JPS6187831A - Additive for manufacturing copper and copper alloy - Google Patents

Additive for manufacturing copper and copper alloy

Info

Publication number
JPS6187831A
JPS6187831A JP20762784A JP20762784A JPS6187831A JP S6187831 A JPS6187831 A JP S6187831A JP 20762784 A JP20762784 A JP 20762784A JP 20762784 A JP20762784 A JP 20762784A JP S6187831 A JPS6187831 A JP S6187831A
Authority
JP
Japan
Prior art keywords
additive
copper
alloy
molten metal
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20762784A
Other languages
Japanese (ja)
Inventor
Tadashi Ito
正 伊藤
Yoshiharu Nakamura
中村 義晴
Kuniomi Nishi
西 邦臣
Susumu Inumaru
犬丸 晋
Yasuo Oofukune
大福根 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Sumikin Welding Electrode Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumikin Welding Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumikin Welding Electrode Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP20762784A priority Critical patent/JPS6187831A/en
Publication of JPS6187831A publication Critical patent/JPS6187831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To incorporate additive with high yield and good workability, by adding powdery additive being covered and sealed with Cu or Cu alloy sheet, into molten Cu or Cu alloy. CONSTITUTION:Zr, Mg, B, P, Ca, Si, Ce, etc. are added as deoxidizer or component adjuster into molten Cu or Cu alloy. In this case, a sheet 4 of Cu or Cu alloy having 0.4-0.6mm thickness is bent to U shape, a powder 2 of said additive milled to 12-200 mesh is packed into a ditch 4a from a hopper 6, upper parts of the sheet 4 are pressed in arrow directions 7a, 7b to decrease the diameter, and an opened part 5 of the U-shaped body is sealed. By adding the body into molten Cu or Cu alloy, oxidation of additive such as Zr in air or after floating up to molten metal surface is prevented, and additives are dispersed and incorporated into molten metal uniformly at high yield without special stirring.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、たとえば銅または銅合金の製造の際に脱酸剤
d3よび微量成分調整剤として使用される銅および銅合
金製造用の添加剤に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an additive for the production of copper and copper alloys, which is used as a deoxidizer d3 and a minor component regulator, for example, in the production of copper or copper alloys. It is related to.

C従来の技術] 従来、銅または銅合金$I造の際に、添加剤として、Z
r 、MQ 、BSP、Ca 、Si 、Ceなどを用
いる場合、これらの成分の単体あるいは合金を塊状にし
て溶解炉の溶渇内に添加していた。
C. Conventional technology] Conventionally, when producing copper or copper alloy $I, Z was added as an additive.
When r, MQ, BSP, Ca, Si, Ce, etc. are used, these components alone or in alloys are made into lumps and added to the melting chamber of the melting furnace.

[発明が解決しようとする問題点〕 しかし、zrなどの金属は、比重が銅より小さいので、
層温表面に浮上してしまうため、均一溶解するのに撹拌
する必要があり、作業性が悪かった。しかも、添加直後
の添加剤や表面に浮上してきた添加剤は、大気と直ちに
反応し、表面酸化することから歩留りが悪いという欠点
があった。
[Problem to be solved by the invention] However, metals such as ZR have a lower specific gravity than copper, so
Since it floated to the surface of the layer, it was necessary to stir it to dissolve it uniformly, resulting in poor workability. Moreover, the additive immediately after being added or the additive that has floated to the surface immediately reacts with the atmosphere and oxidizes the surface, resulting in a poor yield.

本発明は、上記従来の欠点を解消するためになされたも
ので、作業性がよ(、材料歩留りのよい銅および銅合金
製造用の添加剤を提供することを目的とする。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide an additive for producing copper and copper alloys that has good workability and a good material yield.

[問題点を解決するための手段] 上記目的を達成するためになされた本発明の満成は、銅
または銅合金の被覆用帯状板を断面U字形に形成して溝
部を設け、この溝部に銅または銅合金添加物の粒状体を
充填して封入してなることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention has been achieved by forming a copper or copper alloy coating band-like plate with a U-shaped cross section, providing a groove, and forming a groove in the groove. It is characterized by being filled and encapsulated with granules of copper or copper alloy additives.

[作用] 本発明による添加剤は、溶湯内に添加されたとき、溶湯
内に沈み、溶湯表面に浮上することなく、被覆用の帯状
板から形成された被覆体の表面がまず溶解し、添加物が
分散して、溶解、反応し、脱酸などの添加剤としての作
用をする。また、添加物の外周は被覆体により被覆され
ているので、添加剤は沈む前に高温状態となっても大気
と反応しない。
[Function] When the additive according to the present invention is added to the molten metal, it sinks into the molten metal and does not float to the surface of the molten metal, but the surface of the coating formed from the coating band plate first dissolves, and the additive is absorbed into the molten metal. Things disperse, dissolve, react, and act as additives such as deoxidizing. Furthermore, since the outer periphery of the additive is covered with a coating, the additive does not react with the atmosphere even if it reaches a high temperature before sinking.

し実施例] 以下、本発明の一実施例を図面にしたがって説明する。Examples] An embodiment of the present invention will be described below with reference to the drawings.

第1図は同実施例による棒状の添加剤を示し、添加剤1
は粒度が12〜200メツシュで、銅または銅合金製造
用の添加物としてのzrの粒状体2からなる集合体3と
、この集合体3の外周を被覆する銅または銅合金からな
る被覆体4とから構成され、この添加剤1の直径は、6
〜i0amφ、上記被覆体4の厚さは、064〜Q、5
mmに形成されている。
Figure 1 shows a rod-shaped additive according to the same example, and shows additive 1.
has a grain size of 12 to 200 mesh and is an aggregate 3 made of ZR granules 2 as an additive for producing copper or copper alloy, and a covering 4 made of copper or copper alloy that covers the outer periphery of this aggregate 3. The diameter of this additive 1 is 6
~i0amφ, the thickness of the covering 4 is 064~Q, 5
It is formed in mm.

上記添加剤の製造にあたっては、まず第2図に示すよう
に、銅または銅合金からなる被覆用の帯状板を用いて断
面U字形の樋状の被覆体4を形成し、この被覆体4の開
口部5を介して溝部4aに、切出し装置(図示省略)に
より破砕された粒状体2をホッパ装@6を用いて充填す
る。ついで、ローラーダイス(図示省略〉により被覆体
4の上部を矢印方向7a、7bに圧縮減径して、粒状体
2を破砕してすべらせながら、上記開口部5を閉じて封
入することにより、第1図に示す添加剤1が製造される
In manufacturing the above-mentioned additive, first, as shown in FIG. The granular material 2 crushed by a cutting device (not shown) is filled into the groove 4a through the opening 5 using a hopper device @6. Next, the upper part of the coating 4 is compressed and reduced in diameter in the directions 7a and 7b of the arrows using a roller die (not shown), and while the granular material 2 is crushed and slid, the opening 5 is closed and sealed. Additive 1 shown in FIG. 1 is produced.

第1図に示す粒状体2の粒度は12〜200メツシュに
調整するのが好ましいが、これは次の理由による。
The particle size of the granular material 2 shown in FIG. 1 is preferably adjusted to 12 to 200 mesh for the following reason.

すなわち、溶湯内に必要添加量を短時間に添加するには
、粒状体2の全項と添加剤1に対する重量割合、つまり
充填率を高くして、添加剤1の線長を短くするのがよい
。しかし、第3図の粒度(メツシュ)と充填率(%)と
の関係に示すように、200メツシュより小さい細粒の
場合は、充填率が急激に減少して、添加の能率が低くな
る。
In other words, in order to add the required amount into the molten metal in a short time, it is recommended to increase the weight ratio of the entire particulate material 2 to the additive 1, that is, the filling rate, and shorten the line length of the additive 1. good. However, as shown in the relationship between particle size (mesh) and filling rate (%) in FIG. 3, in the case of fine particles smaller than 200 mesh, the filling rate decreases rapidly and the efficiency of addition becomes low.

また、同細粒の粒状体2では、ホッパ装置6(第2図)
から被覆体4内に充填する際に、その流動性の低さが原
因となって、はた落ちして充填されるため、充填にむら
ができ、長さ方向に均一に粒状体2を含むものが得られ
にくい。
In addition, for the same fine granular material 2, the hopper device 6 (Fig. 2)
When filling the coating 4 with the particles, the particles fall off due to its low fluidity, resulting in uneven filling, and the particles 2 are uniformly contained in the length direction. It's hard to get things.

そのうえ、細粒すぎると、溶湯との反応が速すぎるので
、溶湯と均一の反応が行なわれ難い。したがって、粒状
体1の粒度は、200メツシュより大きいものとするの
が好ましい。
Moreover, if the particles are too fine, the reaction with the molten metal will be too fast, making it difficult to react uniformly with the molten metal. Therefore, the particle size of the granular material 1 is preferably larger than 200 mesh.

一方、12メツシュより小さい粒状体2とするのが好ま
しいのは、次の理由による。
On the other hand, the reason why it is preferable to make the granules 2 smaller than 12 meshes is as follows.

すなわち、12メツシュより大きい粗粒になると、被覆
体4内に充填されて、圧縮減径される際に、粒状体2の
角ばった部分が被覆体4の開口部5の合せ目にかみ込ん
で添加剤1そのものを断線したりする。また粒状体2が
被覆体4内ですべりながら破砕されて一体化され難いた
めに、被覆体4の厚さにむらを生じたり、ざらに粒状体
2間に広い空隙が残留するため、充填率がばらつく。し
たがって、12メツシュより小さいことが好ましい。
That is, when coarse particles larger than 12 meshes are filled into the coating 4 and compressed and reduced in diameter, the angular parts of the granules 2 get caught in the joints of the openings 5 of the coating 4. Otherwise, the additive 1 itself may be disconnected. In addition, since the granules 2 are crushed while sliding within the covering 4 and are difficult to integrate, the thickness of the covering 4 may become uneven, and large voids remain between the granules 2, resulting in a filling rate. varies. Therefore, it is preferable that the mesh is smaller than 12 meshes.

つぎに、上記添加剤1の78瀉中への添加作業について
説明する。
Next, the operation of adding the above-mentioned Additive 1 to the 78-liter medium will be explained.

第4図は連続鋳造方法を示し、10は溶湯11を収納し
たタンディツシュで、このタンディツシュ10の底部に
は、制御棒12により制御されるノズル13が設けられ
、このノズル口14から溶1J11が鋳型15内に流入
されるようになっている。一方、添加剤1は、送給装置
20のサプライスタンド21に巻回され、ピンチロール
22により送給されて、送管23を介して溶湯11内へ
添加される。
FIG. 4 shows a continuous casting method, and 10 is a tundish containing molten metal 11. A nozzle 13 controlled by a control rod 12 is provided at the bottom of the tundish 10, and the molten metal 1J11 is poured into the mold through the nozzle opening 14. 15. On the other hand, the additive 1 is wound around the supply stand 21 of the feeding device 20, fed by the pinch roll 22, and added into the molten metal 11 via the feed pipe 23.

いま、たとえば、Cu−Zrの粒状体2を16〜170
メツシュに調整し、添加剤1の直径を6I1mψ、被覆
体4の厚さを0.4InlT11充填率を53゜7%の
添加剤1を用いで、温度1150〜1250℃の溶湯1
1内に、送給装置20により添加剤1の送給速度を2〜
4IllZ分で送給し、鋳造速度を100〜150mI
IlZ分にして250III111φツインゴツトを鋳
造した。このとき、添加剤1はタンディッシュ10の底
面近くにまで送給されて、被覆体4の溶解後、溶湯11
の対流で撹拌され、粒状体2の溶解および反応が行なわ
れ、添加物の歩留りは70%であった。
Now, for example, the Cu-Zr granules 2 are
Molten metal 1 at a temperature of 1150 to 1250°C was adjusted to a mesh, the diameter of additive 1 was 6I1mψ, the thickness of coating 4 was 0.4InlT11, and the filling rate was 53°7%.
1, the feeding speed of the additive 1 is increased by the feeding device 20 from 2 to
Feed at 4 IllZ minutes and set the casting speed to 100-150 mI.
A 250III 111φ twingot was cast for IlZ. At this time, the additive 1 is fed to near the bottom of the tundish 10, and after melting the coating 4, the molten metal 11
The mixture was stirred by convection, and the granules 2 were dissolved and reacted, and the yield of the additive was 70%.

したがって、従来例のように、添加剤1が溶湯表面に浮
上して大気により酸化されることもないので、従来の歩
留り50%より、歩留りが向上した。
Therefore, unlike the conventional example, the additive 1 does not float to the surface of the molten metal and is oxidized by the atmosphere, so the yield was improved from the conventional yield of 50%.

つぎに、粒状体2の粒度と添加方法との関係について説
明する。
Next, the relationship between the particle size of the granules 2 and the addition method will be explained.

上記添加剤1の溶湯11内への添加に際して、添加剤1
の溶湯11への溶解または反応を効率的に行なうために
、上記粒度は、12〜200メツシュの範囲内で適宜選
択して用いるのが好ましい。
When adding the additive 1 to the molten metal 11, the additive 1
In order to efficiently dissolve or react in the molten metal 11, the particle size is preferably selected within the range of 12 to 200 mesh.

添加作業としては、第4図の方法の他に第5図および第
6図の方法がある。
In addition to the method shown in FIG. 4, the methods shown in FIG. 5 and FIG. 6 are available as addition operations.

第5図において、30は溶湯11を収納した取鋼で、こ
の取鍋30に送給装置20を用いて、添加剤1が添加さ
れる。
In FIG. 5, reference numeral 30 is a ladle containing molten metal 11, and additive 1 is added to this ladle 30 using a feeding device 20.

また、第6図において、保持炉40に収納した溶湯を樋
41を通じて湯溜り42に供給する際に、樋41を流れ
る場に添加する方法である。
In addition, in FIG. 6, when the molten metal stored in the holding furnace 40 is supplied to the pool 42 through the gutter 41, it is added to the field flowing through the gutter 41.

第6図の樋41に添加する方法では、溶湯11の流下速
度が速いので、溶解および反応速度を速くする必要から
、添加剤1の粒度は細かいものが好ましく、一方、第5
図の取w430へ添加する方法では、溶湯11の熱容量
も大きいので、粒度は粗いものでもよく、さらに、第4
図の連続鋳造法では、上記2つの方法における中間の粒
度でよい。
In the method of adding to the gutter 41 shown in FIG. 6, since the flow rate of the molten metal 11 is fast, it is necessary to increase the dissolution and reaction rate, so the particle size of the additive 1 is preferably fine.
In the method of adding to w430 shown in the figure, since the heat capacity of the molten metal 11 is large, the particle size may be coarse.
In the continuous casting method shown in the figure, a particle size intermediate between the above two methods may be used.

たとえば、上記3つの方法における粒状体2の粒度は、
第7図の粒度(メツシュ)と粒状体の粒度別割合(%)
に示すように、一点鎖線Aで示すように、第6図の樋4
1による方法では、32〜200メツシュ、破線Cで示
すように、第5図の取v1430による方法では、12
〜120メツシュ、そして実線Bで示すように、第4図
の連続鋳造法では、その中間の粒度で16〜170メツ
シュに調整するのがよく、つまり、それぞれの添加方法
により粒状体2の粒度を調整することにより、均一かつ
迅速な溶解および反応が行なわれる。
For example, the particle size of the granular material 2 in the above three methods is
Particle size (mesh) and proportion of granular materials by particle size (%) in Figure 7
As shown in Figure 6, as shown by the dashed line A,
In the method according to No. 1, the number of meshes is 32 to 200, and as shown by the broken line C, in the method according to V1430 in FIG.
~120 mesh, and as shown by the solid line B, in the continuous casting method of Fig. 4, it is best to adjust the particle size to 16 to 170 mesh, which is an intermediate particle size between them. Adjustments result in uniform and rapid dissolution and reaction.

また、従来、一般に、添加剤1の添加は、溶解炉(図示
省略)に直接添加していたため、添加成分による炉内汚
染があり、このため、他の成分の材料の製造前に溶解炉
を洗浄する必要があったが、上記実施例では、粒状物2
の粒度が調整されて、溶湯11内で迅速に溶解するので
、溶解炉への添加でなくて、第4図ないし第6図による
方法による添加が行なえるので、溶解炉の洗浄の必要も
ない。
Furthermore, in the past, Additive 1 was generally added directly to the melting furnace (not shown), which caused contamination in the furnace due to the additive components. Although it was necessary to wash the particles, in the above example, the particulate matter 2
The particle size of is adjusted and it melts quickly in the molten metal 11, so it can be added by the method shown in Figures 4 to 6 instead of being added to the melting furnace, so there is no need to clean the melting furnace. .

また、被覆体4に被覆されて添加物が添加されるので、
成分調整も容易である。
In addition, since the additive is added by being coated with the covering body 4,
Component adjustment is also easy.

なお、上記実施例では、添加物として、Zrについて説
明したが、これに限らず、Ma 、B、P。
In addition, in the above-mentioned example, Zr was explained as an additive, but it is not limited to this, and Ma, B, and P may also be used.

Ca1Si、(:、e等を用いてよいのは勿論である。Of course, Ca1Si, (:, e, etc.) may be used.

[発明の効果] 以上説明したように、本発明によれば、溶湯に添加剤を
均一に溶解および反応させるのに、撹拌を必要としない
ので、作業性がよい。また、添加剤が溶湯表面に浮上し
て酸化されることが少ないので、材料歩留りもよい。
[Effects of the Invention] As explained above, according to the present invention, stirring is not required to uniformly dissolve and react the additive in the molten metal, resulting in good workability. Furthermore, since the additives are less likely to float to the surface of the molten metal and be oxidized, the material yield is also good.

さらに、添加剤を溶解炉以後の処理にて添加できるので
、溶解炉を洗浄する必要もない。
Furthermore, since additives can be added in the process after the melting furnace, there is no need to clean the melting furnace.

また、被覆用帯状板に被覆されて添加物が添加されるの
で、成分調整も容易である。
In addition, since the additives are added after being coated on the coating strip, component adjustment is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による添加剤を破断して示す
斜視図、第2図は同実施例による添加剤の製造を説明す
る説明図、第3図は粒度と充填率との関係を示すグラフ
、第4図ないし第6図は同実施例による添加剤を溶湯に
添加する方法を示す説明図、第7図は粒状体の粒度と粒
度別割合との関係を示すグラフである。
Fig. 1 is a cutaway perspective view of an additive according to one embodiment of the present invention, Fig. 2 is an explanatory diagram illustrating the production of the additive according to the same embodiment, and Fig. 3 is the relationship between particle size and filling rate. 4 to 6 are explanatory diagrams showing the method of adding the additive to the molten metal according to the same example, and FIG. 7 is a graph showing the relationship between the particle size of the granular material and the ratio by particle size.

Claims (1)

【特許請求の範囲】 1 銅または銅合金の被覆用帯状板を断面U字形に形成
して溝部を設け、この溝部に銅または銅合金添加物の粒
状体を充填して封入してなることを特徴とする銅および
銅合金製造用の添加剤。 2 上記粒状体の粒度は、12〜200メッシュに調整
された特許請求の範囲第1項記載の銅および銅合金製造
用の添加剤。
[Scope of Claims] 1. A coating band plate made of copper or copper alloy is formed into a U-shaped cross section, a groove is provided, and the groove is filled with and encapsulated with granular material of copper or copper alloy additive. Characteristic additives for the production of copper and copper alloys. 2. The additive for producing copper and copper alloys according to claim 1, wherein the particle size of the granules is adjusted to 12 to 200 mesh.
JP20762784A 1984-10-03 1984-10-03 Additive for manufacturing copper and copper alloy Pending JPS6187831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20762784A JPS6187831A (en) 1984-10-03 1984-10-03 Additive for manufacturing copper and copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20762784A JPS6187831A (en) 1984-10-03 1984-10-03 Additive for manufacturing copper and copper alloy

Publications (1)

Publication Number Publication Date
JPS6187831A true JPS6187831A (en) 1986-05-06

Family

ID=16542924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20762784A Pending JPS6187831A (en) 1984-10-03 1984-10-03 Additive for manufacturing copper and copper alloy

Country Status (1)

Country Link
JP (1) JPS6187831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093333A1 (en) * 2013-12-17 2015-06-25 三菱マテリアル株式会社 Method for producing ca-containing copper alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093333A1 (en) * 2013-12-17 2015-06-25 三菱マテリアル株式会社 Method for producing ca-containing copper alloy
CN105829554A (en) * 2013-12-17 2016-08-03 三菱综合材料株式会社 Method for producing ca-containing copper alloy
CN105829554B (en) * 2013-12-17 2018-12-18 三菱综合材料株式会社 The manufacturing method of the copper alloy containing Ca

Similar Documents

Publication Publication Date Title
CN105290376B (en) The smelting-casting equipment of low silver-colored hypoeutectic lead-free solder and the method using its manufacture solder
Wang et al. Synthesis of SnAgCu nanoparticles with low melting point by the chemical reduction method
JPS6187831A (en) Additive for manufacturing copper and copper alloy
US4943411A (en) Process for treating molten iron with magnesium additions
WO2005103335A1 (en) A device and a method for cleaning and purifying molten aluminium
US3185599A (en) Process of producing welding fluxes
US5062614A (en) Apparatus and method for manufacturing copper-base alloy
JP2000317580A (en) Method for casting copper alloy
JPH07179926A (en) Metallic capsule additive
EP0259772B1 (en) Apparatus and method for manufacturing copper-base alloy
US4981514A (en) Method for manufacturing copper-base alloy
US3849123A (en) Incorporation of solid additives into molten aluminum
JP4049383B2 (en) Molten metal pouring device and method for dispersing metal particles in solder
KR940010770B1 (en) Method of manufacturing copper-base alloy
WO1988005472A1 (en) Melt-manufacturing process
JPS62153108A (en) Fusion synthesis method
EP3369830B1 (en) Control material, and method for producing the same
JPS5933643B2 (en) Method of adding elements to molten steel
JP3769271B2 (en) Alloy melting method
JP4138012B2 (en) Iron additives for alloying non-ferrous alloys
Henrichs et al. The Flow Behavior of Solidifying Aluminum Casting Alloys as an Essential Factor in the Appearance of Defects in the Casting
JPS60127055A (en) Production of leaded free-cutting steel by continuous casting method
JPH11158533A (en) Iron-cesium-aluminum alloy for steel making and method for adding cesium to molten steel
JP2005179735A (en) METHOD OF PRODUCING Mg ALLOY, AND PRODUCTION DEVICE USED THEREFOR
JPH04147755A (en) Method for adding active metal to molten copper