JPH03100661A - Image forming method - Google Patents

Image forming method

Info

Publication number
JPH03100661A
JPH03100661A JP1237307A JP23730789A JPH03100661A JP H03100661 A JPH03100661 A JP H03100661A JP 1237307 A JP1237307 A JP 1237307A JP 23730789 A JP23730789 A JP 23730789A JP H03100661 A JPH03100661 A JP H03100661A
Authority
JP
Japan
Prior art keywords
toner
image forming
fine particles
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1237307A
Other languages
Japanese (ja)
Inventor
Seiko Naganuma
長沼 整子
Satoru Haneda
羽根田 哲
Masahiko Itaya
正彦 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1237307A priority Critical patent/JPH03100661A/en
Publication of JPH03100661A publication Critical patent/JPH03100661A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve developability, transferability and cleanability by making combination use of two kinds of inorg. fine particles of large diameters and small diameters with particle powder for spherical toners and regulating the compounding ratio of the inorg. fine particle of the large diameters and small diameters to a specific range in the relation with the average grain sizes of the particle powder for toners. CONSTITUTION:The toners contg. the particle powder for spherical toners having 2 to 6mu average grain size A, the inorg. fine particles of the small diameter which have >=5mmu and <=20mmu average grain size and in which the compounding ratio B thereof satisfies equation I with the average grain size A of the particle powder for toners and the inorg. fine particles of the large diameter which have >=20mmu and <=40mmu average grain size and in which the compounding ratio C thereof satisfies equation II with the average grain size A of the particle powder for toners are used as the toners to be incorporated into a developer layer. In the equations, the unit of A is [mu] and the units of B and C are [weight%/mu]. The transferability of the toner images is improved in this way and the cleanability of the remaining toners is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、像形成体に近接して対向配置された現像剤担
持体と当該像形成体との間の現像領域に、この現像領域
の間隙よりも薄層の現像剤層を現像剤担持体上に担持さ
せて供給し、当該現像領域に振動電界を形成して像形成
体上の静電潜像を現像する工程を含む画像形成方法に関
する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a development area between a developer carrying member disposed close to and opposite to an image forming member and the image forming member. An image forming method comprising a step of supplying a developer layer thinner than the gap on a developer carrier, and developing an electrostatic latent image on an image forming member by forming an oscillating electric field in the development area. Regarding.

〔従来の技術〕[Conventional technology]

像形成体に近接して対向配置された現像剤担持体と当該
像形成体との間の現像領域に、この現像領域の間隙より
も薄層の現像剤層を現像剤担持体上に担持させて供給し
、当該現像領域に振動電界を形成して像形成体上の静電
潜像を現像する工程を含む画像形成方法において、解像
度を高めるためには平均粒径が2〜6μの小粒径のトナ
ーを用いるのが有利である。また、特に、像形成体上に
各カラートナーによるトナー像を重ね合わせた後、当該
トナー像を一括転写して画像を形成する場合において、
解像度を高めるためには小粒径のトナーを用いることが
必須の条件となる。
A developer layer that is thinner than the gap in the development area is supported on the developer carrier in a development area between the image forming body and a developer carrier disposed close to and facing the image forming body. In an image forming method that includes a step of developing an electrostatic latent image on an image forming body by supplying a oscillatory electric field to the developing area and developing an electrostatic latent image on an image forming body, it is necessary to use small particles with an average particle size of 2 to 6 μm. It is advantageous to use a toner with a diameter of In particular, when toner images of each color toner are superimposed on an image forming body and then the toner images are transferred all at once to form an image,
In order to improve the resolution, it is essential to use toner with a small particle size.

しかるに、平均粒径が2〜6μの小粒径のトナーは、通
常の粉砕工程では得られにくいため、−般には、造粒重
合、懸濁重合、溶液重合等の各種の重合方法を適用して
製造される。
However, since it is difficult to obtain toner with a small particle size of 2 to 6 μm in average particle size through a normal pulverization process, various polymerization methods such as granulation polymerization, suspension polymerization, and solution polymerization are generally applied. Manufactured by

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、斯かる重合方法によって得られるトナーは球形
度の高いものであるため、現像剤担持体あるいは像形成
体に対する物理的付着力が大きくて、現像性、転写性、
クリーニング性が劣る問題がある。特に、像形成体上に
各色のトナー像を重ね合わせる画像形成プロセスにおい
ては、先行のトナー像が帯電工程を経由する際に再度帯
電されるため、トナーの電荷量が増大して像形成体に対
する静電気的な付着力も増大し、これらの相乗作用によ
って重ね合わせられたトナー像を一括転写する工程にお
いては転写性が著しく低下し、また、−括転写工程を経
由した後の像形成体の表面に残留したトナーをクリーニ
ングする工程においてはクリーニング性が著しく低下す
る問題がある。
However, since the toner obtained by such a polymerization method has a high degree of sphericity, its physical adhesion to the developer carrier or image forming body is large, resulting in poor developability, transferability, etc.
There is a problem with poor cleaning performance. In particular, in the image forming process in which toner images of each color are superimposed on the image forming body, the previous toner image is charged again when passing through the charging process, so the amount of charge on the toner increases and the charge on the image forming body increases. The electrostatic adhesion force also increases, and due to the synergistic effect of these effects, the transferability is significantly reduced in the process of transferring superimposed toner images at once. In the process of cleaning residual toner, there is a problem in that the cleaning performance is significantly reduced.

本発明は以上の如き事情に基いてなされたちのであって
、その目的は、像形成体に近接して対向配置された現像
剤担持体と当該像形成体との間の現像領域に、この現像
領域の間隙よりも薄層の現像剤層を現像剤担持体上に担
持させて供給し、当該現像領域に振動電界を形成して像
形成体上の静電潜像を現像する工程を含む画像形成方法
において、現像性、転写性、クリーニング性の向上を図
ることにある。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a developing area between the image forming body and a developer carrying member disposed close to and opposite to the image forming body. An image comprising the step of supplying a developer layer thinner than the gap between regions on a developer carrier, and developing an electrostatic latent image on an image forming member by forming an oscillating electric field in the development region. The objective is to improve developability, transferability, and cleaning performance in the forming method.

また、本発明の他の目的は、特に、現像工程を各カラー
トナーごとに繰り返して行っ現像工程を各カラートナー
によるトナー像を重ね合わせた後、当該トナー像を一括
転写し、この−括転写後に像形成体上に残留したトナー
をクリーニングする工程を含む場合において、現像性、
転写性、クリーニング性の向上を図ることにある。
Another object of the present invention is to repeat the developing process for each color toner, superimpose the toner images of each color toner, and then transfer the toner images all at once. In cases where a step of cleaning toner remaining on the image forming body is included afterwards, developability,
The objective is to improve transferability and cleaning performance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明においては、像形成体
に近接して対向配置された現像剤担持体と当該像形成体
との間の現像領域に、この現像領域の間隙よりも薄層の
現像剤層を現像剤担持体上に担持させて供給し、当該現
像領域に振動電界を形成して像形成体上の静電潜像を現
像する工程を含む画像形成方法において、 前記現像剤層に含有されるトナーとして、平均粒径Aが
2〜6μの球形のトナー用粒子粉末と、 平均粒径が5mμ以上20111μ未満でその配合量B
が前記トナー用粒子粉末の平均粒径Aに対して下記条件
(1)を満足する小径の無機微粒子と、平均粒径が20
IIlμ以上4Qmμ以下でその配合量Cが前記トナー
用粒子粉末の平均粒径Aに対して下記条件(2)を満足
する大径の無機微粒子とを含有してなるトナーを用いる
構成を採用する。
In order to achieve the above object, in the present invention, a layer thinner than the gap in the development area is formed between the developer carrier and the image forming element, which are disposed close to and opposite to the image forming element. An image forming method comprising a step of supplying a developer layer supported on a developer carrier and developing an electrostatic latent image on an image forming body by forming an oscillating electric field in the development area, the developer layer The toner contained in the toner includes spherical toner particles having an average particle size A of 2 to 6 μm, and a blending amount B of spherical toner particles having an average particle size of 5 μm or more and less than 20111 μm.
is a small-diameter inorganic fine particle that satisfies the following condition (1) with respect to the average particle size A of the toner particle powder, and an average particle size of 20
A configuration is adopted in which a toner containing large-diameter inorganic fine particles whose blending amount C satisfies the following condition (2) with respect to the average particle size A of the toner particles is adopted.

(ただし、への単位は〔μ〕、BおよびCの単位は〔重
量%/μ〕である。) また、本発明においては、特に、現像工程を各カラート
ナーごとに繰り返して行っ現像工程を各カラートナーに
よるトナー像を重ね合わせた後、当該トナー像を一括転
写し、この−括転写後に像形成体上に残留したトナーを
クリーニングする工程を含む構成を採用する。
(However, the unit for is [μ], and the unit for B and C is [wt%/μ].) In addition, in the present invention, in particular, the developing step is repeated for each color toner. After overlapping toner images of the respective color toners, the toner images are collectively transferred, and a configuration is adopted that includes a step of cleaning the toner remaining on the image forming body after this batch transfer.

また、小径の無機微粒子がシリカ微粒子からなり、大径
の無機微粒子が酸化チタン微粒子からなることが好まし
い。
Further, it is preferable that the small-diameter inorganic fine particles are made of silica fine particles, and the large-diameter inorganic fine particles are made of titanium oxide fine particles.

すなわち、本発明は、トナーとして、平均粒径Aが2〜
6μの球形のトナー用粒子粉末に対して、大径と小径の
2種類の無機微粒子を併用するとともに、これらの小径
の無機微粒子および大径の無機微粒子の配合量を、それ
ぞれ球形のトナー用粒子粉末の平均粒径Aとの関係にお
いて特定の範囲に規定することにより、詳細は後述する
実施例および比較例の説明からも理解されるように、ト
ナーの流動性を高めてトナーの摩擦帯電性を向上させる
とともに、現像領域に供給されるトナー密度を上昇させ
て高濃度の現像を可能にし、さらには、主として大径の
無機微粒子によりトナー粒子の表面に凹凸を形成し、こ
れにより像形成体に対するトナーの物理的付着力および
静電気的な付着力を弱めて、転写工程においてはトナー
像の転写性を高め、転写工程後のクリーニング工程にお
いては像形成体上に残留したトナーのクリーニング性を
高めたものである。
That is, in the present invention, the toner has an average particle size A of 2 to 2.
Two types of inorganic fine particles with a large diameter and a small diameter are used together for spherical toner particles of 6μ, and the blending amounts of these small diameter inorganic fine particles and large diameter inorganic fine particles are adjusted respectively to the spherical toner particles. By specifying a specific range in relation to the average particle size A of the powder, the fluidity of the toner can be increased and the triboelectric charging properties of the toner can be improved, as will be understood from the description of Examples and Comparative Examples, which will be detailed later. In addition, the toner density supplied to the developing area is increased to enable high-density development.Furthermore, mainly large-diameter inorganic fine particles form irregularities on the surface of the toner particles, which makes the image forming body By weakening the physical adhesion force and electrostatic adhesion force of the toner to the surface, it improves the transferability of the toner image in the transfer process, and improves the ability to clean the toner remaining on the image forming body in the cleaning process after the transfer process. It is something that

平均粒径Aが2〜6μの球形のトナー用粒子粉末は、造
粒重合法、粉砕法等の方法により製造することができる
Spherical toner particles having an average particle size A of 2 to 6 μm can be produced by a method such as a granulation polymerization method or a pulverization method.

ここで、トナー用粒子粉末の平均粒径とは、コールタ−
カウンター(電気抵抗法)により測定された値をいう。
Here, the average particle size of toner particles is
This refers to the value measured by a counter (electrical resistance method).

トナー用粒子粉末を構成するトナー用樹脂としては、ス
チレン系樹脂、スチレン−アクリル系共重合体樹脂、ポ
リエステル樹脂等から選択することができる。
The toner resin constituting the toner particles can be selected from styrene resins, styrene-acrylic copolymer resins, polyester resins, and the like.

このトナー用粒子粉末には、トナー用樹脂、着色剤のほ
か、荷電制御剤等の内部添加剤が含有されていてもよい
This toner particle powder may contain internal additives such as a charge control agent in addition to a toner resin and a colorant.

小径の無機微粒子は、平均粒径が5mμ以上20mμ未
満であり、その配合量Bはトナー用粒子粉末の平均粒径
Aに対して前記条件のを満足するものである。すなわち
、前記条件(1)を満足することにより、トナーの流動
性が十分に改善され、また、トナー粒子表面からの小径
の無機微粒子の脱離も少なくて、良好な流動性が安定に
発揮される。
The small-diameter inorganic fine particles have an average particle diameter of 5 mμ or more and less than 20 mμ, and the blending amount B thereof satisfies the above conditions with respect to the average particle diameter A of the toner particles. That is, by satisfying the above-mentioned condition (1), the fluidity of the toner is sufficiently improved, and the detachment of small-diameter inorganic fine particles from the toner particle surface is also reduced, so that good fluidity can be stably exhibited. Ru.

配合量Bの具体例を挙げると、トナー用粒子粉末の平均
粒径Aが例えば2〜4μの範囲では、当該トナー用粒子
粉末100重量部に対して、小径の無機微粒子が2.4
〜1.2重量部であり、トナー用粒子粉末の平均粒径A
が例えば4〜6μの範囲では、当該トナー用粒子粉末1
00重量部に対して、小径の無機微粒子が1.2〜0.
6重量部である。
To give a specific example of the blending amount B, when the average particle size A of the toner particles is, for example, in the range of 2 to 4 μm, the amount of small-diameter inorganic fine particles is 2.4 parts per 100 parts by weight of the toner particles.
~1.2 parts by weight, and the average particle size A of the toner particles
For example, in the range of 4 to 6μ, the toner particle powder 1
00 parts by weight, the amount of small diameter inorganic fine particles is 1.2 to 0.00 parts by weight.
It is 6 parts by weight.

斯かる小径の無機微粒子としては、荷電制御性が優れて
いる点でシリカ微粒子を好ましく用いることができる。
As such small-diameter inorganic fine particles, silica fine particles can be preferably used because they have excellent charge controllability.

大径の無機微粒子は、平均粒径が20111μ以上40
ωμ以下であり、その配合量Cはトナー用粒子粉末の平
均粒径Aに対して前記条件(2)を満足するものである
。すなわち、前記条件(2)を満足することにより、転
写工程におけるトナー像の転写性が十分に改善され、ま
た、クリーニング工程における残留トナーのクリーニン
グ性が十分に改善される。
Large-diameter inorganic fine particles have an average particle size of 20111 μm or more and 40 μm or more.
ωμ or less, and the blending amount C satisfies the above condition (2) with respect to the average particle size A of the toner particles. That is, by satisfying the above condition (2), the transferability of the toner image in the transfer process is sufficiently improved, and the cleaning performance of residual toner in the cleaning process is sufficiently improved.

配合量Cの具体例を挙げると、トナー用粒子粉末の平均
粒径Aが例えば2〜4μの範囲では、当該トナー用粒子
粉末100重量部に対して、大径の無機微粒子が4.0
〜2.0重量部であり、トナー用粒子粉末の平均粒径A
が例えば4〜6μの範囲では、当該トナー用粒子粉末1
00重量部に対して、大径の無機微粒子が2.0〜1.
0重量部である。
To give a specific example of the blending amount C, when the average particle size A of the toner particles is, for example, in the range of 2 to 4 μ, the large diameter inorganic fine particles are 4.0 parts per 100 parts by weight of the toner particles.
~2.0 parts by weight, and the average particle size A of the toner particles
For example, in the range of 4 to 6μ, the toner particle powder 1
00 parts by weight, the amount of large diameter inorganic fine particles is 2.0 to 1.0 parts by weight.
It is 0 parts by weight.

斯かる大径の無機微粒子としては、特性の環境依存性が
小さい点で酸化チタン微粒子を好ましく用いることがで
きる。
As such large-diameter inorganic fine particles, titanium oxide fine particles can be preferably used because their properties are less dependent on the environment.

ここで、無機微粒子の平均粒径とは、BET法による比
表面積から換算して求めた値をいう。
Here, the average particle diameter of the inorganic fine particles refers to a value calculated from the specific surface area by the BET method.

小径の無機微粒子の配合量Bと、大径の無機微粒子の配
合量Cとの関係においては、B/Cが、1/2〜2/3
の範囲が好ましい。斯かる範囲にあれば、さらに現像性
、転写性、クリーニング性の向上を図ることができる。
In the relationship between the blending amount B of small-diameter inorganic fine particles and the blending amount C of large-diameter inorganic fine particles, B/C is 1/2 to 2/3.
A range of is preferred. Within this range, it is possible to further improve developability, transferability, and cleaning performance.

本発明の画像形成方法は、以上のようにして得られるト
ナーを含む現像剤を用いて、像形成体に近接して対向配
置された現像剤担持体と当該像形成体との間の現像領域
に、この現像領域の間隙よりも薄層の現像剤層を現像剤
担持体上に担持させて供給し、当該現像領域に振動電界
を形成して像形成体上の静電潜像を現像するいわゆる非
接触現像工程を含むものである。
The image forming method of the present invention uses a developer containing the toner obtained as described above, and uses a developing area between the image forming body and a developer carrier disposed close to and facing the image forming body. Then, a developer layer thinner than the gap in the developing area is carried on a developer carrier and supplied, and an oscillating electric field is formed in the developing area to develop the electrostatic latent image on the image forming body. This includes a so-called non-contact development process.

さらには、例えばイエロートナー、マゼンタトナー、シ
アントナー、黒色トナー等のカラートナーを含む現像剤
を用いて、像形成体上に各カラートナーによるトナー像
を重ね合わせた後、当該トナー像を一括転写し、この−
括転写後に像形成体上に残留したトナーをクリーニング
する工程を含むものである。
Furthermore, using a developer containing color toners such as yellow toner, magenta toner, cyan toner, and black toner, toner images of each color toner are superimposed on the image forming body, and then the toner images are transferred all at once. And this-
This process includes a step of cleaning the toner remaining on the image forming body after the batch transfer.

第1図は本発明の画像形成方法の実施に用いることがで
きる画像形成装置を示し、この装置は、有機感光体から
なる回転ドラム状の像形成体60の周囲に、帯電器61
、レーザー露光光学系62、イエロー現像器71、マゼ
ンタ現像器72、シアン現像器73、黒色現像器74、
静電転写器63、クリーニング器64が順に配置されて
構成されている。65は熱ローラ定着器、66は転写紙
である。
FIG. 1 shows an image forming apparatus that can be used to carry out the image forming method of the present invention.
, laser exposure optical system 62, yellow developer 71, magenta developer 72, cyan developer 73, black developer 74,
An electrostatic transfer device 63 and a cleaning device 64 are arranged in this order. 65 is a heat roller fixing device, and 66 is a transfer paper.

各現像器71.72.73.74には、それぞれ対応す
る色のカラートナーとキャリアとが収納されている。
Each developer 71, 72, 73, 74 stores color toner and carrier of a corresponding color.

斯かるキャリアとしては、例えば、フェライト等の磁性
体粒子の表面をスチレン−アクリル系共重合体樹脂等に
より被覆してなるコーティングキャリアを用いることが
できる。キャリアの平均粒径は35〜40μ程度がよい
As such a carrier, for example, a coated carrier formed by coating the surface of magnetic particles such as ferrite with a styrene-acrylic copolymer resin or the like can be used. The average particle size of the carrier is preferably about 35 to 40 microns.

現像剤におけるトナー濃度は、トナー用粒子粉末の平均
粒径Aが2〜4μの範囲では、2〜4重量%程度がよく
、トナー用粒子粉末の平均粒径Aが4〜6μの範囲では
、4〜5重量%程度がよい。
The toner concentration in the developer is preferably about 2 to 4% by weight when the average particle size A of the toner particles is in the range of 2 to 4 μm, and when the average particle size A of the toner particles is in the range of 4 to 6 μm, It is preferably about 4 to 5% by weight.

この装置においては、帯電器61により像形成体600
表面が例えば−aoo v程度の−様な電位に帯電され
、次いでレーザ露光光学系620半導体レーザにより例
えば16 dot/y+nの密度で像露光されて像形成
体600表面に原稿のイエロー画像に対応したデジタル
の静電潜像が形成される。
In this apparatus, an image forming body 600 is charged by a charger 61.
The surface is charged to a potential of about -aoov, for example, and then exposed to image light at a density of, for example, 16 dots/y+n by a semiconductor laser in a laser exposure optical system 620, so that the surface of the image forming body 600 corresponds to the yellow image of the original. A digital electrostatic latent image is formed.

この静電潜像は、イエロー現像器71を経由する際に、
イエロートナーによって非接触反転現像され、像形成体
600表面にイエロートナー像が形成される。
When this electrostatic latent image passes through the yellow developer 71,
Non-contact reversal development is performed using the yellow toner, and a yellow toner image is formed on the surface of the image forming body 600.

第2図はイエロー現像器71の概略を示し、81はアル
ミニウムやステンレス等の非磁性材料からなる現像スリ
ーブ、82は現像スリーブ81の内部に設けられた周方
向に複数の磁極を有する磁石体であり、現像スリーブ8
1と磁石体82により現像剤担持体が構成されている。
FIG. 2 schematically shows the yellow developing device 71, where 81 is a developing sleeve made of a non-magnetic material such as aluminum or stainless steel, and 82 is a magnet body provided inside the developing sleeve 81 and having a plurality of magnetic poles in the circumferential direction. Yes, developing sleeve 8
1 and the magnet body 82 constitute a developer carrier.

現像スリーブ81は、像形成体60に近接して対向配置
され、両者の間隙によって現像領域が形成される。83
は現像スリーブ81上に形成される現像剤層の厚さを規
制する厚さ規制ブレード、84は現像スリーブ81上か
ら現像後の現像剤層を除去するスクレーパーブレード、
85は現像剤溜り86の現像剤を撹拌する撹拌回転体、
87はトナーホッパー、88は表面にトナーの入り込む
凹部を有しトナーホッパー87から現像剤溜り86にト
ナーを補給するトナー補給ローラ、89は保護抵抗90
を介して現像スリーブ81に振動電圧を印加するバイア
ス電源である。
The developing sleeve 81 is disposed close to and facing the image forming body 60, and a developing area is formed by a gap between the two. 83
84 is a thickness regulating blade that regulates the thickness of the developer layer formed on the developing sleeve 81; 84 is a scraper blade that removes the developed developer layer from above the developing sleeve 81;
85 is a stirring rotating body that stirs the developer in the developer reservoir 86;
87 is a toner hopper; 88 is a toner replenishment roller that has a recess on its surface into which toner enters and replenishes toner from the toner hopper 87 to the developer reservoir 86; 89 is a protective resistor 90;
This is a bias power supply that applies an oscillating voltage to the developing sleeve 81 via the developing sleeve 81.

現像スリーブ81上に担持される現像剤層の厚さは、厚
さ規制ブレード83によって現像領域における間隙より
も薄層とされる。
The thickness of the developer layer carried on the developing sleeve 81 is made thinner than the gap in the developing area by the thickness regulating blade 83.

薄層の現像剤層が現像領域に供給されると、振動電界の
作用によりトナーが飛翔して像形成体60の画像部に付
着する。
When the thin developer layer is supplied to the development area, the toner is ejected and adheres to the image area of the image forming member 60 due to the action of the oscillating electric field.

なお、マゼンタ現像器72、シアン現像器73、黒色現
像器74も同様の構成である。
Note that the magenta developing device 72, cyan developing device 73, and black developing device 74 also have a similar configuration.

以上のようにして像形成体60上に形成されたイエロー
トナー像は、転写されず、かつ、クリーニングされずに
1回転されて、再び帯電器61により一様な電位に帯電
される。
The yellow toner image formed on the image forming body 60 as described above is rotated once without being transferred or cleaned, and then charged again to a uniform potential by the charger 61.

次いで、レーデ露光光学系620半導体レーザにより像
露光されて像形成体600表面に原稿のマゼンタ画像に
対応したデジタルの静電潜像が形成され、この静電潜像
は、マゼンタ現像器72を経由する際に、マゼンタトナ
ーによって非接触反転現像され、前記イエロートナー像
に対してマゼンタトナー像が重ね合わせられる。
Next, a digital electrostatic latent image corresponding to the magenta image of the original is formed on the surface of the image forming body 600 by image exposure by a semiconductor laser in the Rede exposure optical system 620, and this electrostatic latent image is passed through the magenta developing device 72. At this time, non-contact reversal development is performed using magenta toner, and the magenta toner image is superimposed on the yellow toner image.

以下同様にして、シアントナー像および黒色トナー像が
形成されて、像形成体10の表面に、イエロートナー像
、マゼンタトナー像、シアントナー像、黒色トナー像が
順に重ね合わせられる。
Thereafter, a cyan toner image and a black toner image are formed in the same manner, and the yellow toner image, magenta toner image, cyan toner image, and black toner image are superimposed on the surface of the image forming body 10 in this order.

このようにして重ね合わせられたトナー像は、静電転写
器63により転写紙66に一括転写される。
The toner images superimposed in this way are transferred all at once onto a transfer paper 66 by an electrostatic transfer device 63.

そして転写紙66上のトナー像は熱ローラ定着器65に
より加熱定着されて定着画像が形成される。
The toner image on the transfer paper 66 is then heated and fixed by a heat roller fixing device 65 to form a fixed image.

一方、静電転写器63を通過した像形成体60の表面は
、当該像形成体60に接触する位置に移動されたクリー
ニング器64のブレード64aにより摺擦されて残留し
ていたトナーが掻き取られる。そして、再び帯電器61
による帯電工程に付され、次の画像形成工程に付される
On the other hand, the surface of the image forming body 60 that has passed through the electrostatic transfer device 63 is rubbed by the blade 64a of the cleaning device 64 that has been moved to a position where it contacts the image forming body 60, and the remaining toner is scraped off. It will be done. Then, the charger 61
The wafer is then subjected to a charging step by , and then subjected to the next image forming step.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例とともに具体的に説明す
る。なお、本発明の実施の態様は、以下の実施例に限定
されるものではない。また、以下の説明において特に明
示しない限り「部」は「重量部」を表す。
Examples of the present invention will be specifically described below along with comparative examples. Note that the embodiments of the present invention are not limited to the following examples. Furthermore, in the following description, "parts" represent "parts by weight" unless otherwise specified.

〈実施例1〉 (黒色トナー) 造粒重合法により、カーボンブラックとトナー用樹脂と
を含有してなる平均粒径が5.5μの黒色のトナー用粉
末粒子を製造した。
<Example 1> (Black toner) Black toner powder particles containing carbon black and a toner resin and having an average particle size of 5.5 μm were produced by a granulation polymerization method.

このトナー用粉末粒子100部と、平均粒径が16mμ
のシリカ微粒子(小径の無機微粒子)0.6部と、平均
粒径が30mμの酸化チタン微粒子(大径の無機微粒子
) 1部とを、ターピラーにより混合撹拌して、黒色ト
ナーを得た。
100 parts of this toner powder particles and an average particle size of 16 mμ
A black toner was obtained by mixing and stirring 0.6 part of silica fine particles (small-diameter inorganic fine particles) and 1 part of titanium oxide fine particles (large-diameter inorganic fine particles) having an average particle size of 30 mμ using a tarpillar.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

(現像剤の調製) 上記黒色トナーと、キャリアとを混合して現像剤を調製
した。トナー濃度は、4重量%である。
(Preparation of developer) A developer was prepared by mixing the above black toner and a carrier. The toner concentration is 4% by weight.

なお、使用したキャリアは、樹脂コーティング層を有す
る平均粒径が40μのコーティングキャリアである。
The carrier used was a coated carrier having a resin coating layer and having an average particle size of 40 μm.

(実写テスト) 第1図に示した画像形成装置を用い、上記現像剤を黒色
現像器74に入れて、帯電、像露光、現像、転写、クリ
ーニング、定着の各工程を遂行して、黒色トナーによる
画像を形成した。
(Actual photo test) Using the image forming apparatus shown in FIG. An image was formed by

なお、現像工程においては、現像剤担持体と像形成体と
の間の現像領域に、この現像領域の間隙よりも薄層の現
像剤層を現像剤担持体上に担持させて供給し、この現像
領域に、1.5  kVp−pで8kHzの振動電界を
形成して、像形成体上の静電潜像を現像した。
In the developing step, a developer layer is carried on the developer carrier and supplied to the development area between the developer carrier and the image forming body, the developer layer being thinner than the gap between the development areas. An oscillating electric field of 1.5 kVp-p and 8 kHz was formed in the development area to develop the electrostatic latent image on the image forming member.

(評価) 以上の実写テストにおいて、下記のようにして現像性、
転写性およびクリーニング性を評価した。
(Evaluation) In the above live-action test, the developability and
Transfer properties and cleaning properties were evaluated.

■現像性 得られた画像を目視により観察して、画像濃度の点から
評価した。現像性が良好な場合を「O」、現像性が不良
の場合を「×」とした。
(2) Developability The obtained images were visually observed and evaluated in terms of image density. When the developability was good, it was rated "O", and when the developability was poor, it was rated "x".

■転写性 像形成体60上のトナーを粘着テープにより剥離するこ
とにより、転写前の像形成体60上のトナー像の単位面
積当たりのトナー重量Mと、転写後に像形成体60上に
残存した単位面積当たりのトナー重量Nを測定して下記
式により転写率を求めた。
(2) By peeling off the toner on the transferable image forming body 60 with an adhesive tape, the toner weight M per unit area of the toner image on the image forming body 60 before transfer and the weight M remaining on the image forming body 60 after transfer are determined. The toner weight N per unit area was measured and the transfer rate was determined using the following formula.

評価は、転写率が85%以上の場合を「O」、転写率が
80%未満の場合を「×」とした。
The evaluation was rated "O" when the transfer rate was 85% or more, and "x" when the transfer rate was less than 80%.

■クリーニング性 クリーニング器64によりクリーニングした後の像形成
体60の表面を目視により観察して、クリーニング性を
判定した。評価は、残留トナーがほとんど認められない
場合を「○」、残留トナーが相当に認められる場合を「
×」とした。
(2) Cleaning property The surface of the image forming body 60 after being cleaned by the cleaning device 64 was visually observed to determine the cleaning property. The evaluation is ``○'' when there is almost no residual toner, and ``○'' when there is a considerable amount of residual toner.
×”.

以上の結果を後記第1表に示す。The above results are shown in Table 1 below.

〈実施例2〉 (イエ・ロートナー) 造粒重合法により、イエロー顔料とトナー用樹脂とを含
有してなる平均粒径が3.8μのイエローのトナー用粉
末粒子を製造した。
<Example 2> (Y. Lautner) Yellow toner powder particles containing a yellow pigment and a toner resin and having an average particle size of 3.8 μm were produced by a granulation polymerization method.

このトナー用粉末粒子100部と、平均粒径が16mμ
のシリカ微粒子(小径の無機微粒子) 1部と、平均粒
径が30111μの酸化チタン微粒子(大径の無機微粒
子)1.6部とを、ターピラーにより混合撹拌して、イ
エロートナーを得た。
100 parts of this toner powder particles and an average particle size of 16 mμ
A yellow toner was obtained by mixing and stirring 1 part of silica fine particles (small-diameter inorganic particles) and 1.6 parts of titanium oxide fine particles (large-diameter inorganic particles) having an average particle size of 30111 μm using a tarpillar.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

(マゼンタトナー) イエロートナーの製造において、イエロー顔料をマゼン
タ顔料に変更したほかは同様にしてトナー用粒子粉末を
製造し、これを用いて同様にしてマゼンタトナーを得た
(Magenta Toner) Particle powder for toner was produced in the same manner as in the production of yellow toner except that the yellow pigment was changed to magenta pigment, and a magenta toner was obtained in the same manner using this.

(シアントナー) イエ0−)ナーの製造において、イエロー顔料をシアン
顔料に変更したほかは同様にしてシアンのトナー用粒子
粉末を製造し、これを用いて同様にしてシアントナーを
得た。
(Cyan Toner) A cyan toner particle powder was produced in the same manner as in the production of the yellow pigment except that the yellow pigment was replaced with a cyan pigment, and a cyan toner was obtained in the same manner using this.

(黒色トナー) イエロートナーの製造において、イエロー顔料をカーボ
ンブラックに変更したほかは同様にして黒色のトナー用
粒子粉末を製造し、これを用いて同様にして黒色トナー
を得た。
(Black Toner) A black toner particle powder was produced in the same manner as in the production of the yellow toner except that the yellow pigment was changed to carbon black, and a black toner was obtained in the same manner using this.

(現像剤の調製) 上記各トナーと、キャリアとを混合して、トナー濃度が
それぞれ3.5重量%の各現像剤を調製した。
(Preparation of Developer) Each of the above toners and a carrier were mixed to prepare each developer having a toner concentration of 3.5% by weight.

なお、使用したキャリアは、樹脂コーティング層を有す
る平均粒径が40μのコーティングキャリアである。
The carrier used was a coated carrier having a resin coating layer and having an average particle size of 40 μm.

(実写テスト) 第1図に示した画像形成装置を用い、上記各現像剤をそ
れぞれ対応する色の現像器に入れて、各現像剤ごとに、
帯電、像露光、現像の各工程を繰り返して、像形成体6
0上に、イエロートナー像、マゼンタトナー像、シアン
トナー懐、黒色トナー像をこの順に重ね合わせ、次いで
、この重ね合わせたトナー像を静電転写器63により転
写紙66に一括転写し、転写されたトナー像を熱ローラ
定着器65により定着して定着画像を形成した。一方、
転写後の像形成体600表面をクリーニング器64によ
りクリーニングしたうえ、再び上記と同様のプロセスを
繰り返して画像の形成を行った。
(Actual photo test) Using the image forming apparatus shown in Fig. 1, put each of the above-mentioned developers into the corresponding color developing device, and
The image forming body 6 is formed by repeating the steps of charging, image exposure, and development.
0, a yellow toner image, a magenta toner image, a cyan toner, and a black toner image are superimposed in this order, and then the superimposed toner images are transferred all at once to a transfer paper 66 by an electrostatic transfer device 63. The toner image was fixed by a heat roller fixing device 65 to form a fixed image. on the other hand,
The surface of the image forming body 600 after the transfer was cleaned by the cleaning device 64, and the same process as above was repeated again to form an image.

なお、現像工程においては、現像剤担持体と像形成体と
の間の現像領域に、この現像領域の間隙よりも薄層の現
像剤層を現像剤担持体上に担持させて供給し、この現像
領域に、1.5  kVp−pで5kHzの振動電界を
形成して、像形成体上の静電潜像を現像した。
In the developing step, a developer layer is carried on the developer carrier and supplied to the development area between the developer carrier and the image forming body, the developer layer being thinner than the gap between the development areas. An oscillating electric field of 1.5 kVp-p and 5 kHz was formed in the development area to develop the electrostatic latent image on the image forming member.

(評価) 以上の実写テストにふいて、実施例1と同様にして現像
性、転写性およびクリーニング性を評価した。以上の結
果を後記第1表に示す。
(Evaluation) After the above actual photographic test, the developability, transferability, and cleaning performance were evaluated in the same manner as in Example 1. The above results are shown in Table 1 below.

〈実施例3〉 (イエロートナー) 実施例2と同様にして、平均粒径が2.2μのイエロー
のトナー用粉末粒子を製造した。
<Example 3> (Yellow toner) In the same manner as in Example 2, yellow toner powder particles having an average particle size of 2.2 μm were produced.

このトナー用粉末粒子100部と、平均粒径が161μ
のシリカ微粒子(小径の無機微粒子)2.4部と、平均
粒径が30 mμの酸化チタン微粒子(大径の無機微粒
子) 4部とを、ターピラーにより混合撹拌して、イエ
ロートナーを得り。
100 parts of this toner powder particles and an average particle size of 161μ
2.4 parts of silica fine particles (small diameter inorganic fine particles) and 4 parts of titanium oxide fine particles (large diameter inorganic fine particles) having an average particle size of 30 mμ were mixed and stirred using a tarpillar to obtain a yellow toner.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

(マゼンタトナー) 実施例2と同様にして平均粒径が2.2μのマゼンタの
トナー用粒子粉末を製造し、これを用いて上記イエロー
トナーの場合と同様にしてマゼンタトナーを得た。
(Magenta Toner) A magenta toner particle powder having an average particle size of 2.2 μm was produced in the same manner as in Example 2, and using this, a magenta toner was obtained in the same manner as in the case of the yellow toner.

(シアントナー) 実施例2と同様にして平均粒径が2.2μのシアンのト
ナー用粒子粉末を製造し、これを用いて上記イエロート
ナーの場合と同様にしてシアントナーを得丈。
(Cyan Toner) A cyan toner particle powder having an average particle size of 2.2 μm was produced in the same manner as in Example 2, and a cyan toner was obtained using this in the same manner as in the case of the yellow toner.

(黒色トナー) 実施例2と同様にして平均粒径が2.2μの黒色のトナ
ー用粒子粉末を製造し、これを用いて上記イエロートナ
ーの場合と同様にして黒色トナーを得た。
(Black Toner) Particle powder for black toner having an average particle size of 2.2 μm was produced in the same manner as in Example 2, and using this, a black toner was obtained in the same manner as in the case of the yellow toner.

(現像剤の調製) 実施例2と同様にして、上記各トナーと、キャリアとを
混合して現像剤を調製した。
(Preparation of developer) In the same manner as in Example 2, each of the above toners and a carrier were mixed to prepare a developer.

(実写テスト) 実施例2と同様にして実写テストを行い、現像性、転写
性およびクリーニング性を評価した。結果を後記第1表
に示す。
(Photograph test) A photo test was conducted in the same manner as in Example 2, and the developability, transferability, and cleaning performance were evaluated. The results are shown in Table 1 below.

〈実施例4〉 (イエロートナー) 実施例2と同様にして平均粒径が6μのイエローのトナ
ー用粉末粒子を製造した。
<Example 4> (Yellow toner) In the same manner as in Example 2, yellow toner powder particles having an average particle size of 6 μm were produced.

このトナー用粉末粒子100部と、平均粒径が16mμ
のシリカ微粒子(小径の無機微粒子)0.6部と、平均
粒径が30mμの酸化チタン微粒子(大径の無機微粒子
) 1部とを、ターピラーにより混合撹拌して、イエロ
ートナーを得た。
100 parts of this toner powder particles and an average particle size of 16 mμ
A yellow toner was obtained by mixing and stirring 0.6 part of silica fine particles (small-diameter inorganic fine particles) and 1 part of titanium oxide fine particles (large-diameter inorganic fine particles) having an average particle size of 30 mμ using a tarpillar.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

(マゼンタトナー) 実施例2と同様にして、平均粒径が6μのマゼンタのト
ナー用粉末粒子を製造し、これを用いて上記イエロート
ナーの場合と同様にしてマゼンタトナーを得た。
(Magenta Toner) Magenta toner powder particles having an average particle size of 6 μm were produced in the same manner as in Example 2, and using these powder particles, a magenta toner was obtained in the same manner as in the case of the yellow toner.

(シアントナー) 実施例2と同様にして、平均粒径が6μのシアンのトナ
ー用粉末粒子を製造し、これを用いて上記イエロートナ
ーの場合と同様にしてシアントナーを得た。
(Cyan Toner) Cyan toner powder particles having an average particle size of 6 μm were produced in the same manner as in Example 2, and using these powder particles, a cyan toner was obtained in the same manner as in the case of the yellow toner.

(黒色トナー) 実施例2と同様にして、平均粒径が6μの黒色のトナー
用粉末粒子を製造し、これを用いて上記イエロートナー
の場合と同様にして黒色トナーを得た。
(Black Toner) Black toner powder particles having an average particle size of 6 μm were produced in the same manner as in Example 2, and using these powder particles, a black toner was obtained in the same manner as in the case of the yellow toner.

(現像剤の調製) 実施例2と同様にして、上記各トナーと、キャリアとを
混合して現像剤を調製した。
(Preparation of developer) In the same manner as in Example 2, each of the above toners and a carrier were mixed to prepare a developer.

(実写テスト) 実施例2と同様にして実写テストを行い、現像性、転写
性およびりIJ−ニング性を評価した。結果を後記第1
表に示す。
(Photograph test) A photo test was conducted in the same manner as in Example 2, and the developability, transferability, and IJ-ning property were evaluated. The results are shown below in Part 1.
Shown in the table.

〈実施例5〉 (イエロートナー) 実施例2と同様にして、平均粒径が4.2μのイエロー
のトナー用粉末粒子を製造した。
<Example 5> (Yellow Toner) In the same manner as in Example 2, yellow toner powder particles having an average particle size of 4.2 μm were produced.

このトナー用粉末粒子97.6部と、平均粒径が16m
μのシリカ微粒子(小径の無機微粒子)0.9部と、平
均粒径が30mμの酸化チタン微粒子(大径の無機微粒
子)1.5部とを、ターピラーにより混合撹拌して、イ
エロートナーを得た。
97.6 parts of this toner powder particles and an average particle size of 16 m
A yellow toner is obtained by mixing and stirring 0.9 parts of microsilica particles (small inorganic particles) with a diameter of 30 mμ and 1.5 parts of titanium oxide particles (large inorganic particles) with an average particle size of 30 mμ. Ta.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

(マゼンタトナー) 実施例2と同様にして、平均粒径が4.2μのマゼンタ
のトナー用粉末粒子を製造し、これを用いて上記イエロ
ートナーの場合と同様にしてマゼンタトナーを得た。
(Magenta Toner) Magenta toner powder particles having an average particle size of 4.2 μm were produced in the same manner as in Example 2, and using these powder particles, a magenta toner was obtained in the same manner as in the case of the yellow toner.

(シアントナー) 実施例2と同様にして、平均粒径が4.2μのシアンの
トナー用粉末粒子を製造し、これを用いて上記イエロー
トナーの場合と同様にしてシアントナーを得た。
(Cyan Toner) Cyan toner powder particles having an average particle size of 4.2 μm were produced in the same manner as in Example 2, and using these powder particles, a cyan toner was obtained in the same manner as in the case of the yellow toner.

(黒色トナー) 実施例2と同様にして、平均粒径が4.2μの黒色のト
ナー用粉末粒子を製造し、これを用いて上記イエロート
ナーの場合と同様にして黒色トナーを得た。
(Black Toner) Black toner powder particles having an average particle size of 4.2 μm were produced in the same manner as in Example 2, and using these powder particles, a black toner was obtained in the same manner as in the case of the yellow toner.

(現像剤の調製) 実施例2と同様にして、上記各トナーと、キャリアとを
混合して現像剤を調製した。
(Preparation of developer) In the same manner as in Example 2, each of the above toners and a carrier were mixed to prepare a developer.

(実写テスト) 実施例2と同様にして実写テストを行い、現像性、転写
性上よびクリーニング性を評価した。結果を後記第1表
に示す。
(Photo-photograph test) A photo-photograph test was conducted in the same manner as in Example 2, and the developability, transferability, and cleaning performance were evaluated. The results are shown in Table 1 below.

〈比較例1〉 (イエロートナー) 実施例2と同様にして平均粒径が5.5μのイエローの
トナー用粉末粒子を製造した。
Comparative Example 1 (Yellow Toner) Yellow toner powder particles having an average particle size of 5.5 μm were produced in the same manner as in Example 2.

実施例2において、小径の無機微粒子の配合量を1.3
部とし、大径の無機微粒子の配合量を1.0部としたほ
かは同様にしてイエロートナーを得た。
In Example 2, the blending amount of small-diameter inorganic fine particles was 1.3.
A yellow toner was obtained in the same manner except that the amount of large diameter inorganic fine particles was changed to 1.0 parts.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

(マゼンタトナー) 実施例2と同様にして平均粒径が5.5μのマゼンタの
トナー用粒子粉末を製造し、これを用いて上記イエロー
トナーの場合と同様にしてマゼンタトナーを得た。
(Magenta Toner) A magenta toner particle powder having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a magenta toner was obtained in the same manner as in the case of the yellow toner.

(シアントナー) 実施例2と同様にして平均粒径が5.5μのシアンのト
ナー用粒子粉末を製造し、これを用いて上記イエロート
ナーの場合と同様にしてシアントナーを得た。
(Cyan Toner) A cyan toner particle powder having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a cyan toner was obtained in the same manner as in the case of the yellow toner.

(黒色トナー) 実施例2と同様にして平均粒径が5.5μの黒色のトナ
ー用粒子粉末を製造し、これを用いて上記イエロートナ
ーの場合と同様にして黒色トナーを得た。
(Black Toner) Particle powder for black toner having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a black toner was obtained in the same manner as in the case of the yellow toner.

(現像剤の調製) 実施例2と同様にして、上記各トナーと、キャリアとを
混合して現像剤を調製した。
(Preparation of developer) In the same manner as in Example 2, each of the above toners and a carrier were mixed to prepare a developer.

(実写テスト) 実施例2と同様にして実写テストを行い、転写性および
クリーニング性を評価した。結果を後記第1表に示す。
(Photograph test) A photo test was conducted in the same manner as in Example 2, and the transferability and cleaning performance were evaluated. The results are shown in Table 1 below.

く比較例2〉 (イエロートナー) 実施例2と同様にして平均粒径が5.5μのイエローの
トナー用粉末粒子を製造した。
Comparative Example 2> (Yellow Toner) Yellow toner powder particles having an average particle size of 5.5 μm were produced in the same manner as in Example 2.

実施例2において、小径の無機微粒子の配合量を0.3
部とし、大径の無機微粒子の配合量を1.0部としたほ
かは同様にしてイエロートナーを得た。
In Example 2, the blending amount of small-diameter inorganic fine particles was 0.3
A yellow toner was obtained in the same manner except that the amount of large diameter inorganic fine particles was changed to 1.0 parts.

なお、条件■におけ右記合量Bの値、条件■における配
合量Cの値は次のとおりである。
In addition, the value of the total amount B shown on the right in the condition (2) and the value of the compounding amount C in the condition (2) are as follows.

A              A (マゼンタトナー) 実施例2と同様にして平均粒径が5.5μのマゼンタの
トナー用粒子粉末を製造し、これを用いて上記イエロー
トナーの場合と同様にしてマゼンタトナーを得た。
AA (Magenta Toner) A magenta toner particle powder having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a magenta toner was obtained in the same manner as in the case of the yellow toner.

(シアントナー) 実施例2と同様にして平均粒径が5.5μのシアンのト
ナー用粒子粉末を製造し、これを用いて上記イエロート
ナーの場合と同様にしてシアントナーを得た。
(Cyan Toner) A cyan toner particle powder having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a cyan toner was obtained in the same manner as in the case of the yellow toner.

(黒色トナー) 実施例2と同様にして平均粒径が5.5μの黒色のトナ
ー用粒子粉末を製造し、これを用いて上記イエロートナ
ーの場合と同様にして黒色トナーを得た。
(Black Toner) Particle powder for black toner having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a black toner was obtained in the same manner as in the case of the yellow toner.

(現像剤の調製) 実施例2と同様にして、上記各トナーと、キャリアとを
混合して現像剤を調製した。
(Preparation of developer) In the same manner as in Example 2, each of the above toners and a carrier were mixed to prepare a developer.

(実写テスト) 実施例2と同様にして実写テストを行い、転写性および
クリーニング性を評価した。結果を後記第1表に示す。
(Photograph test) A photo test was conducted in the same manner as in Example 2, and the transferability and cleaning performance were evaluated. The results are shown in Table 1 below.

〈比較例3〉 (イエロートナー) 実施例2と同様にして平均粒径が5.5μのイエローの
トナー用粉末粒子を得た。
Comparative Example 3 (Yellow Toner) Yellow toner powder particles having an average particle size of 5.5 μm were obtained in the same manner as in Example 2.

実施例2において、小径の無機微粒子の配合量を0.6
部とし、大径の無機微粒子の配合量を1.7部としたほ
かは同様にしてイエロートナーを得た。
In Example 2, the blending amount of small-diameter inorganic fine particles was 0.6
A yellow toner was obtained in the same manner except that the amount of large diameter inorganic fine particles was changed to 1.7 parts.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

A              A (マゼンタトナー) 実施例2と同様にして平均粒径が5.5μのマゼンタの
トナー用粒子粉末を製造し、これを用いて上8己イエロ
ートナーの場合と同様にしてマゼンタトナーを得た。
A A (Magenta Toner) Particle powder for magenta toner having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a magenta toner was obtained in the same manner as in the case of the upper 8 yellow toner. Ta.

(シアントナー) 実施例2と同様にして平均粒径が5.5μのシアンのト
ナー用粒子粉末を製造し、これを用いて上記イエロート
ナーの場合と同様にしてシアントナーを得た。
(Cyan Toner) A cyan toner particle powder having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a cyan toner was obtained in the same manner as in the case of the yellow toner.

(黒色トナー) 実施例2と同様にして平均粒径が5.5μの黒色のトナ
ー用粒子粉末を製造し、これを用いて上記イエロートナ
ーの場合と同様にして黒色トナーを得た。
(Black Toner) Particle powder for black toner having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a black toner was obtained in the same manner as in the case of the yellow toner.

(現像剤の調製) 実施例2と同様にして、上記各トナーと、キャリアとを
混合して現像剤を調製した。
(Preparation of developer) In the same manner as in Example 2, each of the above toners and a carrier were mixed to prepare a developer.

(実写テスト) 実施例2と同様にして実写テストを行い、転写性および
クリーニング性を評価した。結果を後記第1表に示す。
(Photograph test) A photo test was conducted in the same manner as in Example 2, and the transferability and cleaning performance were evaluated. The results are shown in Table 1 below.

く比較例4〉 〈イエロートナー) 実施例2と同様にして平均粒径が5.5μのイエローの
トナー用粉末粒子を得た。
Comparative Example 4 Yellow Toner Yellow toner powder particles having an average particle size of 5.5 μm were obtained in the same manner as in Example 2.

実施例2において、小径の無機微粒子の配合量を0.6
部とし、大径の無機微粒子の配合量を0.6部としたほ
かは同様にしてイエロートナーを得た。
In Example 2, the blending amount of small-diameter inorganic fine particles was 0.6
A yellow toner was obtained in the same manner except that the amount of large-diameter inorganic fine particles was changed to 0.6 parts.

なお、条件■における配合量Bの値、条件■における配
合量Cの値は次のとおりである。
Note that the value of the blending amount B under the condition (2) and the value of the blending amount C under the condition (2) are as follows.

(マゼンタトナー) 実施例2と同様にして平均粒径が5.5μのマゼンタの
トナー用粒子粉末を製造し、これを用いて上記イエロー
トナーの場合と同様にしてマゼンタトナーを得た。
(Magenta Toner) A magenta toner particle powder having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a magenta toner was obtained in the same manner as in the case of the yellow toner.

(シアントナー) 実施例2と同様にして平均粒径が5.5μのシアンのト
ナー用粒子粉末を製造し、これを用いて上記イエロート
ナーの場合と同様にしてシアントナーを得た。
(Cyan Toner) A cyan toner particle powder having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a cyan toner was obtained in the same manner as in the case of the yellow toner.

(黒色トナー) 実施例2と同様にして平均粒径が5.5μの黒色のトナ
ー用粒子粉末を製造し、これを用いて上記イエロートナ
ーの場合と同様にして黒色トナーを得た。
(Black Toner) Particle powder for black toner having an average particle size of 5.5 μm was produced in the same manner as in Example 2, and using this, a black toner was obtained in the same manner as in the case of the yellow toner.

(現像剤の調製) 実施例2と同様にして、上記各トナーと、キャリアとを
混合して現像剤を調製した。
(Preparation of developer) In the same manner as in Example 2, each of the above toners and a carrier were mixed to prepare a developer.

(実写テスト) 実施例2と同様にして実写テストを行い、転写性および
り9−ニング性を評価した。結果を後記第1表に示す。
(Photograph test) A photo test was conducted in the same manner as in Example 2, and the transferability and printing properties were evaluated. The results are shown in Table 1 below.

この第1表の結果から理解されるように、本発明の実施
例1乃至5によれば、実写テストの初期から終期に至る
まで、現像性、転写性およびクリーニング性がいずれも
良好であった。
As can be understood from the results in Table 1, according to Examples 1 to 5 of the present invention, the developability, transferability, and cleaning performance were all good from the initial stage to the final stage of the live-action test. .

これに対して、比較例1は、小径の無機微粒子の配合量
Bが過大であるため、実写テストの初期では良好であっ
たが、実写テストを繰り返すに従ってトナーの帯電性が
悪化し、その結果、実写テストの終期では現像性が大き
く低下し、また、転写性ふよびクリーニング性も低下し
た。
On the other hand, in Comparative Example 1, the blended amount B of small-diameter inorganic fine particles was excessive, so although it was good at the initial stage of the live-action test, as the live-action test was repeated, the chargeability of the toner deteriorated, and as a result, At the end of the actual photographic test, the developability was greatly reduced, and the transferability and cleaning performance were also reduced.

比較例2は、小径の無機微粒子の配合量Bが過小である
ため、流動性が低く、また適正な摩擦帯電量が得られず
、実写テストの初期から現像性、転写性、クリーニング
性が劣っていた。
In Comparative Example 2, the blended amount B of small-diameter inorganic fine particles was too small, so the fluidity was low and an appropriate amount of triboelectric charging could not be obtained, and the developability, transferability, and cleaning performance were poor from the beginning of the actual photographic test. was.

比較例3は、大径の無機微粒子の配合量Cが過大である
ため、実写テストの初期では良好であったが、実写テス
トを繰り返すに従ってトナーの帯電性が悪化し、その結
果、実写テストの終期では現像性が大きく低下し、また
、転写性およびクリーニング性も低下した。
In Comparative Example 3, the blended amount C of large-diameter inorganic fine particles was too large, so it performed well at the beginning of the live-action test, but as the live-action test was repeated, the toner's chargeability deteriorated, and as a result, the toner's chargeability deteriorated as the live-action test was repeated. At the final stage, the developability decreased significantly, and the transferability and cleaning performance also decreased.

比較例4は、大径の無機微粒子の配合量Cが過小である
ため、流動性が低く、実写テストの初期から現像性、転
写性、クリーニング性が劣っていた。
In Comparative Example 4, the blending amount C of large-diameter inorganic fine particles was too small, so the fluidity was low, and the developability, transferability, and cleaning performance were poor from the beginning of the actual photographic test.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、請求項1の発明によれば、
トナーとして、平均粒径Aが2〜6μの球形のトナー用
粒子粉末に対して、大径と小径の2種類の無機微粒子を
併用するとともに、これらの小径の無機微粒子および大
径の無機微粒子の配合量BおよびCを、それぞれ球形の
トナー用粒子粉末の平均粒径Aとの関係において特定の
範囲に規定したので、これら大径の無機微粒子と小径の
無機微粒子の相乗作用によって、トナーの流動性が高く
なりその摩擦帯電性が向上するとともに現像領域に供給
できるトナー密度が上昇して高濃度の現像が可能となっ
て現像性が格段に向上し、しかも、主として大径の無機
微粒子によりトナー粒子の表面に凹凸が形成されてこれ
により像形成体に対するトナーの物理的付着力および静
電気的な付着力が弱められ、転写工程にふいてはトナー
像の転写性が格段に向上し、転写工程後のクリーニング
工程においては像形成体上に残留したトナーのクリーニ
ング性が格段に向上する。
As explained in detail above, according to the invention of claim 1,
As a toner, two types of inorganic fine particles with a large diameter and a small diameter are used in combination with spherical toner particles having an average particle size A of 2 to 6 μm, and these small diameter inorganic fine particles and large diameter inorganic fine particles are used together. Since the blending amounts B and C are defined within specific ranges in relation to the average particle diameter A of the spherical toner particles, the synergistic effect of these large-diameter inorganic fine particles and small-diameter inorganic fine particles improves the flow of the toner. This improves the triboelectric charging properties and increases the toner density that can be supplied to the developing area, making it possible to develop at a high density. Irregularities are formed on the surface of the particles, which weakens the physical adhesion and electrostatic adhesion of the toner to the image forming body, which greatly improves the transferability of the toner image during the transfer process. In the subsequent cleaning step, the ability to clean toner remaining on the image forming body is significantly improved.

また、請求項2の発明によれば、現像工程を各カラート
ナーごとに繰り返して行っ現像工程を各カラートナーに
よるトナー像を重ね合わせた後、当該トナー像を一括転
写し、この−括転写後に像形成体上に残留したトナーを
クリーニングする工程を含む場合においても、カラート
ナーとして上記特定のトナーを用いるので、優れた現像
性が発揮されるうえ、転写工程においては重ね合わせた
トナー像の全体を高い転写率で転写することができ、し
かもクリーニング工程においては残留したトナーを十分
にクリーニングすることができ、鮮明なカラー画像を形
成することができる。
Further, according to the invention of claim 2, the developing step is repeated for each color toner, and after the toner images of the respective color toners are superimposed, the toner images are collectively transferred, and after this collective transfer, Even when the process includes cleaning the toner remaining on the image forming body, since the specific toner mentioned above is used as the color toner, excellent developability is exhibited, and the entire superimposed toner image is removed in the transfer process. can be transferred at a high transfer rate, and residual toner can be sufficiently cleaned in the cleaning process, making it possible to form clear color images.

また、請求項3の発明によれば、小径の無機微粒子がシ
リカ微粒子からなり、大径の無機微粒子が酸化チタン微
粒子からなるので、帯電制御性が良好で、環境依存性の
小さいトナーが得られる。
Further, according to the invention of claim 3, since the small-diameter inorganic fine particles are made of silica fine particles and the large-diameter inorganic fine particles are made of titanium oxide fine particles, a toner with good charge controllability and low environmental dependence can be obtained. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施に用いることができる画像形成
装置の概略断面図、第2図は、現像器の一例を示す概略
断面図である。 60・・・像形成体     61・・・帯電器62・
・・レーザー露光光学系 63・・・静電転写器    64・・・クリーニング
器64a・・・ブレード    65・・・熱ローラ定
着器66・・・転写紙      71・・・イエロー
現像器72・・・マゼンタ現像器  73・・・シアン
現像器74・・・黒色現像器    81・・・現像ス
リーブ82・・・磁石体      83・・・厚さ規
制ブレード84・・・スクレーパーブレード 85・・・撹拌回転体    86・・・現像剤溜り8
7・・・トナーホッパー  88・・・トナー補給ロー
ラ89・・・バイアス電源   90・・・保護抵抗+
1図 +2図 7 2
FIG. 1 is a schematic sectional view of an image forming apparatus that can be used to implement the present invention, and FIG. 2 is a schematic sectional view showing an example of a developing device. 60... Image forming body 61... Charger 62.
...Laser exposure optical system 63...Electrostatic transfer device 64...Cleaning device 64a...Blade 65...Heat roller fixing device 66...Transfer paper 71...Yellow developer 72... Magenta developer 73... Cyan developer 74... Black developer 81... Developing sleeve 82... Magnet 83... Thickness regulating blade 84... Scraper blade 85... Stirring rotor 86...Developer reservoir 8
7... Toner hopper 88... Toner supply roller 89... Bias power supply 90... Protective resistor +
Figure 1 + Figure 2 7 2

Claims (1)

【特許請求の範囲】 (1)像形成体に近接して対向配置された現像剤担持体
と当該像形成体との間の現像領域に、この現像領域の間
隙よりも薄層の現像剤層を現像剤担持体上に担持させて
供給し、当該現像領域に振動電界を形成して像形成体上
の静電潜像を現像する工程を含む画像形成方法において
、 前記現像剤層に含有されるトナーとして、 平均粒径Aが2〜6μの球形のトナー用粒子粉末と、 平均粒径が5mμ以上20mμ未満でその配合量Bが前
記トナー用粒子粉末の平均粒径Aに対して下記条件(1
)を満足する小径の無機微粒子と、平均粒径が20mμ
以上40mμ以下でその配合量Cが前記トナー用粒子粉
末の平均粒径Aに対して下記条件(2)を満足する大径
の無機微粒子とを含有してなるトナーを用いることを特
徴とする画像形成方法。 条件(1) 2.0×(1/A)<B<6.0×(1/A)条件(2
) 4.5×(1/A)<C<8.5×(1/A)(ただし
、Aの単位は〔μ〕、BおよびCの単位は〔重量%/μ
〕である。) (2)請求項1に記載の画像形成方法において、現像工
程を各カラートナーごとに繰り返して行って像形成体上
に各カラートナーによるトナー像を重ね合わせた後、当
該トナー像を一括転写し、この一括転写後に像形成体上
に残留したトナーをクリーニングする工程を含むことを
特徴とする画像形成方法。 (3)小径の無機微粒子がシリカ微粒子からなり、大径
の無機微粒子が酸化チタン微粒子からなることを特徴と
する請求項1または2に記載の画像形成方法。
[Scope of Claims] (1) A developer layer thinner than the gap in this development area is provided in a development area between a developer carrying member disposed close to and facing the image forming body and the image forming body. An image forming method comprising a step of supplying a developer supported on a developer carrier and developing an electrostatic latent image on an image forming body by forming an oscillating electric field in the development area, the developer layer containing As a toner, a spherical toner particle powder with an average particle size A of 2 to 6 μm, and an average particle size of 5 mμ or more and less than 20 mμ, and the blending amount B of the toner particle powder meets the following conditions with respect to the average particle size A of the toner particle powder. (1
) with a small diameter inorganic fine particle that satisfies
An image characterized by using a toner containing large-diameter inorganic fine particles whose blending amount C is 40 mμ or less and satisfies the following condition (2) with respect to the average particle size A of the toner particles. Formation method. Condition (1) 2.0×(1/A)<B<6.0×(1/A) Condition (2
) 4.5 x (1/A) < C < 8.5 x (1/A) (However, the unit of A is [μ], and the unit of B and C is [wt%/μ
]. (2) In the image forming method according to claim 1, the developing step is repeated for each color toner to superimpose toner images of each color toner on the image forming body, and then the toner images are transferred all at once. An image forming method comprising the step of cleaning toner remaining on the image forming body after the batch transfer. (3) The image forming method according to claim 1 or 2, wherein the small-diameter inorganic fine particles are made of silica fine particles, and the large-diameter inorganic fine particles are made of titanium oxide fine particles.
JP1237307A 1989-09-14 1989-09-14 Image forming method Pending JPH03100661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237307A JPH03100661A (en) 1989-09-14 1989-09-14 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237307A JPH03100661A (en) 1989-09-14 1989-09-14 Image forming method

Publications (1)

Publication Number Publication Date
JPH03100661A true JPH03100661A (en) 1991-04-25

Family

ID=17013430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237307A Pending JPH03100661A (en) 1989-09-14 1989-09-14 Image forming method

Country Status (1)

Country Link
JP (1) JPH03100661A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337738A (en) * 1991-05-14 1992-11-25 Fuji Xerox Co Ltd Electrophotographic developer composition
EP0947887A3 (en) * 1998-04-02 2000-02-23 Canon Kabushiki Kaisha Toner for developing electrostatic images and image forming method
US6183924B1 (en) 1997-08-29 2001-02-06 Daimippon Ink And Chemicals, Inc. Electrostatic image developer
US6203957B1 (en) 1999-01-29 2001-03-20 Dianippon Ink And Chemicals, Inc. Spherical toner particle
US6403271B1 (en) 1999-08-24 2002-06-11 Fuji Xerox Co., Ltd. Toner for developing electrostatic latent image, process for producing the same, developer for developing electrostatic latent image, and process for forming image
US6613491B2 (en) 2001-01-17 2003-09-02 Fuji Xerox Co., Ltd. Electrophotographic toner, electrophotographic developer and process for forming image
US6878498B2 (en) 2002-11-12 2005-04-12 Fuji Xerox Co., Ltd. Electrostatic latent image developing toner, its production method, developer, image-forming device and image-forming method
US6929893B2 (en) 2002-09-19 2005-08-16 Fuji Xerox Co., Ltd. Electrostatic image dry toner composition, developer for developing electrostatic latent image and image forming method
US7063927B2 (en) 2003-03-24 2006-06-20 Fuji Xerox Co., Ltd. Toner for electrostatic latent image development, electrostatic latent image developer, process for preparing toner for electrostatic latent image development, and image forming method
WO2008001702A1 (en) 2006-06-30 2008-01-03 Zeon Corporation Electrostatic image-developing toner
JP2008129339A (en) * 2006-11-21 2008-06-05 Canon Inc Image forming apparatus
EP2088474A2 (en) 2008-02-06 2009-08-12 Ricoh Company, Ltd. Image forming apparatus and image forming method
US7639976B2 (en) 2006-05-30 2009-12-29 Ricoh Company, Ltd. Image forming apparatus
US7860438B2 (en) 2006-05-16 2010-12-28 Ricoh Company, Ltd. Image forming apparatus using toner including an external additive at an additive burial rate of not less than 40 percent
US8029960B2 (en) 2007-03-19 2011-10-04 Ricoh Company Limited Toner for developing electrostatic latent image, and image forming apparatus and process cartridge using the toner
US8270885B2 (en) 2007-07-10 2012-09-18 Ricoh Company, Limited Image forming apparatus utilizing plural pressers of different weights and image forming method forming an image with the image forming apparatus
US8455168B2 (en) 2010-03-26 2013-06-04 Fuji Xerox Co., Ltd. Electrophotographic developer, developer cartridge, process cartridge, and image forming apparatus
EP2639642A1 (en) 2012-03-14 2013-09-18 Ricoh Company, Ltd. Toner, two-component developer, and image forming apparatus
US8685603B2 (en) 2007-10-30 2014-04-01 Fuji Xerox Co., Ltd. Electrostatic charge image developer, process cartridge and image forming apparatus
US8956795B2 (en) 2012-03-19 2015-02-17 Ricoh Company, Ltd. Toner for developing electrostatic image, two-component developer and image forming apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337738A (en) * 1991-05-14 1992-11-25 Fuji Xerox Co Ltd Electrophotographic developer composition
US6183924B1 (en) 1997-08-29 2001-02-06 Daimippon Ink And Chemicals, Inc. Electrostatic image developer
EP0947887A3 (en) * 1998-04-02 2000-02-23 Canon Kabushiki Kaisha Toner for developing electrostatic images and image forming method
US6203957B1 (en) 1999-01-29 2001-03-20 Dianippon Ink And Chemicals, Inc. Spherical toner particle
US6403271B1 (en) 1999-08-24 2002-06-11 Fuji Xerox Co., Ltd. Toner for developing electrostatic latent image, process for producing the same, developer for developing electrostatic latent image, and process for forming image
US6479206B1 (en) 1999-08-24 2002-11-12 Fuji Xerox Co., Ltd. Toner for developing electrostatic latent image, process for producing the same, developer for developing electrostatic latent image, and process for forming image
US6489075B2 (en) 1999-08-24 2002-12-03 Fuji Xerox Co., Ltd. Toner for developing electrostatic latent image, process for producing the same, developer for developing electrostatic latent image, and process for forming image
US6613491B2 (en) 2001-01-17 2003-09-02 Fuji Xerox Co., Ltd. Electrophotographic toner, electrophotographic developer and process for forming image
US6929893B2 (en) 2002-09-19 2005-08-16 Fuji Xerox Co., Ltd. Electrostatic image dry toner composition, developer for developing electrostatic latent image and image forming method
US6878498B2 (en) 2002-11-12 2005-04-12 Fuji Xerox Co., Ltd. Electrostatic latent image developing toner, its production method, developer, image-forming device and image-forming method
US7063927B2 (en) 2003-03-24 2006-06-20 Fuji Xerox Co., Ltd. Toner for electrostatic latent image development, electrostatic latent image developer, process for preparing toner for electrostatic latent image development, and image forming method
US7860438B2 (en) 2006-05-16 2010-12-28 Ricoh Company, Ltd. Image forming apparatus using toner including an external additive at an additive burial rate of not less than 40 percent
US7639976B2 (en) 2006-05-30 2009-12-29 Ricoh Company, Ltd. Image forming apparatus
WO2008001702A1 (en) 2006-06-30 2008-01-03 Zeon Corporation Electrostatic image-developing toner
US8178270B2 (en) 2006-06-30 2012-05-15 Zeon Corporation Toner for development of electrostatic image
JP2008129339A (en) * 2006-11-21 2008-06-05 Canon Inc Image forming apparatus
US8029960B2 (en) 2007-03-19 2011-10-04 Ricoh Company Limited Toner for developing electrostatic latent image, and image forming apparatus and process cartridge using the toner
US8270885B2 (en) 2007-07-10 2012-09-18 Ricoh Company, Limited Image forming apparatus utilizing plural pressers of different weights and image forming method forming an image with the image forming apparatus
US8685603B2 (en) 2007-10-30 2014-04-01 Fuji Xerox Co., Ltd. Electrostatic charge image developer, process cartridge and image forming apparatus
EP2088474A2 (en) 2008-02-06 2009-08-12 Ricoh Company, Ltd. Image forming apparatus and image forming method
US8455168B2 (en) 2010-03-26 2013-06-04 Fuji Xerox Co., Ltd. Electrophotographic developer, developer cartridge, process cartridge, and image forming apparatus
EP2639642A1 (en) 2012-03-14 2013-09-18 Ricoh Company, Ltd. Toner, two-component developer, and image forming apparatus
US8956795B2 (en) 2012-03-19 2015-02-17 Ricoh Company, Ltd. Toner for developing electrostatic image, two-component developer and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4535102B2 (en) Electrostatic charge image developing carrier, electrostatic charge image developing developer using the same, and image forming method
JPH03100661A (en) Image forming method
EP2264540B1 (en) Toner and image formation method
EP2708951B1 (en) Carrier for two-component developer, electrostatic latent image developer, and image forming method
JP2009104072A (en) Electrostatic charge image developing carrier, electrostatic charge image developer, electrostatic charge image developer cartridge, process cartridge, image forming method and image forming apparatus
JP3328013B2 (en) Electrostatic image developer and multicolor image forming method
JP4428839B2 (en) Toner for developing electrostatic image and image forming method
US5114823A (en) Developing method for electrostatic images
JP3962487B2 (en) Two-component developer and image forming method
JP2000098666A (en) Coated carrier for development of electrostatic latent image, developer for electrostatic latent image and image forming method
JP2006267280A (en) Electrostatic charge developing toner, electrostatic charge developer, image forming method
JP2004102028A (en) Electrophotographic nonmagnetic one-component toner and developing method
JP2002341587A (en) Nonmagnetic one-component developing toner
JPH04145448A (en) Nonmagnetic one-component developing method
JP2000199983A (en) Binary developer and image forming method
JP4165822B2 (en) Full color toner kit, process cartridge, image forming method and image forming apparatus
JP2007057822A (en) Electrostatic latent image developer and image forming method
JP2001051444A (en) Electrostatic latent image developing two-component developer and image forming method
JPH08314182A (en) Toner for forming electrophotographic image and electrophotographic image forming method
JPH0862887A (en) Electrostatic charge image developing toner and image forming method
JP4092995B2 (en) Electrostatic charge image dry toner composition, developer for developing electrostatic latent image, and image forming method
JPS62223765A (en) Developing method
JPS6270864A (en) Magnetic dispersion type mycrocarrier
JP3382864B2 (en) Non-magnetic one-component developer and developing method thereof
JP2003280460A (en) Electrostatic latent image developing method and developer