JPH11158533A - Iron-cesium-aluminum alloy for steel making and method for adding cesium to molten steel - Google Patents

Iron-cesium-aluminum alloy for steel making and method for adding cesium to molten steel

Info

Publication number
JPH11158533A
JPH11158533A JP33664597A JP33664597A JPH11158533A JP H11158533 A JPH11158533 A JP H11158533A JP 33664597 A JP33664597 A JP 33664597A JP 33664597 A JP33664597 A JP 33664597A JP H11158533 A JPH11158533 A JP H11158533A
Authority
JP
Japan
Prior art keywords
alloy
mass
steel
molten steel
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33664597A
Other languages
Japanese (ja)
Other versions
JP3726258B2 (en
Inventor
Teruyoshi Iida
輝義 飯田
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP33664597A priority Critical patent/JP3726258B2/en
Publication of JPH11158533A publication Critical patent/JPH11158533A/en
Application granted granted Critical
Publication of JP3726258B2 publication Critical patent/JP3726258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means capable of executing the addition of Ce to a molten steel with high yield and high workability. SOLUTION: As a Ce additive, an Fe-Ce-Al alloy for steel making contg., by mass, 30 to 70% Ce and 5 to 20% Al, and, if required, the balance Fe with inevitable impurities is used. The Fe-Ce-Al alloy ingots finely-divided into suitable sizes are fallen to pour onto the molten metal surface, by which Ce is added to a molten steel. As the steel kinds, particularly, a ferritic stainless steel contg., by mass, 15 to 26% Cr and 2 to 6% Al is given. In this case, the temp. of the molten steel at the time of pouring the additive is preferably regulated to 1570 to 1620 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼を溶製する際
に合金添加材あるいは精錬用添加材として用いるFe−
Ce−Al合金、およびその合金を用いた溶鋼への歩留
の良いCe添加方法に関するものである。
[0001] The present invention relates to an Fe-based alloy used as an alloy additive or a refining additive when smelting steel.
The present invention relates to a Ce—Al alloy and a method of adding Ce to a molten steel using the alloy with a good yield.

【0002】[0002]

【従来の技術】Ceは高Al含有フェライト系ステンレ
ス鋼の耐高温酸化性を向上する元素として知られ、また
鉄鋼精錬においては優れた脱酸・脱硫能を発揮すること
から、溶鋼に添加して使用される機会が増えつつある。
通常、溶鋼に希土類元素を添加する場合、Ce,La,
Nd等を主成分とするミッシュメタルとして添加する事
が多いが、特にCeを選択的に添加する場合には、従来
M−Ce(=メタルCe;純Ce)を添加していた。
2. Description of the Related Art Ce is known as an element for improving the high-temperature oxidation resistance of high Al-containing ferritic stainless steel, and exhibits excellent deoxidizing and desulfurizing ability in steel refining. Opportunities for use are increasing.
Usually, when a rare earth element is added to molten steel, Ce, La,
It is often added as a misch metal containing Nd or the like as a main component. Particularly, when Ce is selectively added, M-Ce (= metal Ce; pure Ce) has conventionally been added.

【0003】[0003]

【発明が解決しようとする課題】しかし、M−Ceは極
めて活性であり、しかも融点が798℃と溶鋼温度より
かなり低いこともあって、そのまま溶湯上から添加する
とスラグや大気中の酸素と反応して急速に酸化される。
このため、溶鋼への歩留は低くなり、かつ安定しない。
したがって、多量のM−Ceの使用が避けられない上に
Ceの「成分はずれ」も生じ易い。また、M−Ceは保
存も難しい。すなわち、大気中で表面が酸化するととも
に湿分とも反応し、水素を吸蔵するという問題がある。
さらに、多量のM−Ce添加は、精錬容器や取鍋のMg
O耐火物から溶出したスラグ中のMgOの還元反応(次
式)を促し、鋼中のMg濃度を高める。 3(MgO)+2Ce→(Ce23)+3Mg その結果、凝固時に過飽和になったMgは気泡を生成
し、特にスラブ表層付近に生成した管状気泡は熱延時に
ヘゲ疵となって製品品質を劣化させる。このためスラブ
の重研削を余儀なくされ、これが製品歩留を著しく低下
させる要因となっている。
However, M-Ce is extremely active, and its melting point is 798 ° C, which is considerably lower than the temperature of molten steel. Therefore, if added directly from the molten metal, it reacts with slag and oxygen in the atmosphere. It is rapidly oxidized.
For this reason, the yield to molten steel is low and unstable.
Therefore, use of a large amount of M-Ce is inevitable, and “component loss” of Ce is liable to occur. M-Ce is also difficult to store. In other words, there is a problem that the surface is oxidized in the air and reacts with moisture to absorb hydrogen.
Furthermore, the addition of a large amount of M-Ce increases the amount of Mg in the refining vessel or ladle.
The reduction reaction of MgO in the slag eluted from the O refractory (the following formula) is promoted to increase the Mg concentration in the steel. 3 (MgO) +2 Ce → (Ce 2 O 3 ) +3 Mg As a result, supersaturated Mg at the time of solidification generates bubbles, and especially tubular bubbles generated near the surface layer of the slab become scorch during hot rolling. Deteriorate product quality. For this reason, heavy grinding of the slab is inevitable, which is a factor that significantly reduces the product yield.

【0004】一方、希土類元素等の易酸化性元素を歩留
良く溶鋼中に添加する方法として、例えば特開平8−3
32551号公報に示されるように、易酸化性元素を鉄
シースで被覆したワイヤを縦型タンディッシュ内に送給
して添加する「ワイヤフィード法」や、易酸化性元素を
含む粉粒状の合金鉄を不活性ガスキャリアで吹き込む
「インジェクション法」がある。しかし、これらの方法
は特別な設備を必要とし、また添加材の形態をワイヤ状
あるいは粉粒状にしなくてはならないという欠点があ
る。
On the other hand, as a method of adding an easily oxidizable element such as a rare earth element to molten steel with a high yield, for example, Japanese Patent Application Laid-Open No. Hei 8-3
As disclosed in Japanese Patent No. 32551, a "wire feed method" in which a wire coated with an oxidizable element with an iron sheath is fed into a vertical tundish and added, or a powdery alloy containing an oxidizable element There is an "injection method" in which iron is blown with an inert gas carrier. However, these methods require special equipment and have the disadvantage that the form of the additive must be in the form of wire or powder.

【0005】そこで本発明は、溶鋼にCeを添加するに
際し、特殊な設備を必要とせず、Ceの歩留が高くかつ
安定し、添加材の準備や保存も容易となるCe添加技術
を提供する事を目的とする。
Therefore, the present invention provides a technique for adding Ce to molten steel, which does not require special equipment, has a high and stable Ce yield, and facilitates the preparation and storage of the additive. For the purpose.

【0006】[0006]

【課題を解決するための手段】上記目的は、Ce添加材
として、30〜70質量%のCeと、5〜20質量%の
Alを含有するFe−Ce−Al合金を用いることによ
って達成される。特に、種々の鋼種に幅広く適用できる
「汎用性」の高いCe添加材として、上記含有量範囲の
Ce,Alの残部がFeおよび不可避的不純物からなる
組成のFe−Ce−Al合金を提供する。
The above object is achieved by using an Fe-Ce-Al alloy containing 30 to 70% by mass of Ce and 5 to 20% by mass of Al as a Ce additive. . In particular, the present invention provides an Fe—Ce—Al alloy having a composition in which the balance of Ce and Al in the above content ranges is Fe and unavoidable impurities, as a Ce additive having high “versatility” that can be widely applied to various steel types.

【0007】また本発明では、溶鋼にCeを添加するに
際し、上記Fe−Ce−Al合金の「合金塊」を湯面上
に落下投入することを特徴とする歩留の良いCe添加方
法を提供する。ここで、合金塊は、鋼の成分調整を行う
ための秤量ができ、かつ落下投入するのに適したもので
あれば良く、特にサイズ・形状・数を規定するものでは
ない。その具体例としてはインゴットをミルやハンマー
等で砕いたもの、あるいはインゴット自体等が挙げられ
る。
Further, the present invention provides a method of adding Ce with a good yield, characterized in that when adding Ce to molten steel, the above-mentioned "alloy lump" of the Fe-Ce-Al alloy is dropped onto a molten metal surface. I do. Here, the alloy ingot may be any one that can be weighed to adjust the composition of the steel and that is suitable for dropping in. The size, shape, and number are not particularly specified. Specific examples thereof include those obtained by crushing an ingot with a mill or a hammer or the like, or the ingot itself.

【0008】さらに、上記Ce添加方法が効果的に適用
できる態様として、溶鋼を特に、15〜26質量%のC
rと、2〜6質量%のAlを含有するフェライト系ステ
ンレス鋼の溶鋼に規定した発明を提供する。この場合に
おいて、Fe−Ce−Al合金塊を投入する時の溶鋼温
度は特に1570〜1620℃の範囲とすることが望ま
しい。
Further, as an embodiment to which the above-mentioned Ce adding method can be effectively applied, molten steel is preferably used in the form of 15 to 26% by mass of C.
The present invention provides an invention defined as a molten steel of a ferritic stainless steel containing r and 2 to 6% by mass of Al. In this case, it is desirable that the molten steel temperature at the time of introducing the Fe-Ce-Al alloy ingot be in the range of 1570 to 1620 ° C.

【0009】[0009]

【発明の実施の形態】前述のようにCeは極めて活性度
が高く、また融点も溶鋼温度よりかなり低い。ところ
が、Ceは鉄と合金化することによって融点が上昇し、
しかもCeとFeは約1600℃付近の製鋼温度におい
て均一融体を形成することが知られている。すると、F
e−Ce合金を添加材として使用すれば、M−Ceより
も活性度を下げた状態でCeを溶鋼中に添加できるもの
と考えられ、効率の良いCe添加の実現が期待される。
BEST MODE FOR CARRYING OUT THE INVENTION As mentioned above, Ce is extremely active, and its melting point is considerably lower than the temperature of molten steel. However, the melting point of Ce increases due to alloying with iron,
Moreover, it is known that Ce and Fe form a uniform melt at a steelmaking temperature of about 1600 ° C. Then F
If an e-Ce alloy is used as an additive, it is considered that Ce can be added to molten steel with a lower activity than M-Ce, and the realization of efficient Ce addition is expected.

【0010】しかしながら、本発明者らがFe−Ce合
金の使用を試みたところ、そのインゴットは容易に小割
りすることができず、実作業においては極めて扱いにく
い物であることがわかった。つまり、Fe−Ce合金は
比較的靱性に富んでおり、ミルやハンマー等で粉砕して
用いることができないのである。通常、製鋼工場で副原
料を添加する場合、合金バンカー等から所定量を取り出
して、コンベア等で精錬容器近くまで搬送し、ホッパ等
の送給装置にて溶湯に投入する。その際、投入原料は小
割されていないと円滑に供給することができないばかり
でなく、秤量も精度良くできない。また大きいままでは
溶鋼中への溶解性も悪くなる。一方、Fe−Ce合金イ
ンゴットを小球状に鋳造して用いる方法も考えられる
が、Fe−Ce合金は真空タンク内で溶製されるため、
小球状に鋳造することは設備的に困難である。このよう
に、Fe−Ce合金はCe添加材として必ずしも適して
いない事が明らかになった。
[0010] However, when the present inventors tried to use the Fe-Ce alloy, it was found that the ingot could not be easily divided into small pieces and was extremely difficult to handle in actual work. That is, the Fe—Ce alloy has relatively high toughness and cannot be used after being pulverized by a mill or a hammer. Normally, when an auxiliary material is added at a steelmaking plant, a predetermined amount is taken out of an alloy bunker or the like, transported to a place near a refining vessel by a conveyor or the like, and put into a molten metal by a feeding device such as a hopper. At that time, if the input raw material is not divided into small portions, not only can it not be supplied smoothly, but also the weighing cannot be performed with high accuracy. In addition, if it is large, the solubility in molten steel also becomes poor. On the other hand, a method of casting and using an Fe-Ce alloy ingot in a small spherical shape is also conceivable, but since the Fe-Ce alloy is melted in a vacuum tank,
Casting into small spheres is difficult in terms of equipment. Thus, it became clear that the Fe—Ce alloy was not necessarily suitable as a Ce additive.

【0011】本発明者らは、Fe−Ce合金ではなく、
Fe−Ce−Al合金を使用することによってこのよう
な問題を解消するに至った。種々の試験の結果、特定組
成のFe−Ce−Al合金は小割りが容易であること、
そして、Ceの活性度が低減され、溶鋼へ落下投入して
用いるCe添加材として適している事が判明したのであ
る。以下に、本発明を特定するための事項について説明
する。
[0011] The present inventors, instead of Fe-Ce alloy,
The use of the Fe-Ce-Al alloy has solved such a problem. As a result of various tests, the Fe-Ce-Al alloy having a specific composition is easy to subdivide,
And it turned out that the activity of Ce was reduced, and it was suitable as a Ce additive used by being dropped into molten steel and used. Hereinafter, matters for specifying the present invention will be described.

【0012】Fe−Ce−Al合金中のAl含有量を5
質量%以上とすることにより、合金は適度に脆化し、ミ
ルやハンマー等を用いて破砕することが可能になる。さ
らにAl含有量を10質量%以上とすれば一層容易に破
砕できるようになり、投入量を微調整する上で便利とな
る。一方、Al含有量が20質量%を超えると合金の比
重が小さくなりすぎて溶鋼中に沈みにくくなり、落下投
入にて高いCe歩留を得ることが難しくなる。また、A
l添加を要しない鋼にも適用できる「汎用性」を持たせ
るためにも合金のAl含有量は20質量%以下とするの
が良い。さらに、合金のAl含有量を15質量%以下に
留めるとAl濃度を低減すべき鋼にも適用できるように
なり、汎用性は一層高まる。以上のように、本発明のF
e−Ce−Al合金ではAl含有量を5〜20質量%に
規定するが、破砕性を重視する場合は質量の下限を10
質量%に、また、鋼中のAl濃度増加防止を重視する場
合は含有量の上限を15質量%にそれぞれ制限する事が
望ましい。
When the Al content in the Fe—Ce—Al alloy is 5
When the content is not less than mass%, the alloy is appropriately embrittled, and can be crushed using a mill, a hammer, or the like. Further, when the Al content is 10% by mass or more, crushing can be more easily performed, which is convenient for finely adjusting the input amount. On the other hand, when the Al content exceeds 20% by mass, the specific gravity of the alloy becomes too small, so that it is difficult to sink in the molten steel, and it becomes difficult to obtain a high Ce yield by dropping. Also, A
The Al content of the alloy is preferably set to 20% by mass or less in order to have “general versatility” applicable to steel not requiring l addition. Furthermore, if the Al content of the alloy is kept at 15% by mass or less, the alloy can be applied to steel whose Al concentration is to be reduced, and the versatility is further enhanced. As described above, F of the present invention
In the case of an e-Ce-Al alloy, the Al content is specified to be 5 to 20% by mass.
It is desirable to limit the upper limit of the content to 15% by mass, respectively, when importance is placed on preventing the increase of Al concentration in steel.

【0013】Fe−Ce−Al合金中のCe含有量を7
0質量%以下にするとCeの活性度が低下する効果が顕
著に現れ、鋼中へのCe歩留が急激に向上する。同時
に、スラグ中のMgOと反応するCe量が少なくなるた
め鋼中のMg濃度の増加が抑制され、その結果、スラブ
中の管状気泡の生成が防止されるようになる。合金のC
e含有量が減少するほどCeの活性度は低下すると考え
られ、Ce含有量を70質量%からさらに低減していく
と鋼中へのCe歩留は緩やかに向上する。しかし、合金
のCe含有量の減少に伴って、必要な合金の投入量は増
加することになる。合金投入量の増加は溶鋼温度の低下
を招き、好ましくない。本発明者らの調査の結果、合金
のCe含有量が30質量%以上であれば比較的小ロット
の生産においても問題無く使用できる事が確認された。
従って、本発明のFe−Ce−Al合金におけるCe含
有量は30〜70質量%に規定する。なお、溶鋼中への
Ce歩留のチャージ間変動をより安定させるには、Ce
添加量を30〜50質量%の範囲とすることが望まし
い。
When the Ce content in the Fe—Ce—Al alloy is 7
When the content is 0% by mass or less, the effect of lowering the activity of Ce appears remarkably, and the yield of Ce in steel is sharply improved. At the same time, since the amount of Ce reacting with MgO in the slag is reduced, the increase in the Mg concentration in the steel is suppressed, and as a result, the formation of tubular bubbles in the slab is prevented. Alloy C
It is considered that the lower the e content is, the lower the Ce activity is, and if the Ce content is further reduced from 70% by mass, the Ce yield in the steel gradually increases. However, as the Ce content of the alloy decreases, the required alloy input increases. An increase in the amount of the introduced alloy causes a decrease in the temperature of the molten steel, which is not preferable. As a result of the investigation by the present inventors, it has been confirmed that if the Ce content of the alloy is 30% by mass or more, it can be used without problem even in the production of a relatively small lot.
Therefore, the Ce content in the Fe—Ce—Al alloy of the present invention is specified to be 30 to 70% by mass. In order to further stabilize the fluctuation of Ce yield in molten steel between charges, Ce
It is desirable that the addition amount be in the range of 30 to 50% by mass.

【0014】本発明のFe−Ce−Al合金は、必要に
応じてFe,Ce,Al以外の他の元素を適宜含有して
もよい。但し、Feは少なくとも5質量%以上含有する
事が望ましい。また、実質的にFe,Ce,Alだけか
らなる合金、すなわち上記所定量のCe,Alと残部F
eおよび不可避的不純物からなるFe−Ce−Al3元
合金は、多くの鋼種に適用できる汎用性の高いものであ
る。
[0014] The Fe-Ce-Al alloy of the present invention may optionally contain other elements besides Fe, Ce, and Al. However, it is desirable that Fe be contained at least 5% by mass or more. An alloy consisting essentially of Fe, Ce and Al, that is, the above-mentioned predetermined amount of Ce, Al and the balance F
The Fe-Ce-Al ternary alloy composed of e and unavoidable impurities has high versatility applicable to many steel types.

【0015】このようなFe―Ce−Al合金は、例え
ば真空誘導炉を用いてAr雰囲気下で成分元素を含む原
料を溶解する方法等により得る事ができる。得られたイ
ンゴットは適度な靱性と脆性を兼ね備えているため、鋳
型から取り出す際や運搬時の取り扱いも比較的容易であ
り、かつ、破砕機やハンマー等を用いて小割りすること
ができる。小割りするサイズは、秤量ができ、湯面上
(通常はスラグの表面上)から落下投入して溶鋼に沈め
ることができ、かつ短時間で溶解するサイズとすればよ
い。すなわち、例えば粉粒状のようにあまり小さいもの
を落下投入するとスラグ中にトラップされて溶鋼中に十
分入らず、逆にあまり大きな塊では精度良い秤量ができ
ないばかりか、溶解に時間がかかりすぎることになる。
適切な小割りサイズは一概には言えないが、例えば1チ
ャージが数十トン規模の大量生産現場では30〜50m
m程度に小割りした合金塊が好適に使用できる。もっと
も、インゴット自体が小さければそのまま投入してもよ
い。
Such an Fe—Ce—Al alloy can be obtained by, for example, a method of melting a raw material containing a component element in an Ar atmosphere using a vacuum induction furnace. Since the obtained ingot has both moderate toughness and brittleness, it is relatively easy to handle it when taking it out of a mold or during transportation, and it can be divided into small pieces using a crusher, a hammer, or the like. The size to be subdivided may be a size that can be weighed, dropped into the molten steel surface (usually on the surface of the slag), submerged in molten steel, and melted in a short time. That is, for example, if a very small material such as a granular material is dropped and thrown in, it is trapped in the slag and does not sufficiently enter the molten steel. Become.
An appropriate subdivision size cannot be generally specified, but for example, 30 to 50 m in a mass production site where one charge is several tens tons.
An alloy chunk small to about m can be suitably used. However, if the ingot itself is small, it may be charged as it is.

【0016】本発明のFe−Ce−Al合金は種々の鋼
種に適用できるが、中でも特に高Al含有フェライト系
ステンレス鋼の製造に適用すれば非常に効果的である。
すなわち、Cr:約15〜26質量%、Al:約2〜6
質量%を含有するフェライト系ステンレス鋼は耐高温酸
化性に優れる剤料として周知であり、これに微量のCe
を含有させることによって酸化スケールの耐剥離性等が
著しく向上する事が知られている。しかし、そのCe含
有量の適正範囲は例えば0.05〜0.2質量%、ある
いは0.02〜0.15質量%というように狭いにもか
かわらず、Ceの歩留は低くかつ安定しないため、ロッ
ト間の品質のバラツキや「成分外れ」が出やすいという
製造上の問題を抱えている。したがって、このような鋼
種に本発明を適用する意義は大きい。
The Fe--Ce--Al alloy of the present invention can be applied to various steel types, and is particularly effective when applied to the production of high Al content ferritic stainless steel.
That is, Cr: about 15 to 26% by mass, Al: about 2 to 6%
The ferritic stainless steel containing about 10% by mass is well known as a material having excellent high-temperature oxidation resistance,
It has been known that the incorporation of a metal oxide significantly improves the peeling resistance and the like of the oxide scale. However, although the appropriate range of the Ce content is narrow, for example, 0.05 to 0.2% by mass or 0.02 to 0.15% by mass, the yield of Ce is low and unstable. In addition, there is a problem in manufacturing that lot-to-lot quality variation and "component departure" tend to occur. Therefore, the significance of applying the present invention to such steel types is significant.

【0017】Cr:15〜26質量%、Al:2〜6質
量%を含有するフェライト系ステンレス鋼の溶鋼に上記
したFe−Ce−Al合金塊落下投入する際、溶鋼温度
が1570〜1620℃の範囲で投入する事が望まし
い。1570℃未満ではCe歩留に若干の向上が見られ
るものの、出鍋温度が低くなりすぎるため何らかの方法
により溶鋼温度を上昇させる必要が生じる。逆に、16
20℃を超えるとCe歩留が下がるとともに、出鍋温度
まで溶鋼温度を下げるために静置させる等の処置が必要
となり、作業時間のロスにもなる。
When the Fe-Ce-Al alloy lump is dropped into a ferritic stainless steel molten steel containing 15 to 26% by mass of Cr and 2 to 6% by mass of Al, the molten steel temperature is 1570 to 1620 ° C. It is desirable to throw in the range. If the temperature is lower than 1570 ° C., although the Ce yield is slightly improved, the temperature of the pot is too low, so that it is necessary to raise the molten steel temperature by some method. Conversely, 16
If the temperature exceeds 20 ° C., the Ce yield decreases, and it is necessary to take measures such as allowing the steel to stand to lower the temperature of the molten steel to the temperature of the ladle, resulting in a loss of work time.

【0018】[0018]

【実施例】〔実施例1〕Ce添加材として、表1に示す
7種類のFe−Ce−Al合金、および2種類のFe−
Ce合金を真空誘導溶解炉を用いて溶製した。原料とし
ては電解鉄、M−Ce、電解Alを用い、これらをAr
雰囲気下のマグネシアるつぼ中で溶解し、鉄鋳型に鋳造
して約12kgの鋳塊を得た。分析の結果、これらの合
金中へのCe歩留はほぼ100%であった。
[Example 1] Seven types of Fe-Ce-Al alloys and two types of Fe-
The Ce alloy was melted using a vacuum induction melting furnace. As raw materials, electrolytic iron, M-Ce, and electrolytic Al were used.
It was melted in a magnesia crucible under an atmosphere and cast into an iron mold to obtain an ingot of about 12 kg. Analysis showed that the Ce yield in these alloys was almost 100%.

【0019】まず各鋳塊およびM−Ceについてハンマ
ーによる小割りを試み、破砕が可能であるか否かを評価
した。その結果、表1中に示すとおり、Alを含有しな
いFe−Ce合金およびAl含有量が5質量%未満のF
e−Ce−Al合金は破砕する事ができなかったが、A
lを5質量%以上含有するFe−Ce−Al合金は全て
破砕可能であった。また、M−Ceも破砕可能であっ
た。
First, each ingot and M-Ce were subdivided with a hammer to evaluate whether or not crushing was possible. As a result, as shown in Table 1, the Fe—Ce alloy containing no Al and the F containing less than 5% by mass of Al
The e-Ce-Al alloy could not be crushed, but A
All of the Fe—Ce—Al alloys containing 5% by mass or more of l were crushable. M-Ce was also crushable.

【0020】次に、破砕が可能であったFe−Ce−A
l合金およびM−CeをCe添加材として用いて、18
Cr―3Al鋼にCeを添加する実験を行った(表1の
実験No.1〜7)。各チャージとも、マグネシアるつ
ぼ中で12kgの18Cr−3Al鋼を溶解し、CaO
−MgO−Al2O3系スラグを溶鋼上に添加した後、
溶鋼温度を1600℃に保持し、溶鋼中のCe含有量が
おおよそ0.03〜0.1質量%程度になることを目標
に、適当量のCe添加材をスラグの湯面上から落下投入
した。そして、Ce添加後の溶鋼を鉄鋳型に鋳造し、鋳
塊を切断・研削して気泡の有無を確認するとともに、鋳
塊中のCe濃度を分析して添加材から鋼中へのCe歩留
を求めた。
Next, the crushable Fe-Ce-A
1 alloy and M-Ce as Ce additive, 18
An experiment of adding Ce to Cr-3Al steel was performed (Experiment Nos. 1 to 7 in Table 1). For each charge, 12 kg of 18Cr-3Al steel was melted in a magnesia crucible and CaO
-After adding MgO-Al2O3-based slag on molten steel,
The molten steel temperature was maintained at 1600 ° C., and an appropriate amount of the Ce additive was dropped from the molten metal surface of the slag with the aim of reducing the Ce content in the molten steel to approximately 0.03 to 0.1% by mass. . Then, the molten steel after the addition of Ce is cast into an iron mold, the ingot is cut and ground to check for the presence of air bubbles, and the Ce concentration in the ingot is analyzed to determine the Ce yield from the additive to the steel. I asked.

【0021】その結果、表1中に示すように、Ce含有
量:80質量%の添加材を用いた場合(実験No.5)のC
e歩留は、M−Ceを用いた場合(実験No.7)と比べて
ほとんど改善されなかったのに対し、Ce添加量:70
質量%の添加材を用いると(実験No.2)とCeの歩留は急
激に向上した点が注目される。また、添加材のAl含有
量が30質量%と高かった場合(実験No.6)は、比重が小
さすぎて溶鋼中に十分沈まず、Ce歩留はむしろ低下し
た。
As a result, as shown in Table 1, when an additive having a Ce content of 80% by mass was used (Experiment No. 5),
The e yield was hardly improved as compared with the case where M-Ce was used (Experiment No. 7), but the amount of Ce added: 70
It is noted that the use of the additive of mass% (Experiment No. 2) sharply improved the yield of Ce. Also, when the Al content of the additive was as high as 30% by mass (Experiment No. 6), the specific gravity was too small to sufficiently sink in the molten steel, and the Ce yield was rather lowered.

【0022】また、Ce歩留が高かったもの(実験No.1,
2,3,4)は、いずれも鋳塊中に気泡の生成が見られなかっ
た。これは、スラグ中のMgOとの反応に消費されるC
eが少なく、溶鋼中のMg濃度の増加が低く抑えられた
ために、凝固時にMgがガスとして放出されるに至らな
かったものと考えられる。
Further, those having a high Ce yield (Experiment No. 1,
In 2,3,4), no bubbles were found in the ingot. This is due to the C consumed in the reaction with MgO in the slag.
It is probable that Mg was not released as a gas at the time of solidification because e was small and the increase in the Mg concentration in the molten steel was suppressed low.

【0023】[0023]

【表1】 [Table 1]

【0024】〔実施例2〕1チャージ;80トン規模の
製鋼ラインにおいて、本発明のFe−Ce−Al合金を
使用し、高Al含有フェライト系ステンレス鋼(20質量
%Cr−5質量%Al鋼)にCeを添加した。まず予
め、添加材として用いるFe−50質量%Ce−10質
量%Al合金300kgを実施例1と同様の方法で溶製
し、破砕機を用いておおよそこぶし大程度に小割した。
溶鋼へのCe歩留を50%と予測し、鋼のCe添加量の
目標値;0.08質量%に対して必要となる投入量を算
出して、小割した合金塊を秤量した。一方、ステンレス
鋼の溶鋼(80トン)は、電気炉→転炉→真空脱ガスの工
程を経てCe以外の成分調整を既に終えたものを用い
た。
Example 2 1 charge; In a steel production line of 80 ton scale, a Fe-Ce-Al alloy of the present invention was used, and a high Al-containing ferritic stainless steel (20 mass% Cr-5 mass% Al steel) was used. ) Was added with Ce. First, 300 kg of an Fe-50 mass% Ce-10 mass% Al alloy used as an additive material was melted in the same manner as in Example 1, and was roughly divided into large fists using a crusher.
The Ce yield to the molten steel was predicted to be 50%, the required amount of Ce added to the target value of 0.08% by mass of Ce added to the steel was calculated, and the alloy lumps divided into small portions were weighed. On the other hand, the molten steel of stainless steel (80 tons) used had already been adjusted for components other than Ce through the steps of electric furnace → converter → vacuum degassing.

【0025】溶鋼温度が1585℃の時、秤量した上記
Fe−Ce−Al合金塊を副原料投入ホッパから送給し
て、溶鋼の上に浮いているスラグの湯面上から落下投入
した。投入による溶鋼温度の低下は約3℃と小さく、全
く問題にならない程度であった。その後、連続鋳造して
スラブを得た。スラブからカットサンプルを採取し、冷
却後に表面を研削して管状気泡の生成を調べた。その結
果、管状気泡は見られなかった。また、スラブの成分分
析を行った結果、Ce含有量は0.085質量%であっ
た。すなわち、ほぼ目標通りのCe含有量となり、実績
歩留も53%とほぼ予測値に近く、良好な結果であっ
た。
When the molten steel temperature was 1585 ° C., the weighed Fe—Ce—Al alloy ingot was fed from an auxiliary material input hopper, and dropped from a molten metal surface of a slag floating on the molten steel. The drop of the molten steel temperature due to the charging was as small as about 3 ° C., which was not a problem at all. Thereafter, continuous casting was performed to obtain a slab. A cut sample was taken from the slab, the surface was ground after cooling, and the formation of tubular bubbles was examined. As a result, no tubular bubbles were observed. Further, as a result of analyzing the components of the slab, the Ce content was 0.085% by mass. That is, the Ce content was almost as desired, and the actual yield was 53%, which was almost close to the predicted value, and was a good result.

【0026】[0026]

【発明の効果】本発明のFe−Ce−Al合金を用い
れば、活性度を低減した状態で溶鋼にCeを添加できる
ので、溶鋼中へのCe歩留は高くかつ安定する。このた
め、Ce使用量が少なくて済み、節約になると同時に、
鋼中Mg濃度の増加が抑えられ、その結果、従来Ce添
加鋼で問題となっていた気泡の生成が防止され、高品質
のCe添加鋼が容易に得られる。また「成分外れ」の出
現頻度は著しく減少し、ロット間の品質のバラツキも抑
制される。 また当該合金は小割りが容易であるため作業性は高く
維持され、しかも「落下投入」という簡単な手段で添加
できるため特殊な設備は不要である。したがって本発明
の現場への適用可能性は極めて高い。 さらに当該合金はM−Ceに比べ酸化や水素吸蔵の程
度が軽いため、保管が容易となる。 特に本発明は、非常に優れた耐高温酸化特性を有して
いるにもかかわらず安定した製造が難しかった「Ce入
り高Al含有フェライト系ステンレス鋼」の製造を容易
にし、その普及に寄与するものである。
According to the Fe-Ce-Al alloy of the present invention, Ce can be added to molten steel with reduced activity, so that the Ce yield in molten steel is high and stable. As a result, the amount of Ce used can be reduced and saved, and at the same time,
An increase in the Mg concentration in the steel is suppressed, and as a result, the generation of bubbles, which has been a problem in the conventional Ce-added steel, is prevented, and a high-quality Ce-added steel can be easily obtained. In addition, the frequency of occurrence of “component departure” is significantly reduced, and variation in quality between lots is suppressed. In addition, since the alloy is easily divided into small pieces, the workability is maintained high, and the alloy can be added by a simple means of "drop-in", so that special equipment is not required. Therefore, the applicability of the present invention to the field is extremely high. Further, since the alloy has a lighter degree of oxidation and hydrogen absorption than M-Ce, it can be easily stored. In particular, the present invention facilitates the production of “high-Al-containing ferritic stainless steel containing Ce”, which has been difficult to produce stably despite having excellent high-temperature oxidation resistance, and contributes to its widespread use. Things.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Ce:30〜70質量%、Al:5〜2
0質量%を含有する製鋼用Fe−Ce−Al合金。
1. Ce: 30 to 70% by mass, Al: 5 to 2
Fe-Ce-Al alloy for steel making containing 0% by mass.
【請求項2】 Ce:30〜70質量%、Al:5〜2
0質量%を含有し、残部Feおよび不可避的不純物から
なる製鋼用Fe−Ce−Al合金。
2. Ce: 30 to 70% by mass, Al: 5 to 2
Fe-Ce-Al alloy for steel making containing 0% by mass, the balance being Fe and unavoidable impurities.
【請求項3】 溶鋼にCeを添加するに際し、Ce:3
0〜70質量%、Al:5〜20質量%を含有するFe
−Ce−Al合金塊を湯面上に落下投入することを特徴
とする歩留の良いCe添加方法。
3. When adding Ce to molten steel, Ce: 3 is added.
Fe containing 0 to 70% by mass and Al: 5 to 20% by mass
-A method of adding Ce with a good yield, characterized by dropping a Ce-Al alloy lump onto a molten metal surface.
【請求項4】 溶鋼にCeを添加するに際し、Ce:3
0〜70質量%、Al:5〜20質量%を含有し、残部
Feおよ不可避的不純物からなるFe−Ce−Al合金
塊を湯面上に落下投入する事を特徴とする歩留の良いC
e添加方法。
4. When Ce is added to molten steel, Ce: 3 is added.
Fe-Ce-Al alloy lump containing 0 to 70% by mass and Al: 5 to 20% by mass, the balance being Fe and unavoidable impurities is dropped onto the surface of the molten metal and has a good yield. C
e Addition method.
【請求項5】 溶鋼は、Cr:15〜26質量%、A
l:2〜6質量%を含有するフェライト系ステンレス鋼
の溶鋼である、請求項3または4に記載の歩留の良いC
e添加方法。
5. The molten steel contains Cr: 15 to 26% by mass, A
5. A high-yield C according to claim 3 or 4, which is a molten steel of a ferritic stainless steel containing l: 2 to 6% by mass.
e Addition method.
【請求項6】 溶鋼温度が1570〜1620℃の範囲
でFe−Ce−Al合金塊を湯面上に落下投入する、請
求項5に記載のCe添加方法。
6. The Ce adding method according to claim 5, wherein the Fe-Ce-Al alloy ingot is dropped onto the molten metal surface at a molten steel temperature of 1570 to 1620 ° C.
JP33664597A 1997-11-21 1997-11-21 Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel Expired - Fee Related JP3726258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33664597A JP3726258B2 (en) 1997-11-21 1997-11-21 Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33664597A JP3726258B2 (en) 1997-11-21 1997-11-21 Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel

Publications (2)

Publication Number Publication Date
JPH11158533A true JPH11158533A (en) 1999-06-15
JP3726258B2 JP3726258B2 (en) 2005-12-14

Family

ID=18301315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33664597A Expired - Fee Related JP3726258B2 (en) 1997-11-21 1997-11-21 Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel

Country Status (1)

Country Link
JP (1) JP3726258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690966A (en) * 2012-05-29 2012-09-26 太原理工大学 Method for manufacturing porous foam alloy from stainless steel scrap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007908A1 (en) 2015-07-09 2017-01-12 Orlando Rios Castable high-temperature ce-modified al alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690966A (en) * 2012-05-29 2012-09-26 太原理工大学 Method for manufacturing porous foam alloy from stainless steel scrap

Also Published As

Publication number Publication date
JP3726258B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US9108242B2 (en) Grain refiners for steel-manufacturing methods and use
RU2230797C2 (en) Method for steel graininess reduction, an alloy for steel graininess reduction and a method to produce the alloy for steel graininess reduction
KR102410368B1 (en) Cast iron inoculum and method of producing cast iron inoculant
JP6786964B2 (en) How to prevent blockage of continuous casting nozzle of sulfur-added steel
CA1196195A (en) Boron alloying additive for continuously casting boron steel
KR102410364B1 (en) Cast iron inoculum and method of producing cast iron inoculant
JP3726258B2 (en) Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel
US3459540A (en) Production of clean fine grain steels
TW202248435A (en) Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof
JP3722329B2 (en) Fe-La-Al alloy for steel making and La addition method to molten steel
US6350295B1 (en) Method for densifying aluminum and iron briquettes and adding to steel
JP6888275B2 (en) Manufacturing method of sulfur-added steel
US4233065A (en) Effective boron alloying additive for continuous casting fine grain boron steels
JP6848369B2 (en) Sulfur-added raw material to molten steel and manufacturing method of sulfur-added steel
RU2145356C1 (en) Method of converter melting with use of prereduced materials
JP2626417B2 (en) Graphite spheroidizing alloy in mold and graphite spheroidizing method
TWI825639B (en) Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
AU4111685A (en) Production of alloy steels using chemically prepared v2 o3 as a vanadium additive
JPH0125363B2 (en)
RU2058415C1 (en) Method for production of ferroalloy containing manganese and silicon
RU2230798C1 (en) Method of steel production
RU2089331C1 (en) Charge stock for metallurgic conversion and mixture of preparation thereof
SU996070A1 (en) Steel ingot production method
RU2070602C1 (en) Mixture for production of alloy for alloyage and reduction of nickel and cobalt-containing alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041028

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050916

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050916

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101007

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees