JP3722329B2 - Fe-La-Al alloy for steel making and La addition method to molten steel - Google Patents

Fe-La-Al alloy for steel making and La addition method to molten steel Download PDF

Info

Publication number
JP3722329B2
JP3722329B2 JP29316597A JP29316597A JP3722329B2 JP 3722329 B2 JP3722329 B2 JP 3722329B2 JP 29316597 A JP29316597 A JP 29316597A JP 29316597 A JP29316597 A JP 29316597A JP 3722329 B2 JP3722329 B2 JP 3722329B2
Authority
JP
Japan
Prior art keywords
alloy
mass
steel
molten steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29316597A
Other languages
Japanese (ja)
Other versions
JPH11117015A (en
Inventor
輝義 飯田
隆 山内
守弘 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29316597A priority Critical patent/JP3722329B2/en
Publication of JPH11117015A publication Critical patent/JPH11117015A/en
Application granted granted Critical
Publication of JP3722329B2 publication Critical patent/JP3722329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄鋼を溶製する際に合金添加材あるいは精錬用添加材として用いるFe−La−Al合金、および、その合金を用いた溶鋼への歩留りの良いLa添加方法に関するものである。
【0002】
【従来の技術】
Laは高Al含有フェライト系ステンレス鋼の耐高温酸化性を向上させる元素として知られ、また鉄鋼精錬においては優れた脱酸・脱硫能を発揮することから、溶鋼に添加して使用される機会が増えつつある。通常、溶鋼に希土類元素を添加する場合、Ce,La,Nd等を主成分とするミッシュメタルとして添加することが多いが、希土類元素のうち特にLaを選択的に添加する場合には、従来M−La(=メタルLa;純La)を添加していた。
【0003】
【発明が解決しようとする課題】
しかし、M−Laは極めて活性であり、しかも融点が918℃と溶鋼温度よりかなり低いこともあって、そのまま溶湯上から添加するとスラグや大気中の酸素と反応して急速に酸化される。このため、溶鋼への歩留りは低くなり、かつ安定しない。したがって、多量のM−Laの使用が避けらないうえに、Laの「成分外れ」も生じ易い。また、M−Laは保存も難しい。すなわち、大気中で表面が酸化するとともに湿分とも反応し、水素を吸蔵するという問題がある。さらに、多量のM−La添加は、精錬容器や取鍋のMgO耐火物から溶出したスラグ中のMgOの還元反応(次式)を促し、鋼中のMg濃度を高める。
3(MgO)+2La → (La23)+3Mg
その結果、凝固時に過飽和になったMgは気泡を生成し、特にスラブ表層付近に生成した管状気泡は熱延時にヘゲ疵となって製品品質を劣化させる。このためスラブの重研削を余儀なくされ、これが製品歩留りを著しく低下させる要因となっている。
【0004】
一方、希土類元素等の易酸化性元素を歩留り良く溶鋼中に添加する方法として、例えば特開平8−332551号公報に示されるように、易酸化性元素を鉄シースで被覆したワイヤを竪型タンディシュ内に送給して添加する「ワイヤフィード法」や、易酸化性元素を含む粉粒状の合金鉄を不活性ガスキャリアで吹き込む「インジェクション法」がある。しかし、これらの方法は特別な設備を必要とし、また添加材の形態をワイヤ状あるいは粉粒状にしなくてはならないという欠点がある。
【0005】
そこで本発明は、溶鋼にLaを添加するに際し、特殊な設備を必要とせず、Laの歩留りが高くかつ安定し、添加材の準備や保存も容易となるLa添加技術を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的は、La添加材として、30〜70質量%のLaと、5〜20質量%のAlを含有するFe−La−Al合金を用いることによって達成される。特に、種々の鋼種に幅広く適用できる「汎用性」の高いLa添加材として、上記含有量範囲のLa,Alの残部がFeおよび不可避的不純物からなる組成のFe−La−Al合金を提供する。
【0007】
また本発明では、溶鋼にLaを添加するに際し、上記Fe−La−Al合金の「合金塊」を湯面上に落下投入することを特徴とする歩留りの良いLa添加方法を提供する。ここで、合金塊は、鋼の成分調整を行うための秤量ができ、かつ落下投入するのに適したものであればよく、特にサイズ・形状・数を規定するものではない。その具体例としてはインゴットをミルやハンマー等で砕いたもの、あるいはインゴット自体などが挙げられる。
【0008】
さらに、上記La添加方法が効果的に適用できる態様として、溶鋼を特に、15〜26質量%のCrと、2〜6質量%のAlを含有するフェライト系ステンレス鋼の溶鋼に規定した発明を提供する。この場合において、Fe−La−Al合金塊を投入する時の溶鋼温度は特に1570〜1620℃の範囲とすることができる。
【0009】
【発明の実施の形態】
前述のようにLaは極めて活性度が高く、また融点も溶鋼温度よりかなり低い。ところが、LaはFeと合金化することによって融点が上昇し、しかもLaとFeは約1600℃付近の製鋼温度において均一融体を形成することが知られている。すると、Fe−La合金を添加材として使用すれば、M−Laよりも活性度を下げた状態でLaを溶鋼中に添加できるものと考えられ、効率の良いLa添加の実現が期待される。
【0010】
しかしながら、本発明者らがFe−La合金の使用を試みたところ、そのインゴットは容易に小割りすることができず、実作業においては極めて扱いにくいものであることが判った。つまり、Fe−La合金は比較的靭性に富んでおり、ミルやハンマー等で破砕して用いることができないのである。通常、製鋼工場で副原料を添加する場合、合金バンカー等から所定量を取り出して、コンベア等で精錬容器近くまで搬送し、ホッパ等の送給装置にて溶湯に投入する。その際、投入原料は小割りされていないと円滑に供給することができないばかりでなく、秤量も精度良くできない。また大きいままでは溶鋼中への溶解性も悪くなる。一方、Fe−La合金インゴットを小球状に鋳造して用いる方法も考えられるが、Fe−La合金は真空タンク内で溶製されるため、小球状に鋳造することは設備的に困難である。このように、Fe−La合金はLa添加材として必ずしも適していないことが明らかになった。
【0011】
本発明者らは、Fe−La合金ではなく、Fe−La−Al合金を採用することによって、このような問題を解消するに至った。種々の試験の結果、特定組成のFe−La−Al合金は小割りが容易であること、そして、Laの活性度が低減され、溶鋼へ落下投入して用いるLa添加材として適していることが判明したのである。以下に、本発明を特定するための事項について説明する。
【0012】
Fe−La−Al合金中のAl含有量を5質量%以上とすることにより、合金は適度に脆化し、ミルやハンマー等を用いて破砕することが可能になる。さらにAl含有量を10質量%以上とすれば一層容易に破砕できるようになり、投入量を微調整するうえで便利となる。一方、Al含有量が20質量%を超えると合金の比重が小さくなりすぎて溶鋼中に沈みにくくなり、落下投入にて高いLa歩留りを得ることが難しくなる。また、Al添加を要しない鋼にも適用できる「汎用性」を持たせるためにも合金のAl含有量は20質量%以下とするのがよい。さらに、合金のAl含有量を15質量%以下にとどめるとAl濃度を低減すべき鋼にも適用できるようになり、汎用性は一層高まる。以上のように、本発明のFe−La−Al合金ではAl含有量を5〜20質量%に規定するが、破砕性を重視する場合はAl含有量の下限を10質量%に、また、鋼中のAl濃度増加防止を重視する場合はAl含有量の上限を15質量%にそれぞれ制限することが望ましい。
【0013】
Fe−La−Al合金中のLa含有量を70質量%以下にするとLaの活性度が低下する効果が顕著に現れ、鋼中へのLa歩留りが急激に向上する。同時に、スラグ中のMgOと反応するLa量が少なくなるため鋼中のMg濃度の増加が抑制され、その結果、スラブ中の管状気泡の生成が防止されるようになる。合金のLa含有量が減少するほどLaの活性度は低下すると考えられ、La含有量を70質量%からさらに低減していくと鋼中へのLa歩留りは緩やかに向上する。しかし、合金のLa含有量の減少に伴って、必要となる合金の量は増加する。合金投入量の増加は溶鋼温度の低下を招き、好ましくない。本発明者らの調査の結果、合金のLa含有量を30質量%以上にしておけば比較的小ロットの生産においても問題なく使用できることが確認された。したがって、本発明のFe−La−Al合金におけるLa含有量は30〜70質量%に規定する。なお、溶鋼中へのLa歩留りのチャージ間変動をより安定化させるには、La含有量を30〜50質量%の範囲とすることが望ましい。
【0014】
本発明のFe−La−Al合金は、必要に応じてFe,La,Al以外の他の元素を適宜含有してもよい。ただし、Feは少なくとも5質量%以上含有することが望ましい。また、実質的にFe,La,Alだけからなる合金、すなわち上記所定量のLa,Alと残部Feおよび不可避的不純物からなるFe−La−Al3元合金は、多くの鋼種に適用できる汎用性の高いものである。
【0015】
このようなFe−La−Al合金は、例えば真空誘導溶解炉を用いてAr雰囲気下で成分元素を含む原料を溶解する方法等により得ることができる。得られたインゴットは適度な靭性と脆性を兼ね備えているため、鋳型から取り出す際や運搬時の取り扱いも比較的容易であり、かつ、破砕機やハンマー等を用いて小割りすることができる。小割りするサイズは、秤量ができ、湯面上(通常はスラグの湯面上)から落下投入して溶鋼中へ沈めることができ、かつ短時間で溶解するサイズとすればよい。すなわち、例えば粉粒状のようにあまり小さいものを落下投入するとスラグ中にトラップされて溶鋼中に十分入らず、逆にあまり大きな塊(かたまり)では精度良い秤量ができないばかりか、溶解に時間がかかりすぎることになる。適切な小割りサイズは一概には言えないが、例えば1チャージが数十トン規模の大量生産現場では30〜50mm程度に小割りした合金塊が好適に使用できる。もっとも、インゴット自体が小さければそのまま投入してもよい。
【0016】
本発明のFe−La−Al合金は種々の鋼種に適用できるが、なかでも特に高Al含有フェライト系ステンレス鋼の製造に適用すれば非常に効果的である。すなわち、Cr:約15〜26質量%,Al:約2〜6質量%を含有するフェライト系ステンレス鋼は耐高温酸化性に優れる材料として周知であり、これに微量のLaを含有させることによって酸化スケールの耐剥離性等が著しく向上することが知られている。しかし、そのLa含有量の適正範囲は例えば0.05〜0.2質量%、あるいは0.02〜0.15質量%というように狭いにもかかわらず、Laの歩留りは低くかつ安定しないため、ロット間の品質のバラツキや「成分外れ」が出やすいという製造上の問題を抱えている。したがって、このような鋼種に本発明を適用する意義は大きい。
【0017】
Cr:15〜26質量%,Al:2〜6質量%を含有するフェライト系ステンレス鋼の溶鋼に上記したFe−La−Al合金塊を落下投入する際、溶鋼温度が1570〜1620℃の範囲で投入することが望ましい。1570℃未満ではLa歩留りに若干の向上がみられるものの、出鍋温度が低くなりすぎるため何らかの方法により溶鋼温度を上昇させる必要が生じる。逆に、1620℃を超えるとLa歩留りが下がるとともに、出鍋温度まで溶鋼温度を下げるために静置させる等の処置が必要となり、作業時間のロスにもなる。
【0018】
【実施例】
〔実施例1〕
La添加材として、表1に示す7種類のFe−La−Al合金、および2種類のFe−La合金を真空誘導溶解炉を用いて溶製した。原料としては電解鉄,M−La,電解Alを用い、これらをAr雰囲気下のマグネシアルツボ中で溶解し、鉄鋳型に鋳造して約12kgの鋳塊を得た。分析の結果、これらの合金中へのLa歩留りはほぼ100%であった。
【0019】
まず各鋳塊およびM−Laについてハンマーによる小割りを試み、破砕が可能であるか否かを評価した。その結果、表1中に示すとおり、Alを含有しないFe−La合金およびAl含有量が5質量%未満のFe−La−Al合金は破砕することができなかったが、Alを5質量%以上含有するFe−La−Al合金は全て破砕可能であった。また、M−Laも破砕可能であった。
【0020】
次に、破砕が可能であったFe−La−Al合金およびM−LaをLa添加材として用いて、18Cr−3Al鋼にLaを添加する実験を行った(表1の実験No.1〜7)。各チャージとも、マグネシアルツボ中で12kgの18Cr−3Al鋼を溶解し、CaO−MgO−Al23系スラグを溶鋼上に添加した後、溶鋼温度を1600℃に保持し、溶鋼中のLa含有量がおおよそ0.03〜0.1質量%程度になることを目標に、適当量のLa添加材をスラグの湯面上から落下投入した。その際、添加材投入前および投入後(添加材溶解後)の溶鋼温度を測定した。そして、La添加後の溶鋼を鉄鋳型に鋳造し、鋳塊を切断・研削して気泡の有無を調査するとともに、鋳塊中のLa濃度を分析して添加材から鋼中へのLa歩留りを求めた。
【0021】
その結果、表1中に示すように、La含有量:80質量%の添加材を用いた場合(実験No.5)のLa歩留りは、M−Laを用いた場合(実験No.7)と比べてほとんど改善されなかったのに対し、La含有量:70質量%の添加材を用いると(実験No.2)とLa歩留りは急激に向上した点が注目される。また、添加材のAl含有量が30%と高かった場合(実験No.6)は、比重が小さすぎて溶鋼中に十分沈まず、La歩留りはむしろ低下した。
【0022】
また、La歩留りが高かったもの(実験No.1,2,3,4)は、いずれも鋳塊中に気泡の生成が見られなかった。これは、スラグ中のMgOとの反応に消費されるLaが少なく、溶鋼中のMg濃度の増加が低く抑えられたために、凝固時にMgがガスとして放出されるに至らなかったものと考えられる。
【0023】
【表1】

Figure 0003722329
【0024】
〔実施例2〕
1チャージ;80トン規模の製鋼ラインにおいて、本発明のFe−La−Al合金を使用し、高Al含有フェライト系ステンレス鋼(20%Cr−5%Al鋼)にLaを添加した。まず予め、添加材として用いるFe−50%La−10%Al合金300kgを実施例1と同様の方法で溶製し、破砕機を用いておおよそこぶし大程度に小割りした。溶鋼へのLa歩留りを50%と予測し、鋼のLa含有量の目標値;0.08質量%に対して必要となる投入量を算出して、小割りした合金塊を秤量した。一方、ステンレス鋼の溶鋼(80トン)は、電気炉→転炉→真空脱ガスの工程を経てLa以外の成分調整を既に終えたものを用いた。
【0025】
溶鋼温度が1585℃の時、秤量した上記Fe−La−Al合金塊を副原料投入ホッパから送給して、溶鋼の上に浮いているスラグの湯面上から落下投入した。投入による溶鋼温度の低下は約3℃と小さく、全く問題にならない程度であった。その後、連続鋳造してスラブを得た。スラブからカットサンプルを採取し、冷却後に表面を研削して管状気泡の生成を調べた。その結果、管状気泡は見られなかった。また、スラブの成分分析を行った結果、La含有量は0.085質量%であった。すなわち、ほぼ目標どおりのLa含有量となり、実績歩留りも53%とほぼ予測値に近く、良好な結果であった。
【0026】
【発明の効果】
▲1▼本発明のFe−La−Al合金を用いれば、活性度を低減した状態で溶鋼にLaを添加できるので、溶鋼中へのLa歩留りは高くかつ安定する。このため、La使用量が少なくて済み、節約になると同時に、鋼中Mg濃度の増加が抑えられ、その結果、従来La添加鋼で問題となっていた気泡の生成が防止され、高品質のLa添加鋼が容易に得られる。また「成分外れ」の出現頻度は著しく減少し、ロット間の品質のバラツキも抑制される。
▲2▼また当該合金は小割りが容易であるため作業性は高く維持され、しかも「落下投入」という簡単な手段で添加できるため特殊な設備は不要である。したがって本発明の現場への適用可能性は極めて高い。
▲3▼さらに当該合金はM−Laに比べ酸化や水素吸蔵の程度が軽いため、保管が容易となる。
▲4▼特に本発明は、非常に優れた耐高温酸化特性を有しているにもかかわらず安定した製造が難しかった「La入り高Al含有フェライト系ステンレス鋼」の製造を容易にし、その普及に大きく寄与するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Fe-La-Al alloy used as an alloy additive or a refining additive when melting steel, and a La addition method with good yield to molten steel using the alloy.
[0002]
[Prior art]
La is known as an element that improves the high-temperature oxidation resistance of high Al-containing ferritic stainless steel, and also exhibits excellent deoxidation / desulfurization ability in steel refining, so there is an opportunity to add it to molten steel. It is increasing. Usually, when a rare earth element is added to molten steel, it is often added as a misch metal containing Ce, La, Nd, etc. as a main component. -La (= metal La; pure La) was added.
[0003]
[Problems to be solved by the invention]
However, M-La is extremely active and has a melting point of 918 ° C., which is considerably lower than the molten steel temperature. When M-La is added as it is from above the molten metal, it reacts with slag and oxygen in the atmosphere and is rapidly oxidized. For this reason, the yield to molten steel becomes low and is not stable. Therefore, the use of a large amount of M-La is unavoidable, and La “out-of-component” tends to occur. In addition, M-La is difficult to store. That is, there is a problem that the surface oxidizes in the atmosphere and also reacts with moisture to occlude hydrogen. Furthermore, the addition of a large amount of M-La promotes the reduction reaction (following formula) of MgO in the slag eluted from the MgO refractory in the refining vessel or ladle, and increases the Mg concentration in the steel.
3 (MgO) +2 La → (La 2 O 3 ) +3 Mg
As a result, Mg that is supersaturated during solidification generates bubbles, and the tubular bubbles generated particularly near the surface of the slab become bald when hot rolled, thereby deteriorating product quality. This necessitates heavy grinding of the slab, which is a factor that significantly lowers the product yield.
[0004]
On the other hand, as a method for adding easily oxidizable elements such as rare earth elements to molten steel with a high yield, for example, as shown in JP-A-8-332551, a wire in which an easily oxidizable element is coated with an iron sheath is used as a vertical tundish. There are a “wire feed method” that is fed and added inside, and an “injection method” in which powdered alloy iron containing an easily oxidizable element is blown with an inert gas carrier. However, these methods have the disadvantage that special equipment is required and the form of the additive must be in the form of wire or powder.
[0005]
Accordingly, an object of the present invention is to provide a La addition technique that does not require special equipment when adding La to molten steel, has a high and stable yield of La, and facilitates preparation and storage of additives. To do.
[0006]
[Means for Solving the Problems]
The above object is achieved by using an Fe—La—Al alloy containing 30 to 70% by mass of La and 5 to 20% by mass of Al as the La additive. In particular, as a highly versatile La additive that can be widely applied to various steel types, an Fe—La—Al alloy having a composition in which the balance of La and Al in the above content range is composed of Fe and inevitable impurities is provided.
[0007]
In addition, the present invention provides a La addition method with good yield, characterized in that when adding La to molten steel, the “alloy lump” of the Fe—La—Al alloy is dropped onto the molten metal surface. Here, the alloy lump is not particularly limited in size, shape, and number as long as it can be weighed for adjusting the components of the steel and is suitable for dropping. Specific examples thereof include those obtained by crushing an ingot with a mill or a hammer, or the ingot itself.
[0008]
Furthermore, as an aspect in which the above La addition method can be effectively applied, an invention is provided in which the molten steel is specified as a ferritic stainless steel molten steel containing 15 to 26% by mass of Cr and 2 to 6% by mass of Al. To do. In this case, the molten steel temperature when the Fe—La—Al alloy ingot is charged can be set in the range of 1570 to 1620 ° C. in particular.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As described above, La has a very high activity, and its melting point is considerably lower than the molten steel temperature. However, it is known that when La is alloyed with Fe, the melting point increases, and La and Fe form a uniform melt at a steelmaking temperature of about 1600 ° C. Then, if an Fe-La alloy is used as an additive, it is considered that La can be added to molten steel in a state where the activity is lower than that of M-La, and an efficient La addition is expected.
[0010]
However, when the present inventors tried to use the Fe-La alloy, it was found that the ingot could not be easily divided and was extremely difficult to handle in actual work. That is, the Fe—La alloy is relatively tough and cannot be used by being crushed with a mill or a hammer. Usually, when adding an auxiliary material at a steelmaking factory, a predetermined amount is taken out from an alloy bunker or the like, transported to the vicinity of a refining vessel by a conveyor or the like, and put into the molten metal by a feeding device such as a hopper. At that time, if the raw material is not subdivided, not only can it be supplied smoothly, but also weighing cannot be performed with high accuracy. Moreover, if it is large, the solubility in molten steel will also deteriorate. On the other hand, a method of casting an Fe-La alloy ingot into a small sphere is also conceivable, but since the Fe-La alloy is melted in a vacuum tank, it is difficult to cast into a small sphere. Thus, it has become clear that the Fe—La alloy is not necessarily suitable as a La additive.
[0011]
The present inventors have solved such a problem by adopting an Fe—La—Al alloy instead of an Fe—La alloy. As a result of various tests, the Fe-La-Al alloy having a specific composition is easy to break, and the activity of La is reduced, and it is suitable as a La additive used by dropping into molten steel. It turns out. Below, the matter for specifying this invention is demonstrated.
[0012]
By setting the Al content in the Fe-La-Al alloy to 5% by mass or more, the alloy becomes moderately brittle and can be crushed using a mill, a hammer, or the like. Furthermore, if the Al content is 10% by mass or more, it can be more easily crushed, which is convenient for fine adjustment of the input amount. On the other hand, when the Al content exceeds 20% by mass, the specific gravity of the alloy becomes too small and it is difficult to sink into the molten steel, and it becomes difficult to obtain a high La yield by dropping. Further, the Al content of the alloy is preferably 20% by mass or less in order to provide “general versatility” applicable to steel that does not require Al addition. Furthermore, if the Al content of the alloy is limited to 15% by mass or less, the alloy can be applied to steel whose Al concentration should be reduced, and versatility is further enhanced. As described above, in the Fe-La-Al alloy of the present invention, the Al content is specified to be 5 to 20% by mass. However, when emphasizing friability, the lower limit of the Al content is set to 10% by mass. When emphasizing the prevention of an increase in the Al concentration, it is desirable to limit the upper limit of the Al content to 15% by mass.
[0013]
When the La content in the Fe—La—Al alloy is 70% by mass or less, the effect of reducing the activity of La appears remarkably, and the La yield in the steel is rapidly improved. At the same time, since the amount of La that reacts with MgO in the slag is reduced, an increase in the Mg concentration in the steel is suppressed, and as a result, the formation of tubular bubbles in the slab is prevented. As the La content of the alloy decreases, the activity of La is considered to decrease. When the La content is further reduced from 70% by mass, the La yield in the steel gradually increases. However, as the La content of the alloy decreases, the amount of alloy required increases. An increase in the amount of alloy input causes a decrease in molten steel temperature, which is not preferable. As a result of the investigation by the present inventors, it was confirmed that if the La content of the alloy is set to 30% by mass or more, it can be used without problems even in the production of a relatively small lot. Therefore, the La content in the Fe—La—Al alloy of the present invention is defined as 30 to 70 mass%. In addition, in order to stabilize the fluctuation between charges of La yield in molten steel, it is desirable to make La content into the range of 30-50 mass%.
[0014]
The Fe—La—Al alloy of the present invention may appropriately contain elements other than Fe, La, and Al as necessary. However, it is desirable to contain at least 5% by mass of Fe. In addition, an alloy substantially composed of only Fe, La, and Al, that is, the Fe—La—Al ternary alloy composed of the predetermined amount of La, Al, the remaining Fe, and unavoidable impurities is versatile and applicable to many steel types. It is expensive.
[0015]
Such an Fe—La—Al alloy can be obtained by, for example, a method of melting a raw material containing component elements in an Ar atmosphere using a vacuum induction melting furnace. Since the obtained ingot has moderate toughness and brittleness, it is relatively easy to handle when taken out from the mold or during transportation, and can be subdivided using a crusher or a hammer. The size to be subdivided may be a size that can be weighed, dropped from the surface of the molten metal (usually on the surface of the slag), can be submerged in the molten steel, and can be melted in a short time. In other words, for example, when a very small material such as powder is dropped and dropped, it is trapped in the slag and does not enter the molten steel sufficiently, and on the contrary, a very large lump (chunk) cannot be accurately measured, and it takes time to dissolve. It will be too much. Although an appropriate small size cannot be generally stated, for example, in a mass production site where one charge is several tens of tons, an alloy lump divided into about 30 to 50 mm can be suitably used. However, if the ingot itself is small, it may be put in as it is.
[0016]
The Fe—La—Al alloy of the present invention can be applied to various steel types, but is particularly effective when applied to the production of high Al content ferritic stainless steel. That is, ferritic stainless steel containing Cr: about 15 to 26% by mass and Al: about 2 to 6% by mass is well known as a material excellent in high-temperature oxidation resistance, and is oxidized by containing a small amount of La. It is known that the peel resistance of the scale is remarkably improved. However, although the appropriate range of the La content is as narrow as 0.05 to 0.2% by mass, or 0.02 to 0.15% by mass, the yield of La is low and unstable. There is a manufacturing problem that “out-of-component” tends to occur. Therefore, the significance of applying the present invention to such steel types is great.
[0017]
When the above-described Fe-La-Al alloy ingot is dropped into a molten ferritic stainless steel containing Cr: 15 to 26 mass% and Al: 2 to 6 mass%, the molten steel temperature is in the range of 1570 to 1620 ° C. It is desirable to input. If the temperature is lower than 1570 ° C., the La yield is slightly improved, but the ladle temperature becomes too low, so it is necessary to raise the molten steel temperature by some method. On the other hand, when the temperature exceeds 1620 ° C., the La yield decreases, and it is necessary to take a measure such as allowing to stand to lower the molten steel temperature to the ladle temperature, resulting in a loss of working time.
[0018]
【Example】
[Example 1]
As La additive materials, seven types of Fe-La-Al alloys shown in Table 1 and two types of Fe-La alloys were melted using a vacuum induction melting furnace. Electrolytic iron, M-La, and electrolytic Al were used as raw materials, and these were melted in a magnetic crucible under an Ar atmosphere and cast into an iron mold to obtain an ingot of about 12 kg. As a result of analysis, the yield of La in these alloys was almost 100%.
[0019]
First, each ingot and M-La was tried to be divided with a hammer to evaluate whether or not crushing was possible. As a result, as shown in Table 1, the Fe-La alloy not containing Al and the Fe-La-Al alloy having an Al content of less than 5% by mass could not be crushed, but Al was not less than 5% by mass. All the Fe-La-Al alloys contained could be crushed. M-La was also crushed.
[0020]
Next, an experiment was performed in which La was added to 18Cr-3Al steel using Fe-La-Al alloy and M-La, which could be crushed, as La additive materials (Experiment Nos. 1 to 7 in Table 1). ). For each charge, 12 kg of 18Cr-3Al steel was melted in a magnetic crucible, CaO-MgO-Al 2 O 3 slag was added onto the molten steel, the molten steel temperature was maintained at 1600 ° C, and La contained in the molten steel An appropriate amount of La additive was dropped from the hot water surface of the slag, aiming at an amount of about 0.03 to 0.1% by mass. At that time, the molten steel temperature before and after the addition of the additive (after the additive was melted) was measured. Then, the molten steel after addition of La is cast into an iron mold, the ingot is cut and ground to investigate the presence of bubbles, and the La concentration in the ingot is analyzed to determine the La yield from the additive to the steel. Asked.
[0021]
As a result, as shown in Table 1, the La yield when using an additive with an La content of 80% by mass (Experiment No. 5) is the same as when using M-La (Experiment No. 7). In contrast to the fact that it was hardly improved as compared with the La content: 70% by mass of additive (Experiment No. 2), it is noted that the La yield was drastically improved. Further, when the Al content of the additive was as high as 30% (Experiment No. 6), the specific gravity was too small to sufficiently sink into the molten steel, and the La yield was rather lowered.
[0022]
In addition, in the case where the La yield was high (Experiment No. 1, 2, 3, and 4), no bubbles were observed in the ingot. It is considered that this is because the amount of La consumed for the reaction with MgO in the slag is small and the increase in the Mg concentration in the molten steel is suppressed to a low level, so that Mg is not released as a gas during solidification.
[0023]
[Table 1]
Figure 0003722329
[0024]
[Example 2]
1 charge: In an 80 ton scale steelmaking line, the Fe-La-Al alloy of the present invention was used, and La was added to a high Al content ferritic stainless steel (20% Cr-5% Al steel). First, 300 kg of an Fe-50% La-10% Al alloy used as an additive was melted in the same manner as in Example 1, and was roughly broken into small pieces using a crusher. The La yield to the molten steel was predicted to be 50%, and the required amount of input for the target value of La content of steel; 0.08% by mass was calculated, and the small alloy lump was weighed. On the other hand, molten steel (80 tons) of stainless steel was used which had already been adjusted for components other than La through the steps of electric furnace → converter → vacuum degassing.
[0025]
When the molten steel temperature was 1585 ° C., the weighed Fe-La-Al alloy ingot was fed from the auxiliary raw material charging hopper and dropped from the surface of the slag floating on the molten steel. The drop in molten steel temperature due to charging was as small as about 3 ° C, which was not a problem at all. Thereafter, continuous casting was performed to obtain a slab. A cut sample was taken from the slab, and after cooling, the surface was ground to examine the formation of tubular bubbles. As a result, tubular bubbles were not seen. Moreover, as a result of performing the component analysis of a slab, La content was 0.085 mass%. That is, the La content was almost as targeted, and the actual yield was 53%, which was almost close to the predicted value and was a good result.
[0026]
【The invention's effect】
{Circle around (1)} If the Fe—La—Al alloy of the present invention is used, La can be added to the molten steel in a state of reduced activity, so that the La yield in the molten steel is high and stable. For this reason, the amount of La used can be reduced and saved, and at the same time, the increase in the Mg concentration in the steel is suppressed. As a result, the generation of bubbles, which has been a problem with conventional La-added steel, is prevented, and high-quality La Additive steel is easily obtained. In addition, the occurrence frequency of “out of component” is remarkably reduced, and variation in quality among lots is also suppressed.
{Circle around (2)} Since the alloy is easy to be subdivided, the workability is kept high, and since it can be added by a simple means of “drop-in”, no special equipment is required. Therefore, the applicability of the present invention to the field is extremely high.
(3) Furthermore, the alloy is lighter in oxidation and hydrogen storage than M-La, so that it can be stored easily.
(4) In particular, the present invention facilitates the manufacture of “La-containing high Al-containing ferritic stainless steel”, which has been difficult to stably manufacture despite having excellent high-temperature oxidation resistance, and its widespread use. It greatly contributes to.

Claims (4)

La:30〜70質量%,Al:5〜20質量%を含有し、残部Feおよび不可避的不純物からなる製鋼用Fe−La−Al合金。  An Fe-La-Al alloy for steel making containing La: 30 to 70 mass%, Al: 5 to 20 mass%, and the balance being Fe and inevitable impurities. 溶鋼にLaを添加するに際し、La:30〜70質量%,Al:5〜20質量%を含有し、残部Feおよび不可避的不純物からなるFe−La−Al合金塊を湯面上に落下投入することを特徴とする歩留りの良いLa添加方法。  When adding La to molten steel, Fe: La-Al-Al alloy ingot containing La: 30 to 70% by mass, Al: 5 to 20% by mass, and remaining Fe and unavoidable impurities is dropped on the molten metal surface. A method of adding La with good yield, characterized in that. 溶鋼は、Cr:15〜26質量%,Al:2〜6質量%を含有するフェライト系ステンレス鋼の溶鋼である、請求項に記載の歩留りの良いLa添加方法。The La addition method according to claim 2 , wherein the molten steel is a ferritic stainless steel molten steel containing Cr: 15 to 26 mass% and Al: 2 to 6 mass%. 溶鋼温度が1570〜1620℃の範囲でFe−La−Al合金塊を湯面上に落下投入する、請求項に記載のLa添加方法。The La addition method according to claim 3 , wherein the Fe-La-Al alloy ingot is dropped onto the molten metal surface at a molten steel temperature in the range of 1570 to 1620 ° C.
JP29316597A 1997-10-13 1997-10-13 Fe-La-Al alloy for steel making and La addition method to molten steel Expired - Fee Related JP3722329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29316597A JP3722329B2 (en) 1997-10-13 1997-10-13 Fe-La-Al alloy for steel making and La addition method to molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29316597A JP3722329B2 (en) 1997-10-13 1997-10-13 Fe-La-Al alloy for steel making and La addition method to molten steel

Publications (2)

Publication Number Publication Date
JPH11117015A JPH11117015A (en) 1999-04-27
JP3722329B2 true JP3722329B2 (en) 2005-11-30

Family

ID=17791265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29316597A Expired - Fee Related JP3722329B2 (en) 1997-10-13 1997-10-13 Fe-La-Al alloy for steel making and La addition method to molten steel

Country Status (1)

Country Link
JP (1) JP3722329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770616B2 (en) * 2006-07-13 2011-09-14 住友金属工業株式会社 Method for continuous casting of molten metal and immersion lance for continuous casting

Also Published As

Publication number Publication date
JPH11117015A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
RU2230797C2 (en) Method for steel graininess reduction, an alloy for steel graininess reduction and a method to produce the alloy for steel graininess reduction
KR102410368B1 (en) Cast iron inoculum and method of producing cast iron inoculant
CN107532225B (en) Molten cast iron treatment method
JPS58167734A (en) Calcium/aluminum alloy
KR20200100155A (en) Cast iron inoculant and method of producing cast iron inoculant
CA1196195A (en) Boron alloying additive for continuously casting boron steel
KR102410364B1 (en) Cast iron inoculum and method of producing cast iron inoculant
CA1082005A (en) Alloy for rare earth treatment of molten metals
RU2244025C2 (en) Sintered agglomerates and method for producing the same
JP3726258B2 (en) Fe-Ce-Al alloy for steel making and method for adding Ce to molten steel
JP3722329B2 (en) Fe-La-Al alloy for steel making and La addition method to molten steel
CN100412215C (en) Copper-nickel-silicon-ferroalloy
US20240247346A1 (en) Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof
RU2815374C1 (en) Composite alloy and method of its manufacture
JP2626417B2 (en) Graphite spheroidizing alloy in mold and graphite spheroidizing method
RU2145356C1 (en) Method of converter melting with use of prereduced materials
RU2215803C2 (en) Method of production of aluminum alloy
US6235078B1 (en) Iron additive for alloying non-ferrous alloys
RU2007492C1 (en) Alloy for deoxidizing and alloying of steel and cast iron
CN117222769A (en) Production of ferrosilicon-vanadium and/or niobium alloys and use thereof
SU996070A1 (en) Steel ingot production method
RU2230798C1 (en) Method of steel production
Lewis et al. Exothermic ferromanganese
JP2003286549A (en) High-purity ferroboron and production method therefor
UA124403U (en) ALCOHOL CALCIUM ALLOYS FOR BUCKET STEEL TREATMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees