JPS6188274A - Capsule toner - Google Patents

Capsule toner

Info

Publication number
JPS6188274A
JPS6188274A JP59209675A JP20967584A JPS6188274A JP S6188274 A JPS6188274 A JP S6188274A JP 59209675 A JP59209675 A JP 59209675A JP 20967584 A JP20967584 A JP 20967584A JP S6188274 A JPS6188274 A JP S6188274A
Authority
JP
Japan
Prior art keywords
toner
shell material
powder
wear
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59209675A
Other languages
Japanese (ja)
Other versions
JPH026054B2 (en
Inventor
Ichiro Osaki
大崎 一郎
Toru Matsumoto
徹 松本
Toshiyuki Koshio
越尾 敏幸
Toshiaki Nakahara
中原 俊章
Yasuhide Goseki
康秀 後関
Toshiyuki Ochi
越智 寿幸
Naoyuki Ushiyama
牛山 尚之
Junichi Kurimoto
栗本 純一
Katsutoshi Wakamiya
若宮 勝利
Masuo Yamazaki
益夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59209675A priority Critical patent/JPS6188274A/en
Priority to FR858514822A priority patent/FR2571515B1/en
Priority to GB08524789A priority patent/GB2167573B/en
Publication of JPS6188274A publication Critical patent/JPS6188274A/en
Priority to US07/088,540 priority patent/US4740443A/en
Publication of JPH026054B2 publication Critical patent/JPH026054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09378Non-macromolecular organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09385Inorganic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material

Abstract

PURPOSE:To improve rigidity and heat resistance by constituting a microcapsule of a core material and a shell material which is packed with pulverous wear- resistant inorg. powder and coasts said material. CONSTITUTION:General resins are usable for the resin constituting the shell material. The powder which is resistant to water and org. solvent and is thermally stable to temp. up to, for example, 300 deg.C is preferable as the pulverous wear- resistant inorg. powder to be packed into the shell material. Both of an inorg. material which itself is extremely hard and hardly wearable as compared to the shell material resin and a material which is self-lubricative and is strong to friction are used for the pulverous inorg. wear-resistant powder. Silicate, etc. are used as the former example and molybenum dioxide, etc. are used as the latter example, A spray dry method and phase sepn. method are adopted to coat the core material with the shell material. The core material has rigidity and wear resistance although said material is thin and therefore the capsule toner is less deteriorated even afer long-term friction and the fixing with small energy is made possible.

Description

【発明の詳細な説明】 良亙欠1 本発明は、電子写真法、静電印刷法、磁気記録法などに
おいて電気的潜像を現像するのに用いられるトナーに関
し、より詳しくは小エネルギーで定着可能なマイクロカ
プセルトナーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a toner used to develop an electrical latent image in electrophotography, electrostatic printing, magnetic recording, etc. Regarding possible microcapsule toner.

旧d」 従来より、電子写真法、静電印刷法、磁気記録法などの
方法は、大JAの情報の記録あるいは複写法として広く
利用されている。
Previously, methods such as electrophotography, electrostatic printing, and magnetic recording have been widely used as methods for recording or copying information on large JA.

例えば電子写真法は、一般には光導電性物質からなる感
光体上に、その光導電性を利用して′4を気的潜像を形
成し、次いで該潜像をトナーを用いて現像し、必要に応
じて紙などの被転写材にトナー画像を転写した後、定着
して、複写物を得る工程が取られる。
For example, in electrophotography, a pneumatic latent image is generally formed on a photoreceptor made of a photoconductive material by utilizing its photoconductivity, and then the latent image is developed using toner. If necessary, the toner image is transferred to a transfer material such as paper, and then fixed to obtain a copy.

電子印刷法は、特公昭42−14342号公報等で提案
されているように、電界を利用して荷電粉末トナーを記
録材料上に導き定着して印刷する方法である。静電記録
法は、誘電体層上に電荷を画像状に付与し、それに荷電
粉末トナーを付着させ定着する方法である。また磁気印
刷法は、Wi像JQ持体上に磁気的潜像を形成し、これ
を磁性材料を含むトナー粉末で現像し、得られたトナー
画像を記録材#1に転写して定着する方法である。
The electronic printing method, as proposed in Japanese Patent Publication No. 42-14342, is a method of guiding and fixing a charged powder toner onto a recording material using an electric field for printing. The electrostatic recording method is a method in which a charge is applied to a dielectric layer in the form of an image, and a charged powder toner is attached and fixed thereon. The magnetic printing method is a method in which a magnetic latent image is formed on a Wi image JQ carrier, this is developed with toner powder containing a magnetic material, and the resulting toner image is transferred to recording material #1 and fixed. It is.

上記したごとき方法では、得られたトナー画像を水入的
に保存可能どするために、紙等の記録媒体に’iHする
操作が行なわれる。トナー画像を定着するためには、一
般に、熱あるいは圧力等の工ネルギーが使用されるが、
定着に要するエネルギーが小さい程、定着のための装置
を簡略なものとし、制御系もより小さく、また安全等に
対する配慮もより少なくでき、保守間隔も長くできるな
どの利点がある。しかしながら、一方ではトナーは、潜
像面への運搬時に伴なう機械的圧力、あるいは、現像系
において定着系、駆動系等の発熱部からの熱に酎えて、
その現像特性を変えることなく、また保存時においても
そのf’l能を維持する必要がある。
In the above-mentioned method, in order to make it possible to store the obtained toner image in a wet state, an operation of 'IH' is performed on a recording medium such as paper. Generally, engineering energy such as heat or pressure is used to fix toner images.
The smaller the energy required for fixing, the simpler the fixing device, the smaller the control system, the less consideration given to safety, etc., and the advantage that maintenance intervals can be extended. However, on the other hand, toner is exposed to mechanical pressure during transportation to the latent image surface, or heat from heat generating parts such as the fixing system and drive system in the developing system.
It is necessary to maintain its f'l ability even during storage without changing its development characteristics.

定着を容易にするためにトナーの融点を低下させたり、
軟質材料を採用することには、この点で自ずと限界が生
ずる。このような限界を克服するものとして、米国特許
第3788994号り1細書に開示されているように軟
質芯材の周囲を他の硬質樹脂で被覆した、いわゆるマイ
クロカプセルトナーの提案がある。しかしながら、この
マイクロカプセルトナーにあっても、静的な圧力に対し
ては、高い耐性を示し、保存時などにはよくその機能を
発揮するものの、動的な圧力には案外もろく+を擦によ
って徐々に破壊され、特に熱的環境が不利な場合、短い
寿命で破壊されがちである。摩擦に対して、充分な強度
を与えるために外殻の厚みを増すことは、定着性を劣化
させることとなり。
Lowering the melting point of toner to make it easier to fix,
In this respect, there is a natural limit to the use of soft materials. To overcome these limitations, there has been proposed a so-called microcapsule toner in which a soft core material is coated with another hard resin, as disclosed in US Pat. No. 3,788,994. However, although this microcapsule toner exhibits high resistance to static pressure and performs well during storage, it is unexpectedly brittle when subjected to dynamic pressure. They tend to be destroyed gradually and with a short lifetime, especially if the thermal environment is unfavorable. Increasing the thickness of the outer shell to provide sufficient strength against friction deteriorates the fixing properties.

またそのような厚膜のマイクロカプセルを()ることは
、従来公知のマイクロカプセル化法では、カプセル化に
長1llf間を要するとか、数ル〜数10ルサイズの極
めて小さなトナーであっては、凝集塊や、M敲した;t
9材のみの粒子を生じたりしてトナーとしての性能を低
下させやすい等、の不都合も多い、したがって、定着性
を害さない程度に鵡い殻材に覆われ、かつ強度の高いマ
イクロカプセルトナーの開発が望まれている。
In addition, it is difficult to encapsulate such thick-film microcapsules using conventionally known microencapsulation methods, and for extremely small toners ranging in size from several to several tens of liters, it is difficult to encapsulate toner particles. Agglomerates and M-shaped ;t
There are many inconveniences such as particles of only 9 materials being generated and the performance as a toner is likely to deteriorate. Development is desired.

L豆立旦」 本発明の目的は、上述の如き欠点を解決したカプセルト
ナーを提供することにある。
An object of the present invention is to provide a capsule toner that solves the above-mentioned drawbacks.

本発明のより特定的な目的は、長時間摩擦されても劣化
することの少ないカプセルトナーを提供することにある
A more specific object of the present invention is to provide a capsule toner that hardly deteriorates even when rubbed for a long time.

さらに本発明のl]的は、簡単に製造可能なカプセルト
ナーを提供することにある。
A further object of the present invention is to provide a capsule toner that can be easily manufactured.

さらに本発明の目的は、小さなエネルギーで定71可能
なカプセルトナーを提供することにある。
Furthermore, it is an object of the present invention to provide a capsule toner that can be fixed with a small amount of energy.

さらに本発明の目的は、保存中にケーキングを起すこと
なく、流動性の良好なカプセルトナーを提供するもこと
にある。
A further object of the present invention is to provide a capsule toner that does not cause caking during storage and has good fluidity.

皮旦立1」 本発明のマイクロカプセルトナーは、上述の目的を達成
するために開発されたものであり、芯材と、これを覆う
耐摩耗性無機微粉末を充填した殻材とからなることを特
徴とするものである0本発明の好ましい態様によれば、
このマイクロカプセルトナーは、芯材と耐摩耗性無機微
粉末との乾式混合物を殻材により被覆する方法により製
造される。
The microcapsule toner of the present invention was developed to achieve the above-mentioned object, and consists of a core material and a shell material covering the core material filled with abrasion-resistant inorganic fine powder. According to a preferred embodiment of the present invention, which is characterized by:
This microcapsule toner is produced by a method in which a dry mixture of a core material and a wear-resistant inorganic fine powder is covered with a shell material.

すなわち、上記のようにしてt1#られた本発明のマイ
クロカプセルトナーは、殻材中に耐摩耗性無機微粉末を
充填したことにより、剛性ならびに耐熱性が向上するた
め、極めて薄い殻材であっても、保存中あるいは現像の
ための攪拌あるいは搬送過程における摩擦、更には摩擦
熱ならびに装置から発生する熱、によく耐えてトナ一本
来の形態ならびに機能を、維持することができる。また
殻材厚さが薄く抑えられているため、加圧を均一に行な
う上で障害になりにくいこと、ならびに本発明の芯物質
は、加圧時の流動性が高く、殻材の割目を侵透して広が
りやすいこと等の理由により、定Z+のためのエネルギ
ーは低く抑えられる。
That is, the microcapsule toner of the present invention subjected to t1# as described above has improved rigidity and heat resistance by filling the shell material with abrasion-resistant inorganic fine powder, so that it has an extremely thin shell material. However, the toner can maintain its original form and function by withstanding friction during storage, agitation for development, or the transportation process, as well as frictional heat and heat generated from the device. In addition, since the thickness of the shell material is kept small, it is less likely to become an obstacle when applying pressure uniformly, and the core material of the present invention has high fluidity when pressurized, and the core material of the present invention has high fluidity when pressurized, so that it does not cause cracks in the shell material. The energy for constant Z+ is kept low because it is easy to penetrate and spread.

9−f、川 本発明のマイクロカプセルトナーの芯材を構成するバイ
ンダーとしては1例えば低分子量ポリエチレンワックス
、パラフィンワックス、脂肪酸、およびそのエステルや
金属石ケン、脂肪アルコール、多価アルコール、および
その金属塩やその塩化物、フッ化物、7ミド、ビスアミ
ド等、ならびにマイクロクリスタリン?ツクス、アミド
ワックスとして市販されているもの、更に天然物として
カスターワックス、ホロウ、密ロウ、カルナバワックス
、ライスワックス、モンタンロウ等の。
9-f. Binders constituting the core material of the microcapsule toner of the present invention include 1, for example, low molecular weight polyethylene wax, paraffin wax, fatty acids, esters thereof, metal soaps, fatty alcohols, polyhydric alcohols, and metal salts thereof. and its chlorides, fluorides, 7mides, bisamides, etc., as well as microcrystallins? Commercially available products include tux and amide wax, as well as natural products such as castor wax, hollow wax, beeswax, carnauba wax, rice wax, and montan wax.

いわゆるワックス類が好適に用いられるほか、エチレン
−酢酸ビニル共重合体、エチレン−アクリル系共重合体
、低分子量のポリブテン、環化ゴムのような軟質樹脂、
などは、熱定着でも極めて低温で融解、定着するが、特
に圧力定着に好ましく使用できる。必要に応じて大豆油
、ヒマン油のような不乾性油等の油状物質を混入するこ
ともできる。またエポキシ樹脂、ポリエステル樹脂、ポ
リとこル系樹脂、ポリアクリル系横11M等、一般に熱
定着で使用されている樹脂で低分子量化により。
In addition to so-called waxes, soft resins such as ethylene-vinyl acetate copolymers, ethylene-acrylic copolymers, low molecular weight polybutenes, cyclized rubbers,
etc. can be melted and fixed at extremely low temperatures even in heat fixing, but they can be particularly preferably used in pressure fixing. If necessary, an oily substance such as a non-drying oil such as soybean oil or human oil can be mixed. Also, by lowering the molecular weight of resins commonly used in heat fixing, such as epoxy resin, polyester resin, polyester resin, and polyacrylic type 11M.

低融点タイプとしたものが、熱定着に使用できる。Low melting point types can be used for heat fixing.

本発明のカプセルトナーの芯材中には一般に。The core material of the capsule toner of the present invention generally includes:

着色剤として各種の染、顔料が含まれる。このような染
、顔料としては、例えば、各種のカーボンブラック、7
ニリンブラツク、ナフットールイエロー、モリブデンオ
レンジ、a−ダミンレーキ、アリザリンレーキ、メチル
バイオレットレーキ、フタロシアニンブルー、ニグロシ
ンメチレンブルー、ローズベンガル、キノリンイエロー
等が用いられる。これら着色剤は、上記芯材バインダー
に対し任意のM合で加えることができるが、通常10%
以下の、!1合で使用される。
Coloring agents include various dyes and pigments. Examples of such dyes and pigments include various carbon blacks, 7
Nilin black, Nafuthol yellow, molybdenum orange, a-damin lake, alizarin lake, methyl violet lake, phthalocyanine blue, nigrosine methylene blue, rose bengal, quinoline yellow, etc. are used. These coloring agents can be added to the core material binder in any M ratio, but usually 10%.
below,! Used in one go.

また末完lJJのカプセルトナーを磁性トナーとしてH
lいるために、芯材中に磁性粉を含有せしめても良い、
このような磁性粉としては、鉄、コバルト、ニッケルな
どの強磁性の元素、もしくはブグネタイト、ヘマタイト
、フェライトなどの合金や化合物の粉末用いられる。こ
の磁性粉を着色剤として兼用させてもよい、Gi磁性粉
含有J止は、芯材113の全ての樹脂分の100重量部
に対して15〜200重量部の範囲であり得る。
In addition, H
Magnetic powder may be included in the core material in order to
As such magnetic powder, powders of ferromagnetic elements such as iron, cobalt, and nickel, or alloys and compounds such as bugnetite, hematite, and ferrite are used. This magnetic powder may also be used as a colorant, and the amount of the Gi magnetic powder-containing powder may be in the range of 15 to 200 parts by weight based on 100 parts by weight of the total resin content of the core material 113.

本発明のカプセルトナーの芯材の造粒法としては、通常
の粉砕法では芯材バインダーが軟質あるいは低融点であ
るために融着を起こしやすく、冷却しながら粉砕する必
要等があるため、上記バインダー、着色剤等を溶融状態
で混合した後、噴ム冷却する方法、あるいは温水中に分
散懸濁して。
As for the method of granulating the core material of the capsule toner of the present invention, the core material binder is soft or has a low melting point in the normal pulverization method, which tends to cause fusion, and it is necessary to pulverize while cooling. After mixing the binder, colorant, etc. in a molten state, the mixture is spray cooled or dispersed and suspended in warm water.

粒子化後、冷却固化させる方法が好適である。また、こ
のような方法で得られる芯材粒子は、真珠に近い形状と
なり、これが最終 的に得られるカプセルトナーの形状
に反映して、Ff、擦等に対してより耐久性の良いカプ
セルトナーを築える。かくして好ましくは、5〜20ル
mの範囲の粒径を有する芯材粒子が形成される。
A method of cooling and solidifying after particle formation is suitable. In addition, the core material particles obtained by this method have a shape similar to that of a pearl, and this is reflected in the shape of the capsule toner finally obtained, making it possible to create a capsule toner with better durability against Ff, abrasion, etc. Can be built. Core particles are thus preferably formed having a particle size in the range from 5 to 20 lm.

本発明のカプセルトナーは、上記のような芯材粒子を、
耐摩耗性無機微粉末を充填した殻材で被覆することによ
り得られる。
The capsule toner of the present invention includes core particles as described above,
Obtained by covering with a shell material filled with wear-resistant inorganic fine powder.

殻材を構成する樹脂としては、一般に公知の樹脂が使用
できるが1例えば、ポリスチレン、ポリーP−クロルス
チレン、ポリビニルトルエン、スチレン−ブタジェン共
重合体、スチレン−アクリル酸共重合体、スチレン−無
水マレイン酸共重合体などのスチレン又はその置換体の
重合体又は共重合体;エポキシ樹脂、ポリエステル樹脂
、アクリル系樹脂、アクリロニトリル系樹脂、キシレン
樹脂、ポリウレタン、ポリウレア、メラミン樹脂、ポリ
アミド樹脂、アイオノマー樹脂、フラン樹脂、ケトン樹
脂、テルペン樹脂、フェノール変性テルペン樹脂、ロジ
ン、ロジン変性ペンタエリスリトールエステル、天然樹
脂変性フェノール樹lff−1、天然樹脂変性でレイン
酸樹脂、クマロンインデン樹脂、マレモノ醜変性フーエ
ノール樹脂、脂環族炭化水素樹脂、石油樹脂、フタル酸
酢酸セルロース、メチルビニルエーテル−無水マレイン
酸共重合体、殿粉グラフト重合体、ポリビニルブチラー
ル、ポリビニルアルコール、ポリビニルトルエン、ポリ
ビニルピリジン、ポリ塩化ビニリデン、ポリフッ化ビニ
リデン、ポリビニルアルコ−ル、ポリピロール、塩素化
パラフィン、ワックス、脂肪鰭などが単独あるいは混合
して使用できる。また、スチレン−無水マレイン酸共重
合体、天然樹++1i変性マレイン酸樹脂、マレイン酎
変性フェノール樹脂なども、それ単独であるいは混合し
て使用できる。これら殻材樹脂の分子量は、高ければ高
い程殻材の靭性が高まるのが、カプセル化が困難となる
傾向にある。
Generally known resins can be used as the resin constituting the shell material, such as polystyrene, poly-P-chlorostyrene, polyvinyltoluene, styrene-butadiene copolymer, styrene-acrylic acid copolymer, styrene-maleic anhydride. Polymers or copolymers of styrene or its substituted products such as acid copolymers; epoxy resins, polyester resins, acrylic resins, acrylonitrile resins, xylene resins, polyurethanes, polyureas, melamine resins, polyamide resins, ionomer resins, furan Resin, ketone resin, terpene resin, phenol-modified terpene resin, rosin, rosin-modified pentaerythritol ester, natural resin-modified phenol resin lff-1, natural resin-modified leic acid resin, coumaron indene resin, malemono-modified pheonol resin, fat Cyclic hydrocarbon resin, petroleum resin, cellulose acetate phthalate, methyl vinyl ether-maleic anhydride copolymer, starch graft polymer, polyvinyl butyral, polyvinyl alcohol, polyvinyl toluene, polyvinyl pyridine, polyvinylidene chloride, polyvinylidene fluoride, Polyvinyl alcohol, polypyrrole, chlorinated paraffin, wax, adipose fin, etc. can be used alone or in combination. In addition, styrene-maleic anhydride copolymer, natural wood ++1i modified maleic acid resin, maleic acid modified phenol resin, etc. can be used alone or in combination. The higher the molecular weight of these shell material resins, the higher the toughness of the shell material, which tends to make encapsulation more difficult.

耐摩耗e1無機微粉末としては、水、有機溶媒にIIイ
性を示し、300℃までの温度に熱安定性を有するもの
が好ましく使用できる。また本発明で使用する耐摩IL
性無機微粉末としては、それ自体が?&述する殻材樹脂
に比べて極めて硬<、*滅しにくい無機材料、あるいは
自己潤滑性でI!]!!擦に強い材料のいずれも用いら
れる。前者の例としては。
As the abrasion resistant e1 inorganic fine powder, one that exhibits high resistance to water and organic solvents and is thermally stable at temperatures up to 300° C. can be preferably used. In addition, wear-resistant IL used in the present invention
As an inorganic fine powder, is it itself? &Extremely hard compared to the shell material resin mentioned above, *Inorganic material that is difficult to destroy, or self-lubricating I! ]! ! Any material that is resistant to abrasion may be used. As an example of the former.

ケイ酸塩、クリスタル、ケイ砂等のカラス類、フランダ
ム、アルミナ、チタニア、ジルコニア、ケイ酸アルミニ
ウム等の磁器類、窒化ケイ素、窒化チタン、炭化ケイ素
、炭化タフゲステン、炭化チタン、炭化ホウ素、ダイヤ
モンド等のニューセラミックス類、チタン酎バリウム、
チタン酸マグネシウム、チタン酸カルシウム、チタン酸
ストロンチウム、炭酸カルシウム、マグネ7ア、三醇化
アンチモン、酸化セリウム、センタスト硬質フェライト
類、アモルファスシリコン等のアモルファス金属、クロ
ム、ニッケル、ステンレス鋼1等の硬質金属粉などが挙
げられる。また後者の例としては、二硫化モリブデン、
クラファイト、窒化ホウ素などが挙げられる。これらは
、併用も可能である。
Silicate, crystal, silica sand, etc., flandum, alumina, titania, zirconia, aluminum silicate, etc., porcelain, silicon nitride, titanium nitride, silicon carbide, toughgestin carbide, titanium carbide, boron carbide, diamond, etc. new ceramics, titanium barium,
Amorphous metals such as magnesium titanate, calcium titanate, strontium titanate, calcium carbonate, magne 7A, antimony tritoxide, cerium oxide, Centast hard ferrites, amorphous silicon, hard metal powders such as chromium, nickel, stainless steel 1, etc. Examples include. Examples of the latter include molybdenum disulfide,
Examples include graphite and boron nitride. These can also be used in combination.

また、上記の#庁耗性無4I!微粉末は殻材中の分散を
向上するために、有機化、疎水化等、親油化等の表面処
理を施こすことができる。
Also, the above #Availability 4I! The fine powder can be subjected to surface treatments such as organicization, hydrophobization, lipophilization, etc. in order to improve dispersion in the shell material.

これら耐摩耗性無機微粉末は、平均粒径で1pm以下、
&fましくは0.54m以下が好ましく、窒素吸着法に
よるBET比表面積で云えば0.5〜400 m 2/
 g程度のものが使用できる。
These wear-resistant inorganic fine powders have an average particle size of 1 pm or less,
&f It is preferably 0.54 m or less, and in terms of BET specific surface area by nitrogen adsorption method, it is 0.5 to 400 m 2 /
A material of about 100 g can be used.

前記、無機微粒子の殻材に対する49合賃は一般に殻材
樹脂屯t、に対して200%を超えると、カプセル化が
田作であったり、逆に殻材の強度が落ちたりして好まし
くなく、1%未満では効果が乏しく、特にlO%〜lO
O%の範囲が好ましい。
As mentioned above, if the ratio of the inorganic fine particles to the shell material exceeds 200% of the shell material resin, it is not desirable because encapsulation may be poor or the strength of the shell material may decrease. , less than 1%, the effect is poor, especially lO%~lO
A range of 0% is preferred.

焦a微粉末の最適1Y範囲は、該粒子の粒径によって、
より細かいものはより多く、より粗いものはより少なく
と云うように異なるものであり、上記範囲内で粒径に応
じて最適値が適宜選択される。
The optimum 1Y range of scorched a fine powder is determined by the particle size of the particles.
Finer grains have more grains, coarser grains have less grains, and the optimum value is appropriately selected within the above range depending on the particle size.

前記した芯材を、耐摩耗性無機微粉末を充血した殻材で
被覆してカプセル化するための方法としては、公知の方
法が使用可能であるが、本発明ではスプレードライ法、
相分離法が好ましく採用できる。特に、予め表面に耐摩
耗性無機微粉末を付着させた殻材樹脂により被覆する方
法を採るのが好ましい。
Known methods can be used to coat and encapsulate the core material with a shell material filled with wear-resistant inorganic fine powder, but in the present invention, spray drying method,
A phase separation method can be preferably employed. In particular, it is preferable to use a method in which the shell material is coated with a shell material resin to which wear-resistant inorganic fine powder has been adhered to the surface in advance.

より具体的には、芯材粒子と、耐摩耗性態a微粉末とを
、ヘンシェルミキサー等の高速混合機を用いて混合して
芯材粒子の表面に耐摩耗性無機微粉末を付着させた後、
カプセル化することが好ましい、このようにすると、無
機微粒子の二次凝集塊がほぐされて、−次粒子あるいは
それに近い状態に分散できること、殻材中の%機微粒子
の存在比が均一化されること、芯粒子自体の凝集がほぐ
されて、流動しやすくなり操作も8紡になること、また
、1?、合中の無機微粒子の芯粒子表面へのうめ込みに
より、芯粒子と殻材高分子との接着強化の効果が期待さ
れることなどの利点があり、他の方法に比較して本発明
の目的をより効果的に達成できる。
More specifically, the core material particles and the wear-resistant state A fine powder were mixed using a high-speed mixer such as a Henschel mixer to adhere the wear-resistant inorganic fine powder to the surface of the core material particles. rear,
Encapsulation is preferable; in this way, secondary agglomerates of inorganic fine particles are loosened and dispersed into secondary particles or a state close to it, and the abundance ratio of % fine particles in the shell material is made uniform. In addition, the agglomeration of the core particles itself is loosened, making it easier to flow and the operation becomes 8 spins. Compared to other methods, the present invention has advantages such as the effect of strengthening the adhesion between the core particles and the shell material polymer by embedding the inorganic fine particles into the surface of the core particles during coalescence. You can achieve your goals more effectively.

殻材樹脂による被覆を行なうには、殻材樹脂を、殻材樹
脂の良溶媒であるが、芯材粒子にとつては貧溶媒となる
溶媒中に溶解し、溶液とし、ついでこの溶液中にL記の
芯材粒子/無機微粒子混合物を分散し、熱等によって溶
媒を除去するスプレードライ法、あるいは溶媒の溶解特
性を変化させて殻材を析出させる相分離法等を適用すれ
゛ばよい、スプレードライ法、相分離法ともに、例えば
2〜3重量%と云うような比較的稀薄な溶液を用いるこ
とが&fましく、あまり厚くカプセル壁をつけるのでな
ければ、簡単な装置で短時間にカプセル化が1丁能であ
る。濃厚溶液を用いたり、あるいは比較的厚くカプセル
壁をつけようとする場合は、殻材のみの微粒子や凝集を
生じやすいが1本発明のようにPめ無機微粒子を芯材粒
子に混合しておくと、そのような殻材のみの微粒子や凝
集の発生を抑制する効果も見られる。殻材の厚さは、0
.05〜1pm、特に0.1−0.6pmの範囲が定着
性と強度のバランスが良く、好ましい。
To coat with shell resin, the shell resin is dissolved in a solvent that is a good solvent for the shell resin but a poor solvent for the core particles, and then dissolved in this solution. A spray drying method in which the core material particles/inorganic fine particle mixture described in L is dispersed and the solvent is removed by heat or the like, or a phase separation method in which the shell material is precipitated by changing the solubility characteristics of the solvent may be applied. In both the spray drying method and the phase separation method, it is preferable to use a relatively dilute solution, for example 2 to 3% by weight, and unless the capsule wall is too thick, the capsule can be formed in a short time using a simple device. It is a single function. When using a concentrated solution or when attempting to form a relatively thick capsule wall, fine particles of only the shell material or agglomeration are likely to occur; however, as in the present invention, P inorganic fine particles are mixed with the core material particles. Also, the effect of suppressing the occurrence of fine particles and agglomeration of such shell material alone can be seen. The thickness of the shell material is 0
.. A range of 0.05 to 1 pm, particularly 0.1 to 0.6 pm is preferable because it provides a good balance between fixing properties and strength.

2」肚Jと文り宋 り記したように1本発明によれば、耐摩耗性の無機粒子
を外殻中に存在させることにより、極めて薄い殻材であ
るにも拘らず、剛性ならびに耐熱性が向上したマイクロ
カプセルトナーが提供される。したがって1本発明のカ
プセルトナーは、保存中あるいは現像のための撹拌ある
いは搬送過程における摩擦、更には摩擦熱ならびに装置
から発生する熱、によ〈而えてトナー、4.′末の形態
ならびに機能を維持することができる一方において、定
着のためのエネルギーは低く抑えられると云う極めて有
用な特性を有する。
According to the present invention, the presence of wear-resistant inorganic particles in the outer shell improves rigidity and heat resistance even though the shell material is extremely thin. A microcapsule toner with improved properties is provided. Therefore, (1) the capsule toner of the present invention can be used as a toner due to friction during storage or during agitation or transportation process for development, as well as frictional heat and heat generated from the device. It has an extremely useful property of being able to maintain the form and function of the powder while requiring low energy for fixing.

以下、実施例、比較例により本発明を更に具体的に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実」Lガ」。Real "Lga".

[芯材粒子の製造コ 分子H43000の低分子量ポリエチレンワックス30
i−lffi、  1550Fパラフィンワックス70
屯量部にFe30470重量部を予備分散したものを、
140℃で7トライターで分散、混合。
[Manufacture of core material particles Low molecular weight polyethylene wax 30 with molecular H43000
i-lffi, 1550F paraffin wax 70
Preliminary dispersion of 470 parts by weight of Fe30,470 parts by weight,
Dispersion and mixing with 7 triters at 140°C.

混練した0次いで得られた溶融混合物を180℃の空気
を用いて、二流体ノズルより、50℃の空気中に噴弄し
、サイクロンにより回収し、1〜20ILmの球形磁性
芯材粒子を得た。
The kneaded mixture was then sprayed into air at 50°C using air at 180°C from a two-fluid nozzle and collected by a cyclone to obtain spherical magnetic core particles of 1 to 20 ILm. .

[マイクロカプセル化] 上記で得られた芯材粒子1000重祉部と酸化チタ7(
BET比表面積39.7m’/g、粒径0.04壓m)
20亜峨部とをヘンシェルミキサー10B型(三片三池
製作所製)にて1回転目盛lOで2分間撹拌混合した。
[Microencapsulation] Core material particles 1000 heavy duty parts obtained above and titanium oxide 7 (
BET specific surface area 39.7 m'/g, particle size 0.04 μm)
The mixture was stirred and mixed for 2 minutes with a Henschel mixer model 10B (manufactured by Mikata Miike Seisakusho) at a rotation scale of 1 O.

ついで、こノ混合物100重I一部を、ジメチルアミノ
エチルメククリレートースチレン共重合体(共重合比l
〇二90、分子量25,000)10重量部をDMF4
00重量部に溶解したカプセル化溶液内に分散し、撹拌
しつつ水を滴下して、ジメチルアミノエチルメタクリレ
ート−スチレン共重合体を相分離させ、芯材粒子を包囲
せしめた後、さらに水をカロえることにより硬化させて
、岐終的に約20重量%の酸化チタンを含有する厚さ約
0.4Bmの殻材層を有するカプセルトナー単粒子を得
た。
Next, a portion of 100 parts of this mixture was mixed with dimethylaminoethyl meccrylate-styrene copolymer (copolymerization ratio l).
〇290, molecular weight 25,000) 10 parts by weight of DMF4
The dimethylaminoethyl methacrylate-styrene copolymer is dispersed in an encapsulation solution containing 0.00 parts by weight, and water is added dropwise while stirring to phase separate the dimethylaminoethyl methacrylate-styrene copolymer and surround the core material particles. The capsule toner was cured by heating to obtain capsule toner single particles having a shell material layer having a thickness of about 0.4 Bm and containing about 20% by weight of titanium oxide.

[評価] tJlられたトナーは正荷電性を示し、電子複写機PC
−12(キャノン社製)の現像機に充填し、両出しを行
なったところ、鮮明でかぶりもなく。
[Evaluation] The toner subjected to tJl showed positive chargeability, and the electronic copying machine PC
-12 (manufactured by Canon) was filled in a developing machine and when both were taken out, the image was clear and there was no fog.

高画像濃度の転写画像を得た。A transferred image with high image density was obtained.

この未定着画像の定着性を試験したところ、線圧12 
K g / c mで圧力足前がar能であり、また恒
温槽で放置したところ280℃で充分な熱定着が可能で
あった。ここで、定着性は、1cm”の底面積を有する
50gの重りにより、坪120g/ m 2のシルポン
紙C(芳賀洋紙店)を介して、上質紙上の定着画像を1
往復摺擦し、摺擦前後のトナー画像濃度差が5%以下に
なる点を定着点とした。
When testing the fixability of this unfixed image, it was found that the linear pressure was 12
The pressure level was arable at K g/cm, and sufficient heat fixing was possible at 280° C. when left in a constant temperature bath. Here, the fixing property is determined by fixing a fixed image on high-quality paper by using a 50 g weight with a base area of 1 cm" through Silpon paper C (Haga Yoshiten) with a tsubo of 120 g/m2.
The toner image was rubbed back and forth, and the point at which the difference in density of the toner image before and after the rubbing was 5% or less was determined as the fixing point.

使用した現像機の現像部の構成を模式化すると、第1図
のようになるが、ドラムlとスリーブ2間の距離は30
0#Lm、スリーブ2とブレード4との距離は1100
p、固定磁極3は、ブレード4との対向部で最高650
ガウスを示すものを使用した。スリーブ2はドラムIと
順方向に、66mm/secの速度で回転するものであ
った。
The structure of the developing section of the developing machine used is shown in Fig. 1, and the distance between the drum 1 and the sleeve 2 is 30 mm.
0#Lm, distance between sleeve 2 and blade 4 is 1100
p, the fixed magnetic pole 3 has a maximum of 650 at the part facing the blade 4
The one showing Gaussian was used. Sleeve 2 rotated in the forward direction of drum I at a speed of 66 mm/sec.

ドラム1とスリーブ2との間)こは、周波数1゜6K)
Iz、Vp−p(ピーク・トウ・ピーク電圧)1.3K
Vの交流バイアスと一400Vの直流バイアスを印加し
、ドラム1上の感光体には暗部で一700vの静電像を
形成した。
Between drum 1 and sleeve 2), the frequency is 1°6K)
Iz, Vp-p (peak-to-peak voltage) 1.3K
An alternating current bias of V and a direct current bias of -400 V were applied, and an electrostatic image of -700 V was formed on the photoreceptor on the drum 1 in the dark area.

耐久試験として、白紙原稿を通して、はとんどトナー消
費が無い状態で、複写動作を繰り返し、6時間毎にトナ
ーを採取し、コールタ−カウンターM o d e l
 T A−■型(コールタ−カウンター社製)にて粒度
を検査したところ、第1図に曲線Aとして示すごとく、
24Il′?間後も、初期とほとんど粒度変化はなく、
複写画像も初期と変らぬ鮮映さと1画像一度とを保って
いた。現像機中のシール部あるいは現像スリーブ上の融
看も見られなかった。
As a durability test, copying operations were repeated using a blank original with almost no toner consumption, toner was collected every 6 hours, and the copying process was carried out using a coulter counter MODEL.
When the particle size was inspected using a T A-■ model (manufactured by Coulter Counter), as shown as curve A in Figure 1,
24Il′? Even after the period, there was almost no change in particle size compared to the initial stage.
The copied images also maintained the same sharpness and clarity as the initial image. No damage was observed on the seal in the developing machine or on the developing sleeve.

また、このトナーを直径50mmの円筒中に。Also, put this toner in a cylinder with a diameter of 50 mm.

500mmの厚さに充填し、温度50℃でtil!間放
;δしたが、ケーキングは見られず、これを用いて上記
と同様に複写操作を行なったところ、良好な画像が()
られた。
Fill it to a thickness of 500mm and til it at a temperature of 50℃! Intermittent; δ, but no caking was observed. When copying was performed in the same manner as above, a good image was obtained ()
It was done.

ルm 酸化チタンを使用しない以外は、実施例1と同様にして
カプセルトナーをずηた。このカプセルトナーを実施例
1と同様にして、画出しを行なったが初期は鮮明でかぶ
りもなく高画像濃度であった。定着性も、線圧t2Kg
/cmで圧力定着が可能であり、80℃で充分な熱定着
性を示し、実施例1のトナーと差は見られなかった。
A capsule toner was prepared in the same manner as in Example 1 except that titanium oxide was not used. Images were produced using this capsule toner in the same manner as in Example 1, and the images were initially clear and had high image density without fogging. The fixing property is also linear pressure t2Kg
/cm, and showed sufficient heat fixability at 80° C., and no difference from the toner of Example 1 was observed.

このトナーを用い、′3:施例1と同様にして耐久試験
を行なったところ、6時間位から、現像器シール部で回
転するスリーブ2と接する部位において、トナーの融着
物が目に見えて多くなり、24時間後にはスリーブの回
転が円滑でなくなり、更にスリーブ端部のトナー融着に
より潜像支持ドラムと接触するようになり、正規の間隙
をとることが出来なくなった。またトナーの現像性も劣
化しており、画像濃度も低下し、粗い画像となった・こ
の時のホッパー中のトナーには100メツシユのふるい
を通過しないトナー融着物が見られ、現像スリーブ上に
筋状にトナーがコーティングされない部分ができた。
Using this toner, we conducted a durability test in the same manner as in Example 1. After about 6 hours, we found that toner fusion was visible at the part of the developer seal that came into contact with the rotating sleeve 2. After 24 hours, the sleeve no longer rotates smoothly, and furthermore, due to toner fusion at the end of the sleeve, it came into contact with the latent image support drum, making it impossible to maintain a regular gap. In addition, the developability of the toner had deteriorated, and the image density had decreased, resulting in a rough image.At this time, there was toner fused material in the toner in the hopper that did not pass through a 100-mesh sieve, and the toner fused material was observed on the developing sleeve. There was a streaky area where the toner was not coated.

コールタ−カウンターによるホッパー内スリーブとトナ
ーの粒径推移を第2図に示す0粒度測定は、界面活性剤
を入れた食塩水中に、採取したトナーを投入し、5秒+
1JI、a音波分散したもので行なった。
Figure 2 shows the change in particle size of the hopper inner sleeve and toner using a coulter counter.To measure the zero particle size, put the collected toner into saline solution containing a surfactant and wait for 5 seconds +
1JI, a was carried out using a sonic dispersion.

スタート時1体積平均径で11.5ルmであったものが
、24時間後には、18.7Bmにまで111大するか
、B1“rt分散時間を5分間以上にすると、はぼ初期
粒度に戻った。ホッパー内トナーにi・l水性コロイダ
ルシリカのような流動化剤を添加し、ヘンシェルミキサ
ーで混合すると1粒度的には、一部の融着片を除いて、
元の粒度になるが劣化した現像性はもはや回復しなかっ
た。
The initial volume average diameter of 11.5 Bm increased to 18.7 Bm after 24 hours, or if the B1"rt dispersion time was increased to 5 minutes or more, the initial particle size decreased. Returned. When a fluidizing agent such as I/L aqueous colloidal silica is added to the toner in the hopper and mixed with a Henschel mixer, in terms of particle size, except for some fused pieces,
Although the grain size returned to its original size, the deteriorated developability was no longer restored.

見1立ヱニ」 酸化チタンに替えてアルミナ、ジルコニア、炭化硅素、
窒化チタン、窒化ホウ素を使用する以外は実施例1と同
様にして、カプセルトナーを得た。
"See 1 Tachieni" Instead of titanium oxide, alumina, zirconia, silicon carbide,
A capsule toner was obtained in the same manner as in Example 1 except that titanium nitride and boron nitride were used.

結果は、実施例1および比較例1のそれとともに次表1
に示す通りであり、実施例1と同様の結果が得られた。
The results are shown in Table 1 below along with those of Example 1 and Comparative Example 1.
As shown in , the same results as in Example 1 were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例ならびに比較例にかかる磁性
トナーの耐久性を評価するために用いた現像泰の要部模
式断面図、第2図は耐久試験中のトナー粒砕変化を示す
グラフである。 l拳・・潜像支持ドラム、 2・・−トナー担持スリーブ。 3・・・固)C磁極、 ・[・・・磁性ドクターブレード、 V5−φ・h5主1″[トナー。 6j・−ポツパー A・・・実施例1のマイクロカプセルトナーB・・・比
較例1のカプセルトナー LLは:第2図 第1図 第2図 回転呼朋
FIG. 1 is a schematic cross-sectional view of the main parts of a developing machine used to evaluate the durability of magnetic toners according to Examples and Comparative Examples of the present invention, and FIG. 2 shows changes in toner granulation during the durability test. It is a graph. 1.-Latent image support drum, 2.--Toner carrying sleeve. 3...Hard) C magnetic pole, ・[...Magnetic doctor blade, V5-φ・h5 main 1'' [toner. 6j・-Popper A...Microcapsule toner of Example 1 B...Comparative example Capsule toner LL of 1 is: Fig. 2 Fig. 1 Fig. 2 Rotary ring

Claims (1)

【特許請求の範囲】 1、芯材と、これを覆う耐摩耗性無機微粉末を充填した
殻材とからなることを特徴とするマイクロカプセルトナ
ー。 2、芯材と耐摩耗性無機微粉末との乾式混合物を殻材に
より被覆することにより得られた特許請求の範囲第1項
に記載のマイクロカプセルトナー。
[Scope of Claims] 1. A microcapsule toner comprising a core material and a shell material covering the core material filled with wear-resistant inorganic fine powder. 2. The microcapsule toner according to claim 1, which is obtained by covering a dry mixture of a core material and a wear-resistant inorganic fine powder with a shell material.
JP59209675A 1984-10-08 1984-10-08 Capsule toner Granted JPS6188274A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59209675A JPS6188274A (en) 1984-10-08 1984-10-08 Capsule toner
FR858514822A FR2571515B1 (en) 1984-10-08 1985-10-07 COATED PIGMENT POWDER FOR THE DEVELOPMENT OF ELECTROSTATIC IMAGES AND ITS PRODUCTION METHOD
GB08524789A GB2167573B (en) 1984-10-08 1985-10-08 Encapsulated toner for development of electro-static images and process for producing the same
US07/088,540 US4740443A (en) 1984-10-08 1987-08-20 Encapsulated electrostatic toner with locally attached non-magnetic inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209675A JPS6188274A (en) 1984-10-08 1984-10-08 Capsule toner

Publications (2)

Publication Number Publication Date
JPS6188274A true JPS6188274A (en) 1986-05-06
JPH026054B2 JPH026054B2 (en) 1990-02-07

Family

ID=16576745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209675A Granted JPS6188274A (en) 1984-10-08 1984-10-08 Capsule toner

Country Status (1)

Country Link
JP (1) JPS6188274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202623A (en) * 2000-11-28 2002-07-19 Xerox Corp Toner, process and latent image developing process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202623A (en) * 2000-11-28 2002-07-19 Xerox Corp Toner, process and latent image developing process

Also Published As

Publication number Publication date
JPH026054B2 (en) 1990-02-07

Similar Documents

Publication Publication Date Title
JP4360589B2 (en) Two-component developer, image forming apparatus using the same, and image forming method
US4740443A (en) Encapsulated electrostatic toner with locally attached non-magnetic inorganic particles
JP3141783B2 (en) Manufacturing method of electrostatic image developing toner, electrostatic image developing toner, electrostatic image developer, and image forming method
JPH03100661A (en) Image forming method
JP2001083732A (en) Toner for developer, developer, production of toner for developer, and production of developer
JPH03217856A (en) Two-component developer for dry processing for electrostatic latent image
JP2017134333A (en) Two-component developer
JPS62253176A (en) Capsule toner for developing electrostatic image, its production and electrophotographic developing method using said toner
JP2002072546A (en) Magnetic toner
JPS6188274A (en) Capsule toner
JP6269529B2 (en) Electrostatic latent image developing carrier and two-component developer
JPS58184157A (en) Developing method of electrostatic image
JPH1020560A (en) Electrophotographic toner, its production and image forming method using the toner
JP4165822B2 (en) Full color toner kit, process cartridge, image forming method and image forming apparatus
JPS616656A (en) Developer
JP2004271660A (en) Image forming apparatus
JP2694544B2 (en) Magnetic capsule toner
JP4532721B2 (en) Method for producing magnetic toner
JPH0778645B2 (en) Microcapsule toner and manufacturing method thereof
JP4233989B2 (en) Electrostatic image developer
JP2976397B2 (en) Dry two-component developer for electrostatic latent images
JP2789237B2 (en) Two-component developer for electrophotography
JP2930183B2 (en) Developing device
JP2849850B2 (en) Electrostatic latent image developing method
JP2005242007A (en) Toner and developer, container containing toner, process cartridge, image forming apparatus, and image forming method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term