JPH08314182A - Toner for forming electrophotographic image and electrophotographic image forming method - Google Patents

Toner for forming electrophotographic image and electrophotographic image forming method

Info

Publication number
JPH08314182A
JPH08314182A JP7118255A JP11825595A JPH08314182A JP H08314182 A JPH08314182 A JP H08314182A JP 7118255 A JP7118255 A JP 7118255A JP 11825595 A JP11825595 A JP 11825595A JP H08314182 A JPH08314182 A JP H08314182A
Authority
JP
Japan
Prior art keywords
fine particles
toner
electrophotographic image
resin
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7118255A
Other languages
Japanese (ja)
Inventor
Ryuji Kitani
龍二 木谷
Akizo Shirase
明三 白勢
Tatsuya Nagase
達也 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP7118255A priority Critical patent/JPH08314182A/en
Priority to US08/645,126 priority patent/US5705306A/en
Publication of JPH08314182A publication Critical patent/JPH08314182A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a toner capable of ensuring a stable quantity of electric charges over a long period of time in an image forming method by which devel opment is carried out with a developer layer kept in noncontact with a photoreceptor and capable of maintaining stable electrostatic chargeability independently of an environmental change and to provide an electrophotographic image forming method. CONSTITUTION: In this toner obtd. by adding at least fine resin particle and inorg. fine particles to colored particles consisting essentially of a resin and a colorant, the fine resin particles are made of a melamine-formaldehyde condensation polymer and have 0.01-1.0μm vol. average particle diameter and the inorg. fine particles have 0.01-0.20μm vol. average particle diameter. The standard deviation of the vol. average particle diameter distribution of the inorg. fine particles is 10-30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子写真画像形成用トナ
ー及び電子写真画像形成方法に関し、詳しくは優れた画
像を提供する電子写真画像形成用トナー及び電子写真画
像形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic image forming toner and an electrophotographic image forming method, and more particularly to an electrophotographic image forming toner and an electrophotographic image forming method which provide excellent images.

【0002】[0002]

【従来の技術】従来、小型化かつ低コストの多色画像形
成装置を用いて、色ズレのない良好な多色現像を形成す
るための技術として、一様に帯電された像形成体の表面
をレーザービーム等によりスポット露光して静電潜像を
形成し、像形成体の静電潜像を、カラートナーを含む二
成分系の現像剤によって非接触で現像することを繰り返
すことにより、前記像形成体上に色の異なる複数のカラ
ートナー像を重ね合わせにて形成し、次いで、前記複数
のカラートナー像を一括して転写、定着して多色画像を
形成する方法が知られている。
2. Description of the Related Art Conventionally, as a technique for forming a good multi-color development without color misregistration by using a compact and low-cost multi-color image forming apparatus, the surface of an image forming body uniformly charged. Is subjected to spot exposure with a laser beam or the like to form an electrostatic latent image, and the electrostatic latent image of the image forming body is repeatedly developed in a non-contact manner with a two-component developer containing color toner, A method is known in which a plurality of color toner images of different colors are superposed on an image forming body, and then the plurality of color toner images are collectively transferred and fixed to form a multicolor image. .

【0003】しかし、上記のようにして多色画像を形成
する技術においては、以下のような問題がある。即ち、
感光体表面に画像を複数現像し多色画像を形成するため
に、非接触状態で現像を行う必要がある。この非接触現
像方式では、現像部に於いて感光体と現像剤担持体表面
との間隙を広くする必要があることから、帯電量の微少
な変化が現像に大きく影響を与える問題を有している。
帯電量の変化は、これに支配される現像トナー量も変化
し、重ね合わされる複数のカラートナー像において、そ
れぞれの現像トナー量の比率が経時的に変化する。この
結果、形成される多色画像において、その色調が経時的
に変化してしまう。
However, the technique for forming a multicolor image as described above has the following problems. That is,
In order to form a multicolor image by developing a plurality of images on the surface of the photoreceptor, it is necessary to develop in a non-contact state. In this non-contact developing method, since it is necessary to widen the gap between the photoconductor and the surface of the developer carrying member in the developing section, there is a problem that a minute change in the charge amount has a great influence on the development. There is.
The change in the charge amount also changes the amount of the developing toner that is governed by the change in the amount of the charge, and the ratio of the amount of the developing toner in each of the plurality of color toner images to be superimposed changes with time. As a result, the color tone of the formed multicolor image changes with time.

【0004】従って、各色のトナー帯電量を一定の範囲
に維持することが必要とされ、従来から帯電量の安定化
を目的として無機微粒子及び樹脂微粒子の添加が提案さ
れている。
Therefore, it is necessary to maintain the toner charge amount of each color within a certain range, and conventionally, addition of inorganic fine particles and resin fine particles has been proposed for the purpose of stabilizing the charge amount.

【0005】しかし、無機微粒子のみ添加された系にお
いては、高温高湿下において、トナーへの水の吸着によ
る電荷の漏れにより放置した際の帯電量の低下を招き易
く、画像濃度の上昇を招き、トナー飛散による機内汚染
が発生する。また、樹脂微粒子のみ添加された系におい
ては、樹脂微粒子の電荷保持性の高さから高温高湿下の
帯電量の低下は防止できるものの、逆に低温低湿下にお
いては過剰帯電を引き起こし、実機の耐久性試験におい
て帯電量が上昇するといった問題が生じる。
However, in a system in which only inorganic fine particles are added, under high temperature and high humidity, the charge amount is apt to decrease when left as it is due to the leakage of charges due to the adsorption of water to the toner, and the image density increases. However, contamination of the machine occurs due to toner scattering. In addition, in a system in which only resin fine particles are added, although the charge retention of the resin fine particles is high, it is possible to prevent a decrease in the charge amount under high temperature and high humidity, but on the contrary, it causes excessive charging under low temperature and low humidity, and In the durability test, there arises a problem that the charge amount increases.

【0006】さらに、樹脂微粒子と無機微粒子を併用し
た系に於いても、特公平2−60179号に記載された
樹脂微粒子を用いると、確かに帯電量の安定性は有る程
度確保されるが、高温高湿下と低温低湿下の帯電量の絶
対値差が大きくなってしまうため、環境変動に対して画
像濃度が安定に推移しない。
Further, even in a system in which resin fine particles and inorganic fine particles are used in combination, when the resin fine particles described in Japanese Patent Publication No. 2-60179 are used, the stability of the charge amount is surely secured to some extent. Since the absolute value difference between the charge amounts under high temperature and high humidity and under low temperature and low humidity becomes large, the image density does not change stably with environmental changes.

【0007】また、無機微粒子として粒度分布がシャー
プのものを用いた場合には、非接触現像の系に於いては
無機微粒子のトナーへの埋め込みが発生し易く、特に3
0nm以下の領域でシャープな粒度分布のものを使用す
るとこの埋め込み現象に伴う帯電量の低下が激しくな
る。また、100nm以上の領域でシャープな粒度分布
のものを使用すると着色粒子表面に付着しにくくなるた
め、トナーとして均一なものが得られず、帯電量を安定
化することができない。
When inorganic fine particles having a sharp particle size distribution are used, the inorganic fine particles are apt to be embedded in the toner in the non-contact development system, and particularly, 3
If a material having a sharp particle size distribution in a region of 0 nm or less is used, the amount of charge is greatly reduced due to this embedding phenomenon. Further, if a toner having a sharp particle size distribution in a region of 100 nm or more is used, it becomes difficult to adhere to the surface of the colored particles, so that a uniform toner cannot be obtained and the charge amount cannot be stabilized.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、現像
剤層を感光体に対して非接触の状態で現像する画像形成
方法に於いて安定した帯電量を長期に亙って得ることが
でき、さらに、環境変動に於いても安定した帯電性を保
持することのできる電子写真画像形成用トナー及び電子
写真画像形成方法を提案することにある。
SUMMARY OF THE INVENTION An object of the present invention is to obtain a stable charge amount over a long period of time in an image forming method of developing a developer layer in a non-contact state with a photoreceptor. Another object of the present invention is to propose an electrophotographic image forming toner and an electrophotographic image forming method capable of maintaining stable chargeability even under environmental changes.

【0009】さらに、本発明では、感光体上に形成され
た静電潜像を繰り返し非接触状態で現像することを繰り
返すことにより、前記感光体上に色の異なる複数のカラ
ートナー像を重ね合わせて形成し、重ね合わせられた複
数のカラートナー像を一括転写する多色画像形成方法に
適用される場合において、長期に亘って、環境に影響さ
れない安定した摩擦帯電能をもち、常に良好な特性を発
揮することの出来る現像剤を提供することにある。
Further, in the present invention, a plurality of color toner images of different colors are superposed on the photoconductor by repeatedly developing the electrostatic latent image formed on the photoconductor in a non-contact state. When applied to a multicolor image forming method in which a plurality of color toner images that are formed by overlapping are transferred together, they have stable triboelectrification ability that is not affected by the environment for a long period of time and always have good characteristics. It is to provide a developer capable of exhibiting the above.

【0010】[0010]

【課題を解決するための手段】上記問題を達成するため
に、本発明者は種々検討した結果、以下の構成により解
決した。
In order to achieve the above-mentioned problems, the present inventor has made various investigations, and as a result, has solved the problems as follows.

【0011】1) 少なくとも樹脂と着色剤とからなる
着色粒子に少なくとも樹脂微粒子と無機微粒子とを添加
してなる電子写真画像形成用トナーに於いて、該樹脂微
粒子が体積平均粒径0.01〜1.0μmのメラミン・
ホルムアルデヒド縮重合体からなる樹脂微粒子であり、
該無機微粒子が体積平均粒径0.01〜0.20μmで
あり、かつ、体積平均粒径分布の標準偏差(σ)が10≦
σ≦30である無機微粒子であることを特徴とする電子写
真画像形成用トナー。
1) In a toner for electrophotographic image formation, wherein at least resin fine particles and inorganic fine particles are added to colored particles comprising at least a resin and a colorant, the resin fine particles have a volume average particle diameter of 0.01 to 1.0 μm melamine
Resin fine particles composed of formaldehyde condensation polymer,
The volume average particle size of the inorganic fine particles is 0.01 to 0.20 μm, and the standard deviation (σ) of the volume average particle size distribution is 10 ≦.
An electrophotographic image forming toner characterized by being inorganic fine particles having σ ≦ 30.

【0012】2) 現像剤担持体表面に形成された前記
1記載の電子写真画像形成用トナーを有する現像剤層が
搬送され、感光体表面に形成された静電潜像を現像する
ことを特徴とする電子写真画像形成方法。
2) A developer layer containing the electrophotographic image forming toner described in 1 above, which is formed on the surface of a developer bearing member, is conveyed to develop the electrostatic latent image formed on the surface of the photosensitive member. And an electrophotographic image forming method.

【0013】3) 感光体と現像剤担持体表面の間隙よ
りも現像剤担持体表面に形成された少なくとも前記1記
載の電子写真画像形成用トナーを有する現像剤層厚が薄
い状態で搬送されることを特徴とする前記2記載の電子
写真画像形成方法。
3) The developer layer having at least the electrophotographic image forming toner described in the above 1 formed on the surface of the developer carrying member is conveyed in a state where the developer layer is thinner than the gap between the surface of the photoreceptor and the developer carrying member. 3. The electrophotographic image forming method as described in 2 above.

【0014】本発明を更に詳しく説明する。本発明で用
いる電子写真画像形成用トナー(以下単にトナーともい
う)は、特定の樹脂微粒子及び特定の粒径を有する無機
微粒子とを併用することで、高温高湿下の帯電量の低下
を防止できると共に、低温低湿下の帯電量の上昇を防止
できるため、帯電量の環境での安定性が得られる。
The present invention will be described in more detail. The electrophotographic image forming toner (hereinafter, also simply referred to as a toner) used in the present invention is used in combination with specific resin fine particles and inorganic fine particles having a specific particle diameter to prevent a decrease in charge amount under high temperature and high humidity. At the same time, it is possible to prevent the increase of the charge amount under low temperature and low humidity, so that the stability of the charge amount in the environment can be obtained.

【0015】樹脂微粒子として本発明のメラミン・ホル
ムアルデヒド縮合物をもちいることで、有機物特有の電
荷保持性能を維持しながら低温低湿下の過剰帯電を防止
できるため、環境によらず安定した帯電量が得られる。
By using the melamine-formaldehyde condensate of the present invention as the resin fine particles, it is possible to prevent excessive charging under low temperature and low humidity while maintaining the charge retention performance peculiar to organic substances, so that a stable charge amount can be obtained regardless of the environment. can get.

【0016】本発明に於ける樹脂微粒子の体積平均粒径
は0.01〜1.00μmであるが、好ましくは0.0
5〜0.50μmである。体積平均粒径が0.01μm
よりも小さいと、トナーに埋没しやすいため、帯電性の
長期にわたる安定性が保たれない。一方、体積平均粒径
が1.0μmよりも大きいとトナーに均一に付着しない
ため、帯電量分布が広がってしまい、トナー飛散等の画
像不良を起こす。また、添加量は0.1〜5.0重量%
が好ましく、好適には1.0〜3.5重量%が好まし
い。添加量が少ないと高温高湿下の帯電量低下が起き、
添加量が多いと低温低湿下の帯電量上昇がみられる。
The volume average particle diameter of the resin fine particles in the present invention is 0.01 to 1.00 μm, preferably 0.0.
It is 5 to 0.50 μm. Volume average particle size is 0.01 μm
If it is smaller than the above range, the toner tends to be buried in the toner, so that the long-term stability of the charging property cannot be maintained. On the other hand, when the volume average particle diameter is larger than 1.0 μm, the toner does not uniformly adhere to the toner, so that the charge amount distribution is widened and an image defect such as toner scattering occurs. The addition amount is 0.1 to 5.0% by weight.
Is preferable, and 1.0 to 3.5% by weight is preferable. If the addition amount is small, the charge amount will drop under high temperature and high humidity,
When the added amount is large, the charge amount increases under low temperature and low humidity.

【0017】無機微粒子として特異な粒度分布を示すも
のをもちいることで、外添剤の埋没を防止できるため安
定した帯電性が得られる。本発明者が種々検討したとこ
ろ、添加する無機微粒子の体積粒度分布が帯電量の安定
化に大きく起因していることがわかった。本発明の無機
微粒子を使用すると、小粒径側の無機微粒子によって好
適な流動性付与効果と大粒径側の無機微粒子の耐埋没性
に優位性とともに、小粒径側の無機微粒子が受けるスト
レスを緩和効果がある。従って、埋没に至るまでの時間
が格段に長くなり、長期に亘って帯電量が安定に推移す
る。
By using the inorganic fine particles having a specific particle size distribution, it is possible to prevent the external additive from being buried, so that stable chargeability can be obtained. As a result of various studies by the present inventor, it was found that the volume particle size distribution of the inorganic fine particles to be added is largely due to the stabilization of the charge amount. When the inorganic fine particles of the present invention are used, the inorganic fine particles on the small particle size side are superior in the fluidity imparting effect and the burial resistance of the inorganic fine particles on the large particle size side, and the stress received by the inorganic fine particles on the small particle size side. Has a relaxing effect. Therefore, the time until burial is significantly increased, and the charge amount is stable over a long period of time.

【0018】本発明に於いて、無機微粒子としては単一
種類の無機微粒子から構成されているのが好ましい。組
み合わせて使用した場合と比較して、本発明に於いては
分布が広い無機微粒子であることから、大粒径側の無機
微粒子が埋没して、小粒径側の無機微粒子が帯電性に寄
与し始めても、トナーに付与される帯電量が変化するこ
とが少ないためである。この場合に、粒径分布を広げる
ために、種類の異なる無機微粒子を用いた場合には、埋
め込み現象に伴う無機微粒子の埋没による帯電性の変化
が過多となり本発明の目的を達成することができない。
In the present invention, the inorganic fine particles are preferably composed of a single type of inorganic fine particles. In the present invention, since the inorganic fine particles have a wide distribution compared with the case where they are used in combination, the inorganic fine particles on the large particle size side are buried, and the inorganic fine particles on the small particle size side contribute to the charging property. This is because the amount of charge applied to the toner does not change much even if it starts. In this case, when different kinds of inorganic fine particles are used in order to widen the particle size distribution, the change of the charging property due to the burying of the inorganic fine particles due to the embedding phenomenon becomes excessive and the object of the present invention cannot be achieved. .

【0019】本発明に於いて、無機微粒子の体積平均粒
径は0.01〜0.20μmであるが、0.03〜0.
15μmがより好ましい。体積平均粒径が0.01μm
より小さいと、トナーに埋没しやすいため、帯電性の長
期にわたる安定性が保たれない。逆に、体積平均粒径が
0.20μmよりも大きいとトナーに均一に付着しない
ため、帯電量分布が広がってしまい、トナー飛散等の画
像不良を起こす。更に、添加量は0.1〜5.0重量%
が好ましく、好適には2.0〜3.5重量%が好まし
い。添加量が少ないと外添剤の埋没の進行が速いため帯
電量低下が起き、添加量が多いと高温高湿下の帯電量低
下が顕著になる。
In the present invention, the volume average particle diameter of the inorganic fine particles is 0.01 to 0.20 μm, but 0.03 to 0.
15 μm is more preferable. Volume average particle size is 0.01 μm
If it is smaller, the toner tends to be buried in the toner, so that the long-term stability of the charging property cannot be maintained. On the other hand, if the volume average particle diameter is larger than 0.20 μm, the particles are not evenly attached to the toner, so that the charge amount distribution is widened and an image defect such as toner scattering occurs. Furthermore, the addition amount is 0.1 to 5.0% by weight.
Is preferable, and 2.0 to 3.5% by weight is preferable. When the addition amount is small, the burying of the external additive progresses rapidly, so that the charge amount decreases, and when the addition amount is large, the charge amount decreases remarkably under high temperature and high humidity.

【0020】また、無機微粒子の体積粒径分布におい
て、標準偏差(以下σと記載する)は10〜30である
が、好ましくは10〜25である。標準偏差が10より
小さいと、粒径分布がシャープになり、粒径が小さい領
域(100nm以下)に於いて外添剤の埋没が進行しや
すい。粒径が大きい領域(100nm以上)において埋
没は緩和されるものの、流動性付与効果及び埋没抑制効
果を得るために多量に添加せざるを得ないため、過剰量
の添加に伴う無機微粒子の遊離が発生し、帯電量の分布
が広がりトナー飛散等の画像不良を起こす。また、逆に
標準偏差が30より大きいと、無機微粒子の体積粒径分
布が広くなりすぎるため、帯電量分布が広がりトナー飛
散等の画像不良をおこす。
In the volume particle size distribution of the inorganic fine particles, the standard deviation (hereinafter referred to as σ) is 10 to 30, preferably 10 to 25. When the standard deviation is smaller than 10, the particle size distribution becomes sharp, and the embedding of the external additive easily proceeds in the region where the particle size is small (100 nm or less). Although the burial is alleviated in the region where the particle size is large (100 nm or more), a large amount must be added to obtain the fluidity imparting effect and the burial suppressing effect. Occurs, the distribution of the amount of charge spreads, and image defects such as toner scattering occur. On the contrary, when the standard deviation is larger than 30, the volume particle size distribution of the inorganic fine particles becomes too wide, so that the charge amount distribution is widened and an image defect such as toner scattering occurs.

【0021】樹脂微粒子(A)と無機微粒子(B)の添
加重量比(A/B)は、0.2〜2.0が好ましい。
0.2よりも小さいと、無機微粒子の効果が大きくなり
高温高湿下の帯電量低下が発生する。2.0よりも大き
いと樹脂微粒子の効果が大きくなり低温低湿下の帯電量
上昇がみられる。
The addition weight ratio (A / B) of the resin fine particles (A) and the inorganic fine particles (B) is preferably 0.2 to 2.0.
If it is less than 0.2, the effect of the inorganic fine particles is increased, and the charge amount is reduced under high temperature and high humidity. If it is larger than 2.0, the effect of the resin fine particles becomes large, and the charge amount is increased under low temperature and low humidity.

【0022】さらに、本発明の樹脂微粒子と無機微粒子
をトナー表面に固着しても良い。外添剤をトナーに固着
化することで外添剤の移行が起こらないため、キャリア
汚染が起こらず帯電量が安定に推移し、長期に亘って安
定した画像が得られる。
Further, the resin fine particles and the inorganic fine particles of the present invention may be fixed to the toner surface. Since the transfer of the external additive does not occur by fixing the external additive to the toner, carrier contamination does not occur, the charge amount changes stably, and a stable image can be obtained for a long period of time.

【0023】外添剤の固着の有無は、トナーの表面積を
BET比表面積測定法により測定し、これから次式のよ
うな固着度Fdを定義した。
Whether or not the external additive was adhered was determined by measuring the surface area of the toner by the BET specific surface area measuring method, and from this, the adhesion degree Fd was defined by the following equation.

【0024】Fd=[1−(固着トナーSw−未処理トナ
ーSw)/添加外添剤Sw)]×100 Fd :固着度(%) 固着トナーSw :固着トナーのBET比表面積(m2
/g) 未処理トナーSw:未処理トナーのBET比表面積(m
2/g) 添加外添剤Sw :添加した外添剤のBET比表面積
(m2/g) なお、BET比表面積は島津製作所(株)製 Flow
sorb 2300を用い、BET1点法により測定し
たものである。
Fd = [1- (fixed toner Sw-untreated toner Sw) / added external additive Sw)] × 100 Fd: fixing degree (%) fixed toner Sw: BET specific surface area (m 2 of fixed toner)
/ G) Untreated toner Sw: BET specific surface area of untreated toner (m
2 / g) Added external additive Sw: BET specific surface area of added external additive (m 2 / g) The BET specific surface area is Flow manufactured by Shimadzu Corporation.
It is measured by the BET one-point method using sorb 2300.

【0025】固着化する方法としては、外添剤の離脱防
止に対して、Tg−20≦(撹拌混合温度)≦Tg+2
0の条件で樹脂粒子と外添剤を撹拌混合し、機械的衝撃
力を付与しながら、樹脂粒子表面に外添剤を均一に固着
化することが好ましい。
As a method of fixing, Tg-20≤ (stirring / mixing temperature) ≤Tg + 2 for preventing the detachment of the external additive.
It is preferable to stir and mix the resin particles and the external additive under the condition of 0 and uniformly fix the external additive to the surface of the resin particles while applying mechanical impact force.

【0026】ここで言うTgとはトナーまたは結着樹脂
のガラス転移温度を指す。ガラス転移温度は、DSC7
示差走査カロリーメーター(パーキンエルマー社製)を
用いて測定した。測定方法は、10℃/minで0℃か
ら200℃へ昇温し、ついで、10℃/minで200
℃から0℃へ冷却して前履歴を消した後、10℃/mi
nで0℃から200℃へ昇温し、セカンドヒートの吸熱
ピーク温度を求め、Tgとした。吸熱ピークが複数有る
場合は、主吸熱ピークの温度をTgとした。
The Tg referred to here is the glass transition temperature of the toner or the binder resin. Glass transition temperature is DSC7
The measurement was performed using a differential scanning calorimeter (manufactured by Perkin Elmer). The measuring method is to elevate the temperature from 0 ° C to 200 ° C at 10 ° C / min, and then to 200 ° C at 10 ° C / min.
10 ℃ / mi after cooling from ℃ to 0 ℃ and erasing the previous history
The temperature was raised from 0 ° C. to 200 ° C. with n, the endothermic peak temperature of the second heat was determined, and it was defined as Tg. When there were a plurality of endothermic peaks, the temperature of the main endothermic peak was taken as Tg.

【0027】トナーまたは結着樹脂のTgとしては40
〜70℃が好ましく使用される。40℃より小さいとト
ナーの保存性が悪く、凝集してしまう。70℃より大き
いと定着性、生産性の観点から好ましくない。
The Tg of the toner or binder resin is 40
~ 70 ° C is preferably used. If the temperature is lower than 40 ° C, the toner has poor storage stability and agglomerates. If it is higher than 70 ° C., it is not preferable from the viewpoint of fixability and productivity.

【0028】固定化の具体的な装置としてはヘンシェル
ミキサー、レーディゲミキサー、TURBO SPHE
REミキサー等を使用することができる。中でもヘンシ
ェルミキサーは、外添剤の混合処理と固着処理を同一の
装置で行えること、また撹拌混合の容易性や外部からの
加熱の容易性などの観点で好適に使用することができ
る。
Specific devices for immobilization include Henschel mixer, Ledige mixer, TURBO SPHE
An RE mixer or the like can be used. Among them, the Henschel mixer can be preferably used from the viewpoints that the mixing processing of the external additive and the fixing processing can be performed by the same apparatus, and that the mixing and stirring are easy and the heating from the outside is easy.

【0029】上記固着処理時の混合方法としては、撹拌
羽根の先端の周速が5〜50m/sで処理されることが
望ましい。好ましくは10〜40m/sで処理されるこ
とが望ましい。また、予備混合を行い樹脂粒子表面に外
添剤を均一に付着させることが好ましく、温度の制御方
法としては、外部より温水等を用いて必要な温度に調整
することが好ましい。温度の測定方法は、トナーが撹拌
混合されている状態でトナーが流動している部位の温度
を測定するものである。また、固着処理後に冷水を流通
させ、冷却、解砕工程を行うことが好ましい。
As a mixing method at the time of the fixing treatment, it is desirable that the peripheral speed of the tip of the stirring blade is 5 to 50 m / s. It is desirable that the treatment is performed at 10 to 40 m / s. Further, it is preferable to carry out pre-mixing to uniformly attach the external additive to the surface of the resin particles, and as a method of controlling the temperature, it is preferable to adjust the temperature to the required temperature by using warm water or the like from the outside. The method of measuring the temperature is to measure the temperature of a portion where the toner is flowing while the toner is being stirred and mixed. Further, it is preferable to carry out cooling and crushing steps by circulating cold water after the fixing treatment.

【0030】本発明では、2種以上の微粒子を同時にあ
るいは別々に固着することも可能である。また固着処理
後に流動性付与剤等を添加、混合してもよい。
In the present invention, it is possible to fix two or more kinds of fine particles at the same time or separately. Further, a fluidity imparting agent or the like may be added and mixed after the fixing treatment.

【0031】以下に本発明の構成成分と成分例を述べ
る。
The constituent components and component examples of the present invention will be described below.

【0032】《トナー》 着色粒子 着色粒子は結着樹脂と着色剤と必要に応じて使用される
その他の添加剤とを含有してなり、その平均粒径は体積
平均粒径で通常、1〜30μm、好ましくは5〜20μ
mである。
<< Toner >> Colored Particles The colored particles contain a binder resin, a colorant, and other additives used as necessary, and the average particle size thereof is usually a volume average particle size of 1 to 1. 30 μm, preferably 5-20 μm
m.

【0033】着色粒子を構成する結着樹脂としては特に
限定されず、従来公知の種々の樹脂が用いられる。例え
ば、スチレン系樹脂、アクリル系樹脂、スチレン/アク
リル系樹脂、ポリエステル系樹脂等が挙げられる。これ
ら結着樹脂のTg(ガラス転移温度)は40〜70℃が
好ましく使用される。
The binder resin constituting the colored particles is not particularly limited, and various conventionally known resins can be used. For example, styrene resin, acrylic resin, styrene / acrylic resin, polyester resin, etc. may be mentioned. The Tg (glass transition temperature) of these binder resins is preferably 40 to 70 ° C.

【0034】着色剤についても特に限定されず、従来公
知の種々の材料が使用される。例えば黒トナーはカーボ
ンブラック、ニグロシン染料等が使用され、イエロー、
マゼンタ、シアントナーに必要な顔料は、C.I.ピグ
メントブルー15:3、C.I.ピグメントブルー1
5、C.I.ピグメントブルー15:6、C.I.ピグ
メントブルー68、C.I.ピグメントレッド48−
3、C.I.ピグメントレッド122、C.I.ピグメ
ントレッド212、C.I.ピグメントレッド57−
1、C.I.ピグメントイエロー17、C.I.ピグメ
ントイエロ−81、C.I.ピグメントイエロ−154
等の顔料を好適に使用することができる。
The colorant is not particularly limited, and various conventionally known materials can be used. For example, black toner uses carbon black, nigrosine dye, etc., yellow,
The pigments required for magenta and cyan toners are C.I. I. Pigment Blue 15: 3, C.I. I. Pigment Blue 1
5, C.I. I. Pigment Blue 15: 6, C.I. I. Pigment Blue 68, C.I. I. Pigment Red 48-
3, C.I. I. Pigment Red 122, C.I. I. Pigment Red 212, C.I. I. Pigment Red 57-
1, C.I. I. Pigment Yellow 17, C.I. I. Pigment Yellow 81, C.I. I. Pigment Yellow-154
Pigments such as can be preferably used.

【0035】その他の添加剤は例えばサリチル酸誘導
体、アゾ系金属錯体等の荷電制御剤、低分子量ポリオレ
フィン、カルナウバワックス等の定着性改良剤等が挙げ
られる。
Other additives include, for example, salicylic acid derivatives, charge control agents such as azo metal complexes, low molecular weight polyolefins, and fixability improving agents such as carnauba wax.

【0036】外添剤 <樹脂微粒子>本発明で使用される樹脂微粒子は体積平
均粒径が0.01〜1.00μmのものである。この体
積平均粒径は透過型電子顕微鏡観察によって観察し、画
像解析によって測定されたものを示す。樹脂微粒子を構
成する材料は、メラミンとホルムアルデヒドとの縮合反
応物からなる実質的に球形のものが用いられる。
External Additive <Resin Fine Particles> The resin fine particles used in the present invention have a volume average particle diameter of 0.01 to 1.00 μm. This volume average particle diameter is one observed by a transmission electron microscope and measured by image analysis. The material forming the resin fine particles is a substantially spherical material composed of a condensation reaction product of melamine and formaldehyde.

【0037】実質的に球形とは画像解析装置を用い測定
された粒子の長軸径と短軸径の比が0.8以上のものを
いう。
The term “substantially spherical” means that the ratio of the major axis diameter to the minor axis diameter of the particles measured using an image analyzer is 0.8 or more.

【0038】<無機微粒子>本発明で使用される無機微
粒子は体積平均粒径が0.01〜0.20μmのもので
ある。この体積平均粒径は透過型電子顕微鏡観察によっ
て観察し、画像解析によって測定されたものを示す。ま
た、各測定データから以下の式に従い標準偏差(σ)を
求めた。
<Inorganic Fine Particles> The inorganic fine particles used in the present invention have a volume average particle diameter of 0.01 to 0.20 μm. This volume average particle diameter is one observed by a transmission electron microscope and measured by image analysis. Further, the standard deviation (σ) was calculated from each measurement data according to the following formula.

【0039】σ=[{Σ(χi−χ)2}/n]2/1 χi:各サンプリングデータ値 χ :体積平均粒径 n :サンプリング個数 無機微粒子を構成する材料としては、各種無機酸化物、
窒化物、ホウ化物等が好適に使用される。例えば、シリ
カ、アルミナ、チタニア、ジルコニア、チタン酸バリウ
ム、チタン酸アルミニウム、チタン酸ストロンチウム、
チタン酸マグネシウム、酸化亜鉛、酸化クロム、酸化セ
リウム、酸化アンチモン、酸化タングステン、酸化ス
ズ、酸化テルル、酸化マンガン、酸化ホウ素、炭化ケイ
素、炭化ホウ素、炭化チタン、窒化ケイ素、窒化チタ
ン、窒化ホウ素等があげられる。さらに、上記無機微粒
子に疎水化処理を行ったものでもよい。疎水化処理を行
う場合には、ジメチルクロロシラン、ヘキサメチルジシ
ラザン等の各種シランカップリング剤によって疎水化処
理することが好ましく、さらに、ステアリン酸アルミニ
ウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の
高級脂肪酸金属塩によって疎水化処理することも好まし
く使用される。
Σ = [{Σ (χi−χ) 2 } / n] 2/1 χi: each sampling data value χ: volume average particle diameter n: sampling number Various inorganic oxides are used as a material for forming the inorganic fine particles. ,
Nitride and boride are preferably used. For example, silica, alumina, titania, zirconia, barium titanate, aluminum titanate, strontium titanate,
Magnesium titanate, zinc oxide, chromium oxide, cerium oxide, antimony oxide, tungsten oxide, tin oxide, tellurium oxide, manganese oxide, boron oxide, silicon carbide, boron carbide, titanium carbide, silicon nitride, titanium nitride, boron nitride, etc. can give. Further, the inorganic fine particles may be subjected to a hydrophobic treatment. When performing the hydrophobic treatment, it is preferable to perform the hydrophobic treatment with various silane coupling agents such as dimethylchlorosilane and hexamethyldisilazane, and further, higher fatty acid metal salts such as aluminum stearate, zinc stearate and calcium stearate. It is also preferably used to carry out a hydrophobic treatment.

【0040】《キャリア》キャリアは、鉄粉、フェライ
ト、マグネタイト及びそれぞれを樹脂コーティングした
ものいずれを用いても良いが、穂の均一性、耐ストレス
性の点から、低磁化、低比重、小粒径のキャリアが望ま
しい。
<< Carrier >> The carrier may be any of iron powder, ferrite, magnetite, and resin-coated ones, but in view of uniformity of spikes and stress resistance, low magnetization, low specific gravity, and small particles are used. Diameter carriers are preferred.

【0041】キャリアコア キャリアコア(磁性粒子)は、比重が3〜7、重量平均
径30〜65μmの磁性粒子を用いる。例えば上記範囲
に入るフェライト粒子、マグネタイト粒子等が好ましく
用いることが可能である。
Carrier Core As the carrier core (magnetic particles), magnetic particles having a specific gravity of 3 to 7 and a weight average diameter of 30 to 65 μm are used. For example, ferrite particles and magnetite particles falling within the above range can be preferably used.

【0042】コーティング樹脂 スチレン系樹脂、アクリル系樹脂、スチレン−アクリル
系樹脂等の樹脂からなる微粒子等を用いることができ
る。
Coating resin Fine particles of resin such as styrene resin, acrylic resin, styrene-acrylic resin, etc. can be used.

【0043】コーティング方法 製造方法については、特に限定されず、スプレーコー
ト、MECコート、重層コートの使用が可能である。
Coating Method The manufacturing method is not particularly limited, and spray coating, MEC coating and multilayer coating can be used.

【0044】《感光体》一般的に使用されているセレン
系感光体、アモルファスシリコン感光体、OPC系感光
体が使用できる。
<< Photoreceptor >> Generally used selenium-based photoreceptors, amorphous silicon photoreceptors, and OPC-based photoreceptors can be used.

【0045】《現像》現像方法は、感光体と現像剤が非
接触で現像する方法が使用される。つまり、現像剤をス
リーブ上に設けられた層規制板や磁性棒や非磁性棒によ
る層形成棒によって現像スリーブ上に300〜600μ
mの層厚に規制されて現像域へと搬送する。現像域にお
ける現像スリーブと感光体ドラムとの隙間は現像剤層厚
よりも大きい0.4〜1.0mmとし、現像時に8KH
z、1.8kvp−pの交番電界を重畳した現像バイア
スを印加することで感光体へ現像剤が接触しない状態で
現像する。
<Development> As the developing method, a method in which the photoreceptor and the developer are developed in a non-contact manner is used. That is, 300 to 600 μm of the developer is provided on the developing sleeve by the layer regulating plate provided on the sleeve and the layer forming rod made of the magnetic rod or the non-magnetic rod.
The layer is regulated to a layer thickness of m and conveyed to the developing area. The gap between the developing sleeve and the photosensitive drum in the developing area is 0.4 to 1.0 mm, which is larger than the developer layer thickness, and is 8 KH during development.
By applying a developing bias superposed with an alternating electric field of z, 1.8 kvp-p, development is performed in a state where the developer does not come into contact with the photoconductor.

【0046】[0046]

【実施例】【Example】

実施例 着色粒子製造例 ポリエステル樹脂100部(Tg=55.1℃)、カー
ボンブラック10部、ポリプロピレン3部とを、混合、
練肉、粉砕、分級し、平均粒径8.5μmの粉末を得、
これを着色粒子1とした。
Example Production Example of Colored Particles 100 parts of polyester resin (Tg = 55.1 ° C.), 10 parts of carbon black and 3 parts of polypropylene were mixed,
Kneaded meat, crushed and classified to obtain powder having an average particle size of 8.5 μm,
This was designated as Colored Particle 1.

【0047】同様の製造方法で着色剤としてイエロー顔
料(C.I.ピグメントイエロー17)を用いたものを
着色粒子2、マゼンタ顔料(C.I.ピグメントレッド
122)を用いたものを着色粒子3、シアン顔料(C.
I.ピグメントブルー15:3)を用いたものを着色粒
子4とした。
In the same manufacturing method, yellow particles (CI pigment yellow 17) as a coloring agent were used for coloring particles 2, and magenta pigment (CI pigment red 122) was used for coloring particles 3. Cyan pigment (C.I.
I. Pigment Blue 15: 3) was used as Colored Particle 4.

【0048】無機微粒子製造例 四塩化ケイ素の酸水素焔中で高温加水分解の水分量およ
び温度条件を変化させ、種々の粒径を得た。さらに必要
に応じて分級し粒度を調整した。また、シリカ微粒子の
疎水化処理にはヘキサメチルジシラザンを用いた。
Example of Production of Inorganic Fine Particles Various particle sizes were obtained by changing the water content and temperature conditions for high-temperature hydrolysis in oxyhydrogen flame of silicon tetrachloride. Further, classification was performed as necessary to adjust the particle size. Hexamethyldisilazane was used for the hydrophobic treatment of the silica fine particles.

【0049】比較無機微粒子として、ジメチルクロロシ
ラン処理したチタン微粒子とヘキサメチルジシラザン処
理したシリカ微粒子を等量混合し得られた2種類からな
る無機微粒子混合物を比較無機微粒子I(体積平均粒子
径 70nm σ=19)とした。表1に調整した本発
明及び比較無機微粒子の体積平均粒径、標準偏差及び何
種類の粒子を混合したかを示す。
As the comparative inorganic fine particles, a mixture of two kinds of inorganic fine particles obtained by mixing equal amounts of titanium fine particles treated with dimethylchlorosilane and silica fine particles treated with hexamethyldisilazane was used as a comparative inorganic fine particle I (volume average particle diameter 70 nm σ = 19). Table 1 shows the volume average particle diameter, the standard deviation and the number of kinds of particles of the adjusted inorganic fine particles of the present invention and comparative inorganic fine particles.

【0050】[0050]

【表1】 [Table 1]

【0051】樹脂微粒子製造例 メラミンとホルムアルデヒドを付加重合させて得られ、
反応時間および温度を変化させ粒径の異なる本発明の樹
脂微粒子J〜Lを得た。
Production Example of Resin Fine Particles Obtained by addition polymerization of melamine and formaldehyde,
Resin fine particles J to L of the present invention having different particle sizes were obtained by changing the reaction time and temperature.

【0052】また、比較用樹脂微粒子として、乳化重合
により作製したポリメチルメタクリレート(MMA)微
粒子(体積平均粒径 100nm)を用い、比較樹脂微
粒子Mとした。表2に調整した樹脂微粒子を示す。
Polymethylmethacrylate (MMA) fine particles (volume average particle size 100 nm) produced by emulsion polymerization were used as the comparative resin fine particles M to give comparative resin fine particles M. Table 2 shows the resin fine particles prepared.

【0053】[0053]

【表2】 [Table 2]

【0054】トナー製造例 上記着色粒子と樹脂微粒子および無機微粒子をヘンシェ
ルミキサー(FM−10B)にて混合し、外部より加え
る温度および周速を種々変化させ本発明のトナー(実施
例1〜12)及び比較のトナー(比較例1〜10)を得
た。表3にその詳細を示す。
Toner Production Example The toner of the present invention (Examples 1 to 12) was prepared by mixing the above-mentioned colored particles, resin fine particles and inorganic fine particles with a Henschel mixer (FM-10B) and varying the temperature and peripheral speed applied from the outside. And comparative toners (Comparative Examples 1 to 10) were obtained. Table 3 shows the details.

【0055】[0055]

【表3】 [Table 3]

【0056】表3において、固定化条件は以下の通り。In Table 3, the immobilization conditions are as follows.

【0057】固定化条件1:撹拌混合温度Tg−30℃
撹拌羽根先端周速40m/s 固定化条件2:撹拌混合温度Tg−15℃ 撹拌羽根先
端周速30m/s 固定化条件3:撹拌混合温度Tg℃ 撹拌羽根先
端周速30m/s 固定化条件4:撹拌混合温度Tg+10℃ 撹拌羽根先
端周速20m/s キャリア製造例 スチレン/メチルメタクリレート=4/6の共重合体微
粒子60g、比重5.0、重量平均径45μm、100
0エルステッドの外部磁場を印加したときの飽和磁化が
62emu/gのCu−Znフェライト粒子1940g
を高速撹拌型混合機に投入し、品温30℃で15分間混
合した後、品温を105℃に設定し、機械的衝撃力を3
0分間繰り返し付与し、冷却しキャリアを作成した。
Immobilization condition 1: Stirring temperature Tg-30 ° C.
Stirring blade tip peripheral speed 40 m / s Immobilization condition 2: Agitation mixing temperature Tg-15 ° C Stirring blade tip peripheral speed 30 m / s Immobilization condition 3: Agitation mixing temperature Tg ° C Stirring blade tip peripheral speed 30 m / s Immobilization condition 4 : Stirring / mixing temperature Tg + 10 ° C. Stirring blade tip peripheral speed 20 m / s Carrier production example 60 g of copolymer fine particles of styrene / methyl methacrylate = 4/6, specific gravity 5.0, weight average diameter 45 μm, 100
1940 g of Cu-Zn ferrite particles having a saturation magnetization of 62 emu / g when an external magnetic field of 0 Oersted is applied
Is put into a high-speed agitation mixer and mixed at a product temperature of 30 ° C for 15 minutes, then the product temperature is set to 105 ° C and the mechanical impact force is set to 3
It was applied repeatedly for 0 minutes and cooled to prepare a carrier.

【0058】現像剤の作成 上のようにして得たキャリア558gと、表3に示すト
ナー各42gとをV型混合機を用いてそれぞれ20分間
混合し、実写テスト用の現像剤を作成した。得られた現
像剤の試料番号は、それぞれ対応するトナー番号と一致
する。例えば、現像剤の実施例1は、トナーとして、表
3の実施例1のトナーから得られた現像剤である。
Preparation of Developer 558 g of the carrier obtained as described above and 42 g of each of the toners shown in Table 3 were mixed for 20 minutes using a V-type mixer to prepare a developer for an actual copying test. The sample numbers of the obtained developers correspond to the corresponding toner numbers. For example, the developer of Example 1 is a developer obtained from the toner of Example 1 of Table 3 as a toner.

【0059】《評価装置、条件》コニカ製の9028を
以下のように改造して使用した。
<< Evaluation apparatus and conditions >> 9028 manufactured by Konica was used after being modified as follows.

【0060】現像条件 感光体表面電位=−850V DCバイアス =−750V ACバイアス =1.8kVp−p f=8KHz Dsd =500μm 押圧規制力 =10gf/mm 押圧規制棒 =SUS416(磁性ステンレス製)/
直径3mm 現像スリーブ =20mm 現像剤層厚 =150μm 《評価項目、方法》上記、作成した現像剤を用い、本発
明の現像剤、実施例1から12及び比較の現像剤、比較
例1から10をコニカ製9028改造機を用い実写テス
トを行った。
Development conditions Photoconductor surface potential = -850V DC bias = -750V AC bias = 1.8kVp-pf = 8KHz Dsd = 500 .mu.m Pressing control force = 10 gf / mm Pressing control rod = SUS416 (magnetic stainless steel) /
Diameter 3 mm Developing sleeve = 20 mm Developer layer thickness = 150 μm << Evaluation items, method >> Using the above-prepared developer, the developer of the present invention, Examples 1 to 12 and Comparative developers, Comparative Examples 1 to 10 were prepared. A live-action test was conducted using a modified Konica 9028 machine.

【0061】テストは、30℃/80%(H.H.)及
び10℃/20%(L.L.)の環境下で20000枚
の実写テストを行った。その際の帯電量変化、画像乱れ
(文字ちり)の発生状況を評価した。
As the test, a live-copy test of 20,000 sheets was conducted under the environment of 30 ° C./80% (H.H.) and 10 ° C./20% (LL). At that time, changes in charge amount and occurrence of image disturbance (character dust) were evaluated.

【0062】また、30℃/80%の環境下で現像剤を
48時間放置し、その際の帯電量の低下を測定した。
Further, the developer was allowed to stand for 48 hours in an environment of 30 ° C./80%, and the decrease in the charge amount at that time was measured.

【0063】帯電量 ブローオフ式の帯電量測定装置を用いて帯電量を測定し
た。
Charge Amount The charge amount was measured using a blow-off type charge amount measuring device.

【0064】放置帯電量低下 放置前の帯電量をQ1、48時間放置後の帯電量をQ2
としたときのQ2/Q1の比を計算し、以下の4ランク
に分類し判定した。
Reduction of charge amount after leaving Q1 is the charge amount before leaving, Q2 is the charge amount after leaving for 48 hours
Then, the ratio of Q2 / Q1 was calculated and classified into the following 4 ranks and judged.

【0065】◎; Q2/Q1≧0.95 ○; 0.95>Q2/Q1≧0.80 △; 0.80>Q2/Q1≧0.60 ×; 0.60>Q2/Q1 画像乱れ 200μm間隔に、幅200μm長さ1cmのラインを
5本配置したチャートをコピーし、その部分のちりの状
況を目視と顕微鏡(500倍)の両者で観察し、以下の
4ランクに分類し判定した。
◎; Q2 / Q1 ≧ 0.95 ○; 0.95> Q2 / Q1 ≧ 0.80 Δ; 0.80> Q2 / Q1 ≧ 0.60 ×; 0.60> Q2 / Q1 Image Distortion 200 μm A chart in which five lines each having a width of 200 μm and a length of 1 cm were arranged at intervals was copied, and the dust situation of the portion was observed both visually and with a microscope (500 times), and classified into the following four ranks and judged.

【0066】A;顕微鏡でもライン周辺のちりが観察さ
れない B;目視ではわからないが、顕微鏡では周辺にちりが観
察される C;目視で周辺のちりが観察される D;ライン間の判別が困難なほど激しくちりが発生 評価結果を表4に示す。
A: Dust around the line is not observed even with a microscope B: Dust is not visible by the visual observation, but dust is observed around the microscope C: Dust around the line is visually observed D: Distinction between lines is difficult Table 4 shows the evaluation results.

【0067】[0067]

【表4】 [Table 4]

【0068】表4から、本発明の現像剤は、安定した帯
電量を長期に亙って得ることができ、さらに、環境変動
に於いても安定した帯電性を保持でき、良好な画像を与
えることが解る。
From Table 4, the developer of the present invention can obtain a stable charge amount over a long period of time, and can maintain a stable chargeability even under environmental changes, and give a good image. I understand.

【0069】[0069]

【発明の効果】本発明により、現像剤層を感光体に対し
て非接触の状態で現像する画像形成方法に於いて安定し
た帯電量を長期に亙って得ることができ、さらに、環境
変動に於いても安定した帯電性を保持することのできる
電子写真画像形成用トナー及び電子写真画像形成方法が
提案できた。
According to the present invention, a stable charge amount can be obtained over a long period in an image forming method of developing a developer layer in a non-contact state with a photoreceptor, and further, environmental fluctuations can be obtained. In this regard, an electrophotographic image forming toner and an electrophotographic image forming method capable of maintaining stable chargeability have been proposed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも樹脂と着色剤とからなる着色
粒子に少なくとも樹脂微粒子と無機微粒子とを添加して
なる電子写真画像形成用トナーに於いて、該樹脂微粒子
が体積平均粒径0.01〜1.0μmのメラミン・ホル
ムアルデヒド縮重合体からなる樹脂微粒子であり、該無
機微粒子が体積平均粒径0.01〜0.20μmであ
り、かつ、体積平均粒径分布の標準偏差(σ)が10≦σ
≦30である無機微粒子であることを特徴とする電子写真
画像形成用トナー。
1. A toner for electrophotographic image formation, comprising at least resin fine particles and inorganic fine particles added to colored particles comprising at least a resin and a colorant, wherein the resin fine particles have a volume average particle diameter of 0.01 to Resin fine particles of 1.0 μm melamine-formaldehyde condensation polymer, the inorganic fine particles have a volume average particle diameter of 0.01 to 0.20 μm, and a standard deviation (σ) of the volume average particle diameter distribution is 10 ≤ σ
An electrophotographic image forming toner, characterized in that it is an inorganic fine particle having a particle size of ≦ 30.
【請求項2】 現像剤担持体表面に形成された請求項1
記載の電子写真画像形成用トナーを有する現像剤層が搬
送され、感光体表面に形成された静電潜像を現像するこ
とを特徴とする電子写真画像形成方法。
2. The toner according to claim 1, which is formed on the surface of the developer carrying member.
A method of forming an electrophotographic image, which comprises transporting a developer layer containing the toner for forming an electrophotographic image, and developing the electrostatic latent image formed on the surface of the photoreceptor.
【請求項3】 感光体と現像剤担持体表面の間隙より
も現像剤担持体表面に形成された少なくとも請求項1記
載の電子写真画像形成用トナーを有する現像剤層厚が薄
い状態で搬送されることを特徴とする請求項2記載の電
子写真画像形成方法。
3. The developer having at least the toner for electrophotographic image formation according to claim 1, which is formed on the surface of the developer carrying member rather than the gap between the photosensitive member and the surface of the developer carrying member, is conveyed in a thin state. The electrophotographic image forming method according to claim 2, wherein:
JP7118255A 1995-05-17 1995-05-17 Toner for forming electrophotographic image and electrophotographic image forming method Pending JPH08314182A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7118255A JPH08314182A (en) 1995-05-17 1995-05-17 Toner for forming electrophotographic image and electrophotographic image forming method
US08/645,126 US5705306A (en) 1995-05-17 1996-05-13 Toner for forming electrophotographic image and developers using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7118255A JPH08314182A (en) 1995-05-17 1995-05-17 Toner for forming electrophotographic image and electrophotographic image forming method

Publications (1)

Publication Number Publication Date
JPH08314182A true JPH08314182A (en) 1996-11-29

Family

ID=14732095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7118255A Pending JPH08314182A (en) 1995-05-17 1995-05-17 Toner for forming electrophotographic image and electrophotographic image forming method

Country Status (1)

Country Link
JP (1) JPH08314182A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025809A (en) * 2007-06-18 2009-02-05 Mitsubishi Chemicals Corp Toner for electrostatic charge image development and developing method using the same
JP2011141440A (en) * 2010-01-07 2011-07-21 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2011141441A (en) * 2010-01-07 2011-07-21 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2012008552A (en) * 2010-05-26 2012-01-12 Mitsubishi Chemicals Corp Toner for developing electrostatic image
JP2013040982A (en) * 2011-08-11 2013-02-28 Mitsubishi Chemicals Corp Toner for electrostatic charge image development, and manufacturing method of toner
US10007203B2 (en) 2015-01-30 2018-06-26 Samsung Electronics Co., Ltd. Complex particle, external additive for toner and method of preparing complex particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025809A (en) * 2007-06-18 2009-02-05 Mitsubishi Chemicals Corp Toner for electrostatic charge image development and developing method using the same
JP2011141440A (en) * 2010-01-07 2011-07-21 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2011141441A (en) * 2010-01-07 2011-07-21 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2012008552A (en) * 2010-05-26 2012-01-12 Mitsubishi Chemicals Corp Toner for developing electrostatic image
JP2013040982A (en) * 2011-08-11 2013-02-28 Mitsubishi Chemicals Corp Toner for electrostatic charge image development, and manufacturing method of toner
US10007203B2 (en) 2015-01-30 2018-06-26 Samsung Electronics Co., Ltd. Complex particle, external additive for toner and method of preparing complex particle

Similar Documents

Publication Publication Date Title
US7704661B2 (en) Toner and image forming method
JP3779628B2 (en) Image forming apparatus
US7214459B2 (en) Toner for developing electrostatic charged images and developer for developing electrostatic charged images, and image forming method using the same
US8568948B2 (en) Electrostatic-image-developing toner, electrostatic image developer, method of manufacturing electrostatic-image-developing toner, toner cartridge, process cartridge, method of image formation, and image forming apparatus
JP4145631B2 (en) Non-magnetic one-component toner and developing method using the same
JP4760522B2 (en) Electrophotographic developer
US5705306A (en) Toner for forming electrophotographic image and developers using the same
JPH08314182A (en) Toner for forming electrophotographic image and electrophotographic image forming method
JP4054644B2 (en) Non-magnetic one-component toner for electrophotography and developing method
JPS62100775A (en) Magnetic toner for heat roll fixing
JP2006011218A (en) Toner for multi-color image formation, and multi-color image forming method using the same
JPS63289559A (en) Electrostatic image developing toner
JP3157037B2 (en) Electrophotographic toner and manufacturing method
JPH06313980A (en) Developer
JP2000010349A (en) Electrostatic developer
JP2007127815A (en) Electrostatic charge image development toner
JPH09160297A (en) Toner, its production and image forming method
JP5493892B2 (en) Electrostatic latent image developing carrier, mixed electrostatic latent image developing carrier, electrostatic latent image developer, developer cartridge, process cartridge, and image forming apparatus
JP3148993B2 (en) Electrostatic image developer
JP2008122489A (en) Carrier for electrostatic latent image development, developer for electrostatic latent image development and image forming apparatus
JP5454048B2 (en) Electrophotographic carrier, electrophotographic developer, developer cartridge, process cartridge, image forming apparatus, and electrophotographic carrier manufacturing method
JP2000194156A (en) Developer and image forming method
JP4899766B2 (en) Electrostatic latent image developing carrier and electrostatic latent image developing developer
JP3151675B2 (en) Manufacturing method of toner
JPS6270864A (en) Magnetic dispersion type mycrocarrier