 is called a region S1, and the side with an area of 3 is called a region S2.

なお、領域B1およびe2にある燃料ガス流路はそれぞ
れ1つの流路束を形成している。
Note that the fuel gas flow paths in regions B1 and e2 each form one flow path bundle.

次に動作について説明する。単電池(1)内における電
気化学反応及び生じた電流を外部の電気回路へ導く方法
は、従来の積層形燃料電池を動作させる場合と同様であ
る。以下の説明においては、主に燃料及び酸化剤ガスの
流れる様子について説明する。燃料ガスは燃料入口、出
口用マニホールド!     (4a)の入口側に入シ
、邪魔板(6)によpガスの流れ方向に直角な方向の流
量分布を変化させられて1池に入る0第4図で示すシミ
ュレーションにおける流量分布の比率は、酸化剤入口側
に近い最も少ない流量A1と、酸化剤出口側に相幽する
最も多い流量A2の比がOや8:1.2の場合であシ、
全流量Aは均一に流した時と同量である。電池に入った
燃料ガスは領域Sl内で電気化学反応に寄与した後、燃
料リターンマニホールド(4b)内でリターンして、今
度は均一に電池に入る。領域S2内で電気化学反応に寄
与した後、燃料入口、出口マニホールド(4a)の出口
側へ流出し、系外へ排出される。一方、酸化剤ガスは酸
化剤入口側マニホールド(llta)から均一に電池に
分布し、領域82゜81内でそれぞれ電気化学反応に寄
与した後、酸化剤出口側マニホールド(15b) K流
出し系外へ排出される。
Next, the operation will be explained. The electrochemical reaction within the unit cell (1) and the method for guiding the generated current to an external electrical circuit are similar to those used in operating a conventional stacked fuel cell. In the following description, the manner in which fuel and oxidant gas flow will be mainly described. Manifold for fuel inlet and outlet for fuel gas! (4a) enters the inlet side, the flow rate distribution in the direction perpendicular to the flow direction of the p gas is changed by the baffle plate (6), and the p gas enters the pond 0 Ratio of flow rate distribution in the simulation shown in Figure 4 This is the case when the ratio of the smallest flow rate A1 near the oxidizer inlet side to the largest flow rate A2 that is close to the oxidizer outlet side is O or 8:1.2,
The total flow rate A is the same as when flowing uniformly. After the fuel gas that has entered the cell contributes to an electrochemical reaction within the region Sl, it returns within the fuel return manifold (4b) and then uniformly enters the cell. After contributing to the electrochemical reaction within region S2, it flows out to the exit side of the fuel inlet/outlet manifold (4a) and is discharged to the outside of the system. On the other hand, the oxidizing gas is uniformly distributed into the battery from the oxidizing agent inlet side manifold (llta), and after contributing to the electrochemical reactions in the areas 82 and 81, K flows out from the oxidizing agent outlet side manifold (15b) and outside the system. is discharged to.

この実施例によると、領域Sl内では燃料ガス分圧が高
く、酸化剤ガス分圧が低くなっておシ、”M IzlC
fllll+’/7d”T’J”l−+sei L?m
1Rtr*   。
According to this embodiment, the partial pressure of the fuel gas is high and the partial pressure of the oxidant gas is low in the region SI.
fllll+'/7d"T'J"l-+sei L? m
1Rtr*.

め、領域S1内において酸化剤出口側の燃料ガス   
 1分圧と酸化剤入口側に近い側の燃料ガス分圧の差が
増々大きくなっている0また、領域S2内では逆に燃料
ガス分圧が低く、酸化剤ガス分圧が高くなる。この圧力
分布が電池特性に及ぼす影響は、営流値分布で見るとそ
の平均値〒に較べI maxが+22チ、1m1nが一
18%とたっておυ第1図に示す従来形(+34 % 
、−20%)に比べ反応が均一化している。また発電量
に起因する面内の温度分布は、リン酸形燃料電池を例に
とると、負荷200mA/am 、酸化剤利用率5o%
、燃料利用率75チとした場合の面内の温度差ΔT(T
max −Tm1n )は約lO℃で、従来形(約14
℃)よシ特性が向上′することがわかる。以上のように
単電池(1)内で反応が均一化することにより、従来形
の欠点であった電流等の分布の不均一性の積層方向での
相乗効果が緩和され、安定な電池特性が得られる。
Therefore, the fuel gas on the oxidizer outlet side in region S1
The difference between the partial pressure 1 and the partial pressure of the fuel gas on the side closer to the oxidizing agent inlet side is increasing.In addition, in the region S2, the partial pressure of the fuel gas is low and the partial pressure of the oxidizing gas is high. The effect of this pressure distribution on battery characteristics is that when looking at the current value distribution, compared to the average value 〒, I max is +22%, 1 m1n is +18%, and the conventional type (+34%) shown in Fig.
, -20%), the reaction is more uniform. In addition, the in-plane temperature distribution due to the amount of power generation, taking a phosphoric acid fuel cell as an example, is a load of 200 mA/am and an oxidizer utilization rate of 50%.
, in-plane temperature difference ΔT (T
max - Tm1n ) is approximately 10°C, compared to the conventional type (approximately 14
℃)It can be seen that the mechanical properties are improved. As described above, by making the reaction uniform within the cell (1), the synergistic effect in the stacking direction of uneven distribution of current, etc., which was a drawback of the conventional type, is alleviated, and stable battery characteristics are achieved. can get.

なお、上記実施例では、燃料および酸化剤ガスの流れ方
向が電池反応面内で直交するように構成する積層形燃料
電池の例として、燃料ガスをリターンさせた場合を示し
たが、リターンさせない従来形の流れ方式(クロスフロ
ー)で燃料ガスの流量分布を変化させてもよく、また同
時に酸化剤ガスの流量分布も変化させてもよい。
In addition, in the above embodiment, a case where fuel gas is returned is shown as an example of a stacked fuel cell configured such that the flow directions of fuel and oxidant gas are perpendicular to each other within the cell reaction surface. The flow rate distribution of the fuel gas may be changed by a cross flow method, and the flow rate distribution of the oxidizing gas may be changed at the same time.

また、上記実施例ではガスの流量分布を変化させる手段
として邪魔板(6)を用いた場合について説明したが、
第5図に示すように、邪魔板(6)の替わシにガス分離
板(2)(または単電池(1)の電極部分に設けたガス
流路(2a)の断面積をガスの流れ方向に直角な方向に
亘って変化させることによシ、ガスの流量分布を変化さ
せてもよい。
Furthermore, in the above embodiment, a case was explained in which the baffle plate (6) was used as a means for changing the gas flow rate distribution.
As shown in Figure 5, instead of the baffle plate (6), the cross-sectional area of the gas separation plate (2) (or the gas flow path (2a) provided in the electrode part of the unit cell (1)) is The gas flow rate distribution may be changed by changing the gas flow rate in a direction perpendicular to .

〔7発明の効果〕 以上のように、この発明によれば、電気化学反応を均一
に行なわせるように、ガスの流れ内の流路束におけるガ
スの流れ方向に直角な方向の流量分布を変化させたので
、上記電気化学反応の均一化を精度良く促進でき、その
結果、単電池平面内での電流、温度、および面圧の分布
を均一化でき、積層方向での相乗効果を緩和できるため
、安定した電池特性が得られる効果がある。
[7 Effects of the Invention] As described above, according to the present invention, the flow rate distribution in the direction perpendicular to the gas flow direction in the flow path bundle in the gas flow is changed so that the electrochemical reaction is performed uniformly. As a result, it is possible to promote the uniformity of the electrochemical reaction mentioned above with high accuracy, and as a result, it is possible to equalize the distribution of current, temperature, and surface pressure within the plane of the single cell, and to alleviate the synergistic effect in the stacking direction. This has the effect of providing stable battery characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層形燃料電池の一部切欠いて内部を示
す斜視図、第2図は第1図に示す質来の積層形燃料電池
における単電池平面内での電流分布について計算機を用
いてシミュレートした結果を示す説明図、第3図はこの
発明の一実施例による積層形燃料電池の一部切欠いて内
部を示す斜視図、第4図は第3図に示すこの発明の一実
施例による積層形燃料電池における単電池平面内での電
流分布について計算機を用いてシミュレートした結果を
示す説明図、第5図はこの発明の他の実施例係わる積層
形燃料電池の一部を示す断面図である。 図において、(1)は単電池、(2)はガス分離板、(
2a)はガス流路、(4a)、 (4b)、 (14a
)、 (14b)は燃料用マニホールド、(15a)、
 (15b)は酸化剤用マニホールド、(6)は邪魔板
、(6a)は孔、(7)は仕切板であシ、矢印A、Bは
それぞれ燃料および酸化剤の流れる方向を示す。 I     なお、各図中同一符号は同一または相当部
分を示すものとする。
Figure 1 is a partially cutaway perspective view showing the inside of a conventional stacked fuel cell, and Figure 2 is a calculator used to calculate the current distribution within the plane of a single cell in the conventional stacked fuel cell shown in Figure 1. FIG. 3 is a partially cutaway perspective view showing the inside of a stacked fuel cell according to an embodiment of the present invention, and FIG. An explanatory diagram showing the results of a computer simulation of the current distribution within a single cell plane in a stacked fuel cell according to an example, and FIG. 5 shows a part of a stacked fuel cell according to another embodiment of the present invention. FIG. In the figure, (1) is a single cell, (2) is a gas separation plate, (
2a) is a gas flow path, (4a), (4b), (14a
), (14b) is a fuel manifold, (15a),
(15b) is an oxidizer manifold, (6) is a baffle plate, (6a) is a hole, (7) is a partition plate, and arrows A and B indicate the flow directions of fuel and oxidizer, respectively. I Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)燃料電極と酸化剤電極間に電解質マトリックスを
介在した単電池、及び燃料電極に対設する燃料ガス流路
と、酸化剤電極に対設する酸化剤ガス流路とを分離する
ガス分離板を交互に複数個積層して積層体を構成し、上
記燃料ガス流路と酸化剤ガス流路にそれぞれ燃料ガスと
酸化剤ガスを供給し、電気化学反応を行なわせる積層形
燃料電池において、上記電気化学反応を均一に行なわせ
るように、上記ガスの流れ内の流路束におけるガスの流
れ方向に直角な方向の流量分布を変化させたことを特徴
とする積層形燃料電池。
(1) Single cell with an electrolyte matrix interposed between the fuel electrode and the oxidizer electrode, and gas separation that separates the fuel gas flow path facing the fuel electrode from the oxidizer gas flow path facing the oxidizer electrode. In a stacked fuel cell in which a plurality of plates are alternately stacked to form a laminate, a fuel gas and an oxidant gas are supplied to the fuel gas flow path and the oxidant gas flow path, respectively, and an electrochemical reaction is performed, A stacked fuel cell characterized in that the flow rate distribution in the direction perpendicular to the gas flow direction in the flow path bundle in the gas flow is changed so that the electrochemical reaction is performed uniformly.
(2)流量分布を変化させる手段は、ガスの流れの入口
に流路抵抗の分布を変えた邪魔板を設けたものである特
許請求の範囲第1項記載の積層形燃料電池。
(2) The stacked fuel cell according to claim 1, wherein the means for changing the flow rate distribution is provided with a baffle plate that changes the distribution of flow path resistance at the inlet of the gas flow.
(3)流量分布を変化させる手段は、流路束における各
流路の断面積をガスの流れ方向に直角な方向に亘って変
化させたものである特許請求の範囲第1項記載の積層形
燃料電池。
(3) The laminated type according to claim 1, wherein the means for changing the flow rate distribution is one in which the cross-sectional area of each flow path in the flow path bundle is changed in a direction perpendicular to the gas flow direction. Fuel cell.
JP59129474A 1984-06-22 1984-06-22 Layer-built fuel cell Pending JPS618853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59129474A JPS618853A (en) 1984-06-22 1984-06-22 Layer-built fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129474A JPS618853A (en) 1984-06-22 1984-06-22 Layer-built fuel cell

Publications (1)

Publication Number Publication Date
JPS618853A true JPS618853A (en) 1986-01-16

Family

ID=15010376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129474A Pending JPS618853A (en) 1984-06-22 1984-06-22 Layer-built fuel cell

Country Status (1)

Country Link
JP (1) JPS618853A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283569A (en) * 1986-06-02 1987-12-09 Toshiba Corp Fuel cell
JPH05269322A (en) * 1990-04-06 1993-10-19 A Ahlstroem Oy Filter for filtration of particulate matters from hot gas flow
JPH0751668B2 (en) * 1988-06-27 1995-06-05 アスファルト、マテリアルズ、インコーポレーテッド Multigrade asphalt cement products and methods
WO2008081042A3 (en) * 2007-01-04 2008-09-12 Ird Fuel Cells As Modified fuel cell manifolds for controlling fuel gas flow to different sections of fuel cell stacks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168364A (en) * 1980-04-28 1981-12-24 Westinghouse Electric Corp Fuel battery
JPS60133665A (en) * 1983-12-21 1985-07-16 Sanyo Electric Co Ltd Gas separation plate for fuel cell
JPS60243974A (en) * 1984-05-17 1985-12-03 Sanyo Electric Co Ltd Gas separating plate of fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168364A (en) * 1980-04-28 1981-12-24 Westinghouse Electric Corp Fuel battery
JPS60133665A (en) * 1983-12-21 1985-07-16 Sanyo Electric Co Ltd Gas separation plate for fuel cell
JPS60243974A (en) * 1984-05-17 1985-12-03 Sanyo Electric Co Ltd Gas separating plate of fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283569A (en) * 1986-06-02 1987-12-09 Toshiba Corp Fuel cell
JPH0751668B2 (en) * 1988-06-27 1995-06-05 アスファルト、マテリアルズ、インコーポレーテッド Multigrade asphalt cement products and methods
JPH05269322A (en) * 1990-04-06 1993-10-19 A Ahlstroem Oy Filter for filtration of particulate matters from hot gas flow
WO2008081042A3 (en) * 2007-01-04 2008-09-12 Ird Fuel Cells As Modified fuel cell manifolds for controlling fuel gas flow to different sections of fuel cell stacks

Similar Documents

Publication Publication Date Title
JP2000231929A (en) Fuel cell
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JPS624833B2 (en)
JPS62136772A (en) Fule cell
US4686159A (en) Laminated layer type fuel cell
JPH1126007A (en) Fuel cell
JPH05159790A (en) Solid electrolyte fuel cell
JP4494409B2 (en) Multi-cell fuel cell layer and system
JPH03266365A (en) Separator of solid electrolytic type fuel cell
US20040265675A1 (en) Fuel Cell Flow Field Design
JPS618853A (en) Layer-built fuel cell
JPS58112263A (en) Fuel cell
JPS63119166A (en) Fuel battery
JPS6039773A (en) Layer-built fuel cell
WO2006090621A1 (en) Solid oxide fuel cell
JPH1167258A (en) Fuel cell
KR101238892B1 (en) Fuel cell
JPH04370664A (en) Fuel cell
JPS5830074A (en) Fuel cell
JPH0142935Y2 (en)
JPH02126561A (en) Fuel cell
KR100873818B1 (en) Bipolar plate for stack assembly and cascade typed stack assembly in fuel cell system
JPS62147664A (en) Reaction gas supply method in fuel cell
JPH02253564A (en) Molten carbonate fuel cell
CN101847730A (en) Flow field plate with diversion pads for fuel cell