JPS6186721A - Correcting coefficient determining method in scanning speed variation correcting method - Google Patents

Correcting coefficient determining method in scanning speed variation correcting method

Info

Publication number
JPS6186721A
JPS6186721A JP59208830A JP20883084A JPS6186721A JP S6186721 A JPS6186721 A JP S6186721A JP 59208830 A JP59208830 A JP 59208830A JP 20883084 A JP20883084 A JP 20883084A JP S6186721 A JPS6186721 A JP S6186721A
Authority
JP
Japan
Prior art keywords
signal
value
scanning
correction
scanning speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59208830A
Other languages
Japanese (ja)
Other versions
JPH0545002B2 (en
Inventor
Toshitaka Agano
俊孝 阿賀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP59208830A priority Critical patent/JPS6186721A/en
Priority to EP85111540A priority patent/EP0174659B1/en
Priority to DE8585111540T priority patent/DE3585478D1/en
Publication of JPS6186721A publication Critical patent/JPS6186721A/en
Priority to US07/016,481 priority patent/US4754143A/en
Publication of JPH0545002B2 publication Critical patent/JPH0545002B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To always select the optimum value,, by successively changing the value of an optical coefficient and observing the degree of correction while reading operations are performed by means of an optical beam whose speed is forcedly changed by using a correcting coefficient determining sheet and using the value when the correction is the best as the value of the correcting coefficient. CONSTITUTION:A correcting coefficient determining sheet 4 is scanned with an optical beam 2 to which scanning speed variation is forcedly given and a correcting signal, h1=k.h, is formed by multiplying the optical beam scanning speed signal (h) by an optional coefficient (k). Then a corrected reading signal s1 is found by calculating the correcting signal h1 and a reading signal obtained as a result of the scanning the sheet 4 and a signal part s2 of only noise component caused by the forcedly given speed variation is extracted from the signal s1. Thereafter, the value of the (k) when the value of the signal s2 becomes the smallest is found by means of a feedback system in which the value of the (k) is successively changed in accordance with the value of the extracted signal s2 and the value is determined as a prescribed correcting coefficient K. Therefore, the optimum value can be determined always.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばガルバノメータミラー等の走査手段を
介して光ビームを読取対象上に走査させることによって
得られる読取信号Sから上記光ビームの走査速度変動に
起因するノイズ成分を除去する場合に使用する補正係数
にの値を決定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to scanning of a light beam based on a read signal S obtained by scanning a light beam on a reading object via a scanning means such as a galvanometer mirror. The present invention relates to a method for determining the value of a correction coefficient used when removing noise components caused by speed fluctuations.

さらに詳しくは、上記光ビームの走査速度に関する信号
Hに所定の補正係数Kを掛算することによって形成した
補正信号H1= K−Hと上記読取信号Sとを演算する
ことによって補正済読取信号81を求める走査速度変動
補正方法における上記所定の補正係数にの値を決定する
方法に関し、特には、放射線画像情報記録再生システム
における蓄積性螢光体シートの読取操作に好適に適用す
ることができる方法に関する。
More specifically, the corrected read signal 81 is calculated by calculating the read signal S and a correction signal H1=K-H formed by multiplying the signal H regarding the scanning speed of the light beam by a predetermined correction coefficient K. The present invention relates to a method for determining the value of the predetermined correction coefficient in a scanning speed fluctuation correction method to be sought, and in particular, to a method that can be suitably applied to a reading operation of a stimulable phosphor sheet in a radiation image information recording and reproducing system. .

(発明の技術的背景および従来技術) ある種の螢光体に放射線(X線、α線、β線、γ線、電
子線、紫外線等)を照射すると、この放射線エネルギー
の一部が螢光体中に蓄積され、この螢光体に可視光等の
励起光を照射すると、薔積されたエネルギーに応じて螢
光体が輝尽発光を示すことが知られており、このような
性質を示す螢光体は蓄積性螢光体と呼ばれる。
(Technical Background of the Invention and Prior Art) When a certain kind of phosphor is irradiated with radiation (X-rays, α-rays, β-rays, γ-rays, electron beams, ultraviolet rays, etc.), a part of this radiation energy is emitted into fluorescent light. It is known that when this phosphor accumulates in the body and is irradiated with excitation light such as visible light, the phosphor exhibits stimulated luminescence in response to the accumulated energy. The fluorescer that shows this is called a storage fluorophore.

この蓄積性螢光体を利用して、人体等の被写体の放射線
画像情報を−Hシート状の蓄積性螢光体に記録し、この
蓄積性螢光体シートをレーザ光等の励起光で走査して輝
尽発光光を生ぜしめ、得られた輝尽発光光を光電的に・
 読み取って画像信号を得、この画像信号に基づき被写
体の放射線画像を写真感光材料等の記録材料、CRT等
に可視像として出力させる放射線画像情報記録再生シス
テムが本出願人によりすでに提案されている。(特開昭
55−12429号、同56−11395号など。)こ
の様な放射線画像情報記録再生システムにおいては、上
述の様に、放射線画像情報が蓄積記録された蓄積性螢光
体シートを光ビームで走査して画像信号(読取信号)を
得る読取操作が行なわれ、かつその読取操作における光
ビーム走査は光ビームを例えばガルバノメータミラー等
の走査手段によって偏向させることにより行なわれる。
Using this stimulable phosphor, radiation image information of a subject such as a human body is recorded on a -H sheet-shaped stimulable phosphor, and this stimulable phosphor sheet is scanned with excitation light such as a laser beam. to generate stimulated luminescent light, and photoelectrically convert the obtained stimulated luminescent light into
The applicant has already proposed a radiation image information recording and reproducing system that reads an image signal to obtain an image signal, and outputs the radiation image of the subject as a visible image to a recording material such as a photographic light-sensitive material, a CRT, etc. based on this image signal. . (JP-A-55-12429, JP-A-56-11395, etc.) In such a radiation image information recording and reproducing system, as described above, a stimulable phosphor sheet on which radiation image information is accumulated and recorded is exposed to light. A reading operation is performed in which an image signal (read signal) is obtained by scanning with a beam, and the light beam scanning in the reading operation is performed by deflecting the light beam by a scanning means such as a galvanometer mirror.

ところが、この様にガルバノメータミラー等の走査手段
で光ビームを偏向させて走査する場合、該走査手段の運
動速度の変動、例えばガルバノメータミラーの首振り運
動速度の変動に起因して、光ビームの走査速度(光ビー
ムが読取対象上を走る速度)が変動する場合がある。こ
の様に走査速度が変動すると、単位面積当りの走置光エ
ネルギーが変化するため該走査によって得られる読取画
像信号はその変動による悪影響を含むこととなり、高精
度の読取操作を行なうことができなくなる。
However, when scanning by deflecting a light beam using a scanning means such as a galvanometer mirror, the scanning of the light beam may be affected due to fluctuations in the movement speed of the scanning means, for example, fluctuations in the oscillation speed of the galvanometer mirror. The speed (the speed at which the light beam travels over the object to be read) may vary. If the scanning speed fluctuates in this way, the scanning light energy per unit area will change, and the read image signal obtained by the scanning will include an adverse effect due to the fluctuation, making it impossible to perform highly accurate reading operations. .

この様な走査速度変動による不都合を排除する方法の一
つとして、ガルバノメータミラー等の走査手段によって
偏向され、蓄積性螢光体シート等の読取対象上に走査さ
せられるレーザビーム等の光ビームの走査速度を検出し
てその走査速度に関する信号Hを求め、この速度信号H
に所定の補正係数Kを掛算して補正信号H1を形成し、
この補正信号H1と上記光ビームで読取対象を走査する
ことによって得られた読取信号Sとを演算することによ
って、該読取信号S中の上記光ビーム走査速度変動に起
因するノイズ成分を除去する走査速度変動補正方法があ
り、深井宣隆を発明者として本件出願人により昭和59
年9月12日付で特許出願されている。
One method for eliminating such inconveniences due to scanning speed fluctuations is to scan a light beam such as a laser beam that is deflected by a scanning means such as a galvanometer mirror and scanned over a reading target such as a stimulable phosphor sheet. The speed is detected and a signal H related to the scanning speed is obtained, and this speed signal H
is multiplied by a predetermined correction coefficient K to form a correction signal H1,
Scanning that removes noise components caused by fluctuations in the light beam scanning speed in the read signal S by calculating this correction signal H1 and the read signal S obtained by scanning the read target with the light beam. There is a speed fluctuation correction method, which was developed in 1982 by the applicant with Nobutaka Fukai as the inventor.
A patent application was filed on September 12th.

この方法は、光ビームの走査速度変動とこ゛  の変動
に起因する読取信号S中のノイズとの間には一定の対応
関係が存在し、従ってこの対応関係に相当する補正係数
にというものを用意し、上記走査速度に関する信号Hに
この補正係数Kを乗じて補正信号H1を形成し、上記読
取信号Sにこの補正信号Hsを作用させる、例えば両信
号SとHlとを掛算するあるいは加具する等の演算を行
なえば上記読取信号Sから定食速度変動に起因するノイ
ズ成分を除去することができるという観点に基づくもの
である。
In this method, there is a certain correspondence between fluctuations in the scanning speed of the light beam and noise in the read signal S caused by this fluctuation, and therefore a correction coefficient corresponding to this correspondence is prepared. Then, the signal H related to the scanning speed is multiplied by this correction coefficient K to form a correction signal H1, and this correction signal Hs is applied to the read signal S, for example, by multiplying or adding both signals S and Hl. This is based on the viewpoint that noise components caused by fluctuations in the set meal speed can be removed from the read signal S by performing calculations such as the following.

例えば蓄積性螢光体シートを走査する場合、第2図に示
す様に、レーザビーム照射によって輝尽発光光を発生さ
せる際の単位照射面積当りのレーザビームエネルギ(以
下、単にエネルギ又はレーザビームエネルギという)と
輝尽発光光量との関係(エネルギ二強度X時間であり、
従って残置が一定であると仮定するとエネルギは速度に
反比例するものであり、また輝尽発光光量は読取信号S
に対応するものであるから、このレーザビームエネルギ
と輝尽発光光量との関係は上記走査速度変動とこの変動
に起因する読取信号S中のノイズ成分との関係に対応す
る)は、例えば曲線A。
For example, when scanning a stimulable phosphor sheet, as shown in Figure 2, the laser beam energy (hereinafter simply referred to as energy or laser beam energy) per unit irradiation area when stimulating luminescent light is generated by laser beam irradiation. ) and the amount of stimulated luminescence (energy x time),
Therefore, assuming that the residual energy is constant, the energy is inversely proportional to the speed, and the amount of stimulated luminescence is determined by the read signal S.
Therefore, the relationship between this laser beam energy and the amount of stimulated luminescence corresponds to the relationship between the above-mentioned scanning speed fluctuation and the noise component in the read signal S caused by this fluctuation). .

B、C(曲−A、B、Cはそれぞれ異なる種類の蓄積性
螢光体の場合を示す)の様な関係となる。
The relationship is as shown in B and C (Songs A, B, and C each represent the case of different types of stimulable phosphors).

例えばエネルギE1のレーザビームを用いて曲線Aで示
される特性を有する蓄積性螢光体シートを走査する場合
、レーザビームの走査速度が変化するとそれに反比例し
てレーザビームエネルギが変化し、曲線A上のエネルギ
Elである点Pにおける傾ぎαにそのエネルギ変化分を
掛算して得られた量だけ輝尽発光光量が変化することに
なる。なお、このレーザビーム速度変化に基づくエネル
ギ変化は、第2図のグラフにおけるElを中心とする極
めて狭い範囲であるから、変化の中心である点Pの傾き
αに変化分を掛けることによって輝尽発光光量の変化分
をほぼ正確に計算することができる。
For example, when scanning a stimulable phosphor sheet having the characteristics shown by curve A using a laser beam with energy E1, when the scanning speed of the laser beam changes, the laser beam energy changes in inverse proportion to the scanning speed of the laser beam. The amount of stimulated luminescence light changes by the amount obtained by multiplying the slope α at point P, which is the energy El, by the amount of change in energy. Note that the energy change based on this laser beam speed change is within an extremely narrow range centered on El in the graph of Figure 2, so the energy change can be calculated by multiplying the slope α at point P, which is the center of the change, by the amount of change. It is possible to almost accurately calculate the amount of change in the amount of emitted light.

従って、この傾きαに対応する補正係数Kを用意し、上
記レーザビームの走査速度信号Hをに倍して補正信号H
1を求め、上記読取信号Sとこの補正信号H1とを適宜
に演算すること罠よって、例えば走査速度が増加方向に
変化すると走査速度信号Hも増加し、するとレーザビー
ムエネルギが減少して読取信号である輝尽発光光量も減
少するので、この減少分を補なって補正すべく両信号を
加算するあるいは掛算することによって、読取信号Sか
らレーザノイズに起因するノイズ成分を除去することが
できるものである。
Therefore, a correction coefficient K corresponding to this inclination α is prepared, and the scanning speed signal H of the laser beam is multiplied by the correction coefficient H.
1 and calculate the read signal S and this correction signal H1 appropriately. Therefore, for example, when the scanning speed changes in the increasing direction, the scanning speed signal H also increases, and the laser beam energy decreases and the read signal Since the amount of stimulated light emission also decreases, the noise component caused by laser noise can be removed from the read signal S by adding or multiplying both signals to compensate and correct this decrease. It is.

上記補正係数にの値は、走査速度変動とそれによる読取
信号変動との対応関係を示すものであるから、一般的に
読取対象や走査条件等が異なればそれに応じて異なる値
を取るものであり、例えば読取対象が蓄積性螢光体シー
トである場合も、第2図に示す如く、該シートに用いら
れている蓄積性螢光体の種類やレーザビームエネルギが
異なればそのときの傾きαも異なることからそれに応じ
て補正係数Kの値も異なるものである。
The value of the above correction coefficient indicates the correspondence between the scanning speed fluctuation and the resulting reading signal fluctuation, so it generally takes a different value depending on the reading target, scanning conditions, etc. For example, when the object to be read is a stimulable phosphor sheet, as shown in FIG. Since the values are different, the value of the correction coefficient K is also different accordingly.

しかるに、上記方法を実施するためには、まず上記補正
係数にの値を設定する必要があ・す、かつこのKの値が
最適に設定されているか否かによって補正の程度(ノイ
ズ成分の除去程度)が左右されるので、このKの値は可
能な限り最適に設定する必要がある。また上記方法によ
り補正係数Kを決定するために使用した走査読取装置が
偶々走査速度変動が生じにくいものであるとすると補正
係数にの決定のために長時間の実験が必要になるという
不具合があった。
However, in order to implement the above method, it is first necessary to set a value for the correction coefficient, and the degree of correction (removal of noise components) depends on whether the value of K is set optimally. The value of K needs to be set as optimally as possible. Furthermore, if the scanning reading device used to determine the correction coefficient K using the above method is one that is not prone to accidental scanning speed fluctuations, there is a problem in that a long period of experimentation is required to determine the correction coefficient. Ta.

(発明の目的) 本発明の目的は、上記事情に鑑み、上記の如き走置速度
変動補正方法における補正係数にの最適値を効率良く決
定することができる補正係数決定方法を提供することに
ある。
(Object of the Invention) In view of the above circumstances, an object of the present invention is to provide a correction coefficient determination method that can efficiently determine the optimum value for the correction coefficient in the above-described traveling speed fluctuation correction method. .

(発明の構成) 本発明に係る方法は、上記目的を達成するため、上記の
如き補正係数Kを用いる走査速度変動補正において、ま
ず走査手段に光ビーム走査速度変動を発生させるノイズ
信号を入力することによって光ビームの短管速度を強制
的に変動させ、この走査速度を強制的に変動させた光ビ
ームで補正係数決定用読取対象を走査し、この走査子の
光ビームの走査速度を検出して速度信号りを求め、この
信号りに任意の係数kを乗じて補正信号h工=k 、h
を形成し、上記補正係数決定用読取対象を上記元ビーム
で走査して得られる読取信号Sとこの補正信号h1とを
演算して補正済読取信号S1を求め、この補正済読取信
号S1から上記強制的に付与された光ビーム走査速度変
動に起因するノイズ成分のみの信号部分を抽出し、その
抽出された信号S2の値に応じて順次上記定数にの値を
変化させるフィードバック方法により上記信号S2の値
が最も小さくなるときのkの値を求め、その値を上記所
定の補正係数にの値として決定することを特徴とする。
(Structure of the Invention) In order to achieve the above object, the method according to the present invention first inputs a noise signal that causes a light beam scanning speed fluctuation to the scanning means in the scanning speed fluctuation correction using the correction coefficient K as described above. By this, the short tube speed of the light beam is forcibly varied, the scanning target for determining the correction coefficient is scanned with the light beam whose scanning speed has been forcibly varied, and the scanning speed of the light beam of this scanner is detected. Find the speed signal, multiply this signal by an arbitrary coefficient k, and get the correction signal h = k, h
A read signal S obtained by scanning the read target for determining the correction coefficient with the original beam and this correction signal h1 are calculated to obtain a corrected read signal S1, and from this corrected read signal S1 the above The above-mentioned signal S2 is extracted by a feedback method in which a signal portion containing only noise components due to the forcibly applied light beam scanning speed variation is extracted, and the value of the above-mentioned constant is sequentially changed according to the extracted value of the signal S2. The present invention is characterized in that the value of k at which the value of k is the smallest is determined, and that value is determined as the value of the predetermined correction coefficient.

(実施態様) 以下、図面を参照しながら本発明の実施態様について説
明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明に係る方法の一実施態様を示すブロッ
ク図であり、前述した放射線画隊情報記録再生システム
における蓄積性螢光体シートを走査し、読み取る場合に
適用する方法として具体化したものである。
FIG. 1 is a block diagram showing one embodiment of the method according to the present invention, which is embodied as a method applied when scanning and reading a stimulable phosphor sheet in the radiation image information recording and reproducing system described above. This is what I did.

まず最初に、本発明に係る方法の前提となる走査速度変
動補正方法の一実施態様について、第1図を参照しなが
ら説明する。
First, an embodiment of a scanning speed fluctuation correction method, which is a premise of the method according to the present invention, will be described with reference to FIG.

第1図に示すものは、光源1から発せられたレーザビー
ム2をガルバノメータミラー等の光偏向器から成る走査
手段3で偏向させて読取対象である蓄積性螢光体シート
4を走査するに際し、強制的に走査速度を変動させ、こ
の走査によって上記シート4から発せられる輝尽発光光
をフォトマル等の光検出器5によって光電的に読み取っ
て得られた読取信号S(本実施態様においては光検出器
5から出力された信号SOを対数変換器6で対数変換し
た信号を読取信号Sとしている)から上記走査に使用し
たレーザビーム2の走査速度変動に起因するノイズ成分
を除去する方法であって、まず、シート4を走査中のレ
ーザビーム2の走査速度を検出して該速度に関する信号
1−1を求めるために、光ビーム2の一部をハーフミラ
−7で取り出し、これを反射ミラー8で反射させて走査
手段3を介して同期光9として出射させ、この同期光9
をグリッド10に入射させることによってグリッド10
から光パルスを出力させ、この光パルスを光検出器11
で検知して電気パルスを出力させ、この電気パルスに基
づいて周波数(周期)−電圧変換器12かも走査速度に
関する信号H(本実施態様では、この信号Hとして周波
数−電圧変換器12から出力された信号HOをそのまま
用いている)を出力し、次に、この速度信号Hに所定の
補正係数Kを掛算して補正信号比=に、Hを形成するた
め、可変増幅器13によって速度信号Hな増幅率にで増
幅して補正信号1−11= K−Hを出力するようにし
、さらに、上記読取信号Sとこの補正信号H1とを演算
して補正済読取信号S1を求めるために、読取信号S 
= log Soに上記補正信号H1を加算して補正済
読取信号S 1= S + H1= log So +
に、Hを求めるように構成して成るものである。
In the system shown in FIG. 1, a laser beam 2 emitted from a light source 1 is deflected by a scanning means 3 consisting of an optical deflector such as a galvanometer mirror to scan a stimulable phosphor sheet 4 to be read. The scanning speed is forcibly changed, and the stimulated luminescence light emitted from the sheet 4 is photoelectrically read by a photodetector 5 such as a photomultiplier, and the read signal S (in this embodiment, a photodetector) is obtained. This is a method of removing noise components caused by fluctuations in the scanning speed of the laser beam 2 used for the above scanning from the read signal S, which is a signal obtained by logarithmically converting the signal SO output from the detector 5 using a logarithmic converter 6. First, in order to detect the scanning speed of the laser beam 2 while scanning the sheet 4 and obtain a signal 1-1 related to the speed, a part of the light beam 2 is taken out by the half mirror 7, and this is reflected by the reflection mirror 8. The synchronous light 9 is reflected by the scanning means 3 and emitted as a synchronous light 9.
is incident on the grid 10, the grid 10
outputs a light pulse from the photodetector 11.
Based on this electric pulse, the frequency (period)-voltage converter 12 outputs a signal H (in this embodiment, the frequency-voltage converter 12 outputs a signal H regarding the scanning speed). Then, in order to multiply this speed signal H by a predetermined correction coefficient K to form a correction signal ratio = H, the speed signal H is outputted by the variable amplifier 13. The read signal is amplified by an amplification factor to output a correction signal 1-11=K-H, and further, the above read signal S and this correction signal H1 are calculated to obtain a corrected read signal S1. S
= log So + the above correction signal H1 to obtain the corrected read signal S 1 = S + H1 = log So +
It is constructed so that H can be found.

上記補正済読取信号S1を求める演算態様は、必ずしも
上記態様に限られるものではなく、例えば以下に述べる
様な態様で演算して求めても良い。
The manner of calculation for obtaining the corrected read signal S1 is not necessarily limited to the above-mentioned manner, and may be obtained by calculating, for example, in the manner described below.

一つの態様は、第1図における対数変換器6を用いない
演算であり、読取信号Sとして光検出器5から出力され
た信号SOをそのまま使用し、この信号に補正信号H1
を加算して補正済読取信号S1= So +Ht = 
So + KHを算出するものである。
One aspect is an operation that does not use the logarithmic converter 6 in FIG.
The corrected read signal S1= So +Ht =
This is to calculate So + KH.

他の態様は、第1図において周波数−電圧変換器12か
らの出力信号HOを対数変換する対数変換器(図示せず
)を加えて行なう演算であり、この演算では速度信号H
はH= log H。
Another aspect is an operation in which a logarithmic converter (not shown) is added to logarithmically convert the output signal HO from the frequency-voltage converter 12 in FIG.
is H=log H.

となり、従って補正済読取信号81は、5t=S+H1
= 7ogSo + Klogl−1oとして算出され
るものである。
Therefore, the corrected read signal 81 is 5t=S+H1
It is calculated as = 7ogSo + Klogl-1o.

さらに他の態様は、第1図における対数変換器6を用い
ないで、また信号Sから信号H1を加算するのではな(
信号Sと信号H1とを掛典するものであり、この態様に
おいては、補正法読取信号Slは、5t=SXHt=+
5oxKHとして算出されるものである。
Yet another embodiment is to add the signal H1 from the signal S without using the logarithmic converter 6 in FIG.
The signal S and the signal H1 are multiplied, and in this embodiment, the correction method read signal Sl is 5t=SXHt=+
It is calculated as 5oxKH.

ここで走査速度変動を吉1チ〜2チ程度にすれば、上記
各態様における補正法読取信号S1を求める計算式は互
いに近似式となり、従っていづれの態様で演算してもほ
ぼ同じSlを求めることができる。
Here, if the scanning speed fluctuation is set to about 1 to 2 inches, the calculation formulas for calculating the correction method read signal S1 in each of the above modes become mutually approximate formulas, and therefore, almost the same S1 is obtained no matter which mode is used. be able to.

次に、上記の如き走査速度変動補正方法における補正係
数にの値を決定する方法の一実施態様Vこついて、同様
に第1図を参照しながら説明する。
Next, an embodiment of the method for determining the value of the correction coefficient in the scanning speed fluctuation correction method as described above will be described with reference to FIG. 1 as well.

今、ある任意の蓄積性螢光体とレーザビームエネルギと
の組合せの場合の補正係数Kを求めることとする。
Let us now calculate the correction coefficient K for an arbitrary combination of stimulable phosphor and laser beam energy.

まず、上記蓄積性螢光体と同一種類の蓄積性螢光体を有
して成るシート(補正係数決定用y−ト)4を用意し、
このシート4を上記レーザビームエネルギと同一エネル
ギのレーザビーム走査によって読取を行なう。この場合
、走査を行なうレーザビーム2には強制的に走査速度変
動を与える。本実施態様では、レーザビーム2を走査さ
せるガルバノメータミラー3を駆動させるドライバ15
に、通常のガルバノメータ駆動信号16と共に該駆動信
号16よりも十分に高い周波数のノイズ信号17を入力
させ、このノイズ信号17によって強制的に走査速度変
動を付与するように構成されている。
First, a sheet (y-t for determining a correction coefficient) 4 comprising a stimulable phosphor of the same type as the stimulable phosphor described above is prepared,
This sheet 4 is read by scanning a laser beam with the same energy as the laser beam energy described above. In this case, scanning speed fluctuations are forcibly applied to the laser beam 2 that performs scanning. In this embodiment, a driver 15 drives a galvanometer mirror 3 that scans a laser beam 2.
A noise signal 17 having a frequency sufficiently higher than that of the drive signal 16 is input together with a normal galvanometer drive signal 16, and the noise signal 17 is configured to forcefully apply a scanning speed variation.

この様に強制的に速度変動を付与されたレーザビーム2
で補正係数決定用シート4を走査し、その読取信号Sを
前述した走査速度変動補正方法と同様な方法で演算して
補正法読取信号S1を求める。例えば、光検出器5から
出力された信号Soを対数変換してS−5−1O。
Laser beam 2 with forced velocity fluctuations in this way
The correction coefficient determination sheet 4 is scanned, and the read signal S is calculated in the same manner as the scanning speed fluctuation correction method described above to obtain a correction method read signal S1. For example, the signal So output from the photodetector 5 is logarithmically converted to S-5-1O.

とし、一方、上記速度変動を付与されたガルバノメータ
ミラー3から出射された同期光9をグリッド10、光検
出器11、周波数−電圧変換器12を介して該変換器1
2から出力される信号hoを走置速度に関する信号りと
し、この信号りに任意の係数kを乗じて補正信号り、=
=に*hを形成し、両信号Sとhlとを加算して補正法
読取信号Sl = s −1−hlを求める。
On the other hand, the synchronizing light 9 emitted from the galvanometer mirror 3 given the speed fluctuation is transmitted to the converter 1 via the grid 10, the photodetector 11, and the frequency-voltage converter 12.
Let the signal ho output from 2 be a signal related to the traveling speed, and multiply this signal by an arbitrary coefficient k to obtain a correction signal, =
*h is formed in =, and both signals S and hl are added to obtain a correction method read signal Sl = s -1 - hl.

次に、この補正法読取信号Slから上記強制的に付与さ
れた走査速度変動に起因するノイズ成分のみの信号部分
S2を抽出する。ここで走査速度変動に起因するノイズ
成分のみの信号部分とは、真に走査速度変動に起因する
ノイズ成分のみの信号の場合に限らず、上記ノイズ成分
の他に上記読取りを行なわれたシート4に記録されてい
た情報に関する成分も含んでいるが、この後者の情報に
関する成分は殆んど変化のない信号成分、換言すればノ
イズ成分の変動と比べて見るとその変動は極めて小さく
、従ってその抽出された信号にノイズ成分が含まれてい
るか否かが信号の特性値から判別でさる程度の信号部分
も含まれる。
Next, a signal portion S2 containing only noise components caused by the forcibly applied scanning speed fluctuation is extracted from this correction method read signal Sl. Here, the signal portion containing only the noise component caused by the scanning speed fluctuation is not limited to a signal containing only the noise component truly caused by the scanning speed fluctuation, but also includes the sheet 4 that has been read in addition to the noise component. However, this latter information component is a signal component that hardly changes, in other words, the fluctuation is extremely small compared to the fluctuation of the noise component, and therefore the It also includes a signal portion where it is possible to determine from the characteristic value of the signal whether or not the extracted signal contains a noise component.

たとえば、補正係数決定用シートとして全面に放射線を
均一に照射した(ベタ露出の)蓄積性螢光体シートを使
用すれば、このシートに記録されていた情報に関する信
号は均一であり、従って読取信号S中のどの部分も走査
速度変動に起因するノイズ成分のみの信号として扱うこ
とができる。
For example, if a stimulable phosphor sheet whose entire surface is uniformly irradiated with radiation (solid exposure) is used as a correction coefficient determination sheet, the signal related to the information recorded on this sheet will be uniform, and therefore the read signal Any part of S can be treated as a signal containing only noise components due to scanning speed fluctuations.

本実施態様では補正係数決定用シートとして上記ベタ露
出のシートを使用しており、従って補正法読取信号S1
中の、上記ガルバノメータミラー3に入力したノイズ信
号170周波数帯域のみを抽出すればその抽出された信
号S2は正に強制的に付与された走査速度変動に起因す
るノイズ成分のみの信号部分であり、そうするために上
記ガルバノメータミラー3に入力したノイズ信号の周波
数帯域のみを通過させるバンドパスフィルタ20を用い
てり\Lこの様にして実質的にノイズ成分のみをき有す
る信号S2を抽出したら、この信号S2のノイズ成分の
大きさを表わす特性値、例えば信号S2の二乗平均値(
RMS)の大きさに応じて順次上記定fikの値を変化
させるフイードバツ夕方式により、上記信号S2の特性
値が最も小さくなるときのkの値を求め、それを所定の
補正係数にの値として決定すると共に記憶しておき、次
にこれと同一の蓄積性螢光体及びレーザビームエネルギ
の組合せのときに呼び出して使用する。
In this embodiment, the above solid exposure sheet is used as the correction coefficient determination sheet, and therefore the correction method read signal S1
If only the frequency band of the noise signal 170 inputted to the galvanometer mirror 3 is extracted, the extracted signal S2 is a signal portion containing only noise components caused by the forced scanning speed fluctuation, In order to do this, a bandpass filter 20 is used that passes only the frequency band of the noise signal input to the galvanometer mirror 3. Once the signal S2 containing substantially only noise components is extracted in this way, this A characteristic value representing the magnitude of the noise component of the signal S2, for example, the root mean square value of the signal S2 (
The value of k when the characteristic value of the signal S2 is the smallest is determined by the feedback equation in which the value of the predetermined fik is sequentially changed according to the magnitude of the RMS), and this value is used as the value for the predetermined correction coefficient. Once determined, it is stored and recalled for use the next time with the same stimulable phosphor and laser beam energy combination.

本実施態様では、抽出された信号S2を整流器21で整
流し、それをA/D変換器22でA/D変換してデジタ
ル信号DIを求め、このデジタル信号D1がより小さく
なるようにkの値を変化させるべく補正量決定手段23
によりデジタル信号D2を出力し、この信号D2をD/
A変換して最初に設定された任意のkの値(例えばに=
0)を変更し、新たなkの下で同じ制御を行なうフィー
ドバックを繰返してDlが最も小さくなるときのkを見
い出し、それを所定の補正係数にの値として決定し、記
憶するように構成されている。
In this embodiment, the extracted signal S2 is rectified by a rectifier 21, A/D converted by an A/D converter 22 to obtain a digital signal DI, and k is adjusted so that this digital signal D1 becomes smaller. Correction amount determining means 23 to change the value
outputs a digital signal D2, and converts this signal D2 into D/
Any value of k initially set after A conversion (for example, =
0) and repeats feedback to perform the same control under a new k to find k at which Dl becomes the smallest, determine it as a value for a predetermined correction coefficient, and store it. ing.

(発明の効果) 本発明に係る方法は、上記の様に、走査速度信号Hに所
定の補正係数Kを乗じて補正信号H1= K @Hを形
成し、この補正信号H1と読取信号Sとを演算すること
によって読取信号Sから走置速度変動に起因するノイズ
成分を除去する方法において、強制的に走査速度信号が
付与された光ビームで補正係数決定用シートを走査し、
この光ビーム走査速度信号りに任意の係数kを乗じて補
正信号hl== k @ hを形成し、この補正信号h
lと上記補正係数決定用シートの走査によって読み取ら
れた読取信号Sとを演算して補正済読取信号S1を求め
、この信号S1から上記強制的に付与された速度変動に
起因するノイズ成分のみの信号部分S2を抽出し、この
抽出された信号S2の値に応じて順次にの値を変化させ
るフィードバック方式によりその信号S2の値が最も小
さくなるときのkの値を求め、その値を上記所定の補正
係数にの値として決定するものである。
(Effects of the Invention) As described above, the method according to the present invention multiplies the scanning speed signal H by a predetermined correction coefficient K to form a correction signal H1=K@H, and combines this correction signal H1 and the read signal S. In the method of removing noise components caused by scanning speed fluctuations from the read signal S by calculating
This light beam scanning speed signal is multiplied by an arbitrary coefficient k to form a correction signal hl==k@h, and this correction signal h
A corrected read signal S1 is obtained by calculating the read signal S read by scanning the correction coefficient determination sheet, and from this signal S1, only the noise component caused by the forcibly applied speed fluctuation is calculated. The value of k when the value of the signal S2 becomes the smallest is determined by a feedback method in which the signal portion S2 is extracted and the value of the signal S2 is sequentially changed according to the value of the extracted signal S2, and that value is set to the above-mentioned predetermined value. The correction coefficient is determined as the value of .

即ち、本発明に係る方法は、実際にサンプル(補正係数
決定用シート)を使用し、強制的に明確な速度変化を付
与した光ビームで読取操作を行ないながら順次にの値を
変化させて補正の8並を観察し、最も補正が良好になさ
れたときのkの値を補正係数にの値として決定するもの
であるから、常に最適値を決定することができるという
効果を奏する。
That is, the method according to the present invention actually uses a sample (sheet for determining correction coefficients) and performs a reading operation with a light beam to which a clear velocity change is forcibly applied, and sequentially changes the values to perform correction. Since the value of k at which the best correction is made is determined as the value of the correction coefficient by observing the 8 average, it is possible to always determine the optimum value.

特に、本発明に係る方法では、特に光ビームの走査速度
を強制的に変動させて読取信号S1又はS2中に大きな
ノイズ成分を含有させて成るので、kを変化させること
によるこのノイズ成分の減少を短時間に明確に把握する
ことができ、従って補正係数にの最適値を極めて効率良
く決定することができるものである。
In particular, in the method according to the present invention, since a large noise component is included in the read signal S1 or S2 by forcibly changing the scanning speed of the light beam, this noise component can be reduced by changing k. can be clearly understood in a short time, and therefore the optimum value for the correction coefficient can be determined extremely efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法の一実施態様を示すブロック
図、 第2図は蓄積性螢光体シートにおける単位照射面積当り
のレーザビームエネルギと輝尽発光光量との関係を示す
図である。
FIG. 1 is a block diagram showing an embodiment of the method according to the present invention, and FIG. 2 is a diagram showing the relationship between the laser beam energy per unit irradiation area and the amount of stimulated luminescence in a stimulable phosphor sheet. .

Claims (1)

【特許請求の範囲】 走査手段によつて読取対象上に走査させら れる光ビームの走査速度を検出してその走査速度に関す
る信号Hを求め、この速度信号Hに所定の補正係数Kを
掛算して補正信号H_1を形成し、この補正信号H_1
と上記光ビームで読取対象を走査することによつて得ら
れた読取信号Sとを演算することによつて、該読取信号
S中の上記光ビーム走査速度変動に起因するノイズ成分
を除去する走査速度変動補正方法において、上記走査手
段に走査速度変動を発生させる信号を入力することによ
つて強制的に走査速度を変動させた光ビームによつて補
正係数決定用読取対象を走査し、この走査中の光ビーム
の走査速度を検出して該走査速度に関する信号hを求め
、この信号hに任意の係数kを掛算して補正信号h_1
を形成し、上記補正係数決定用読取対象を上記光ビーム
で走査して得られる読取信号sとこの補正信号h_1と
を演算して補正済読取信号s_1を求め、この補正済読
取信号s_1から上記強制的に付与された光ビーム走査
速度変動に起因するノイズ成分のみの信号部分を抽出し
、その抽出された信号s_2の値に応じて順次上記定数
kの値を変化させるフィードバック方法により上記信号
s_2の値が最も小さくなるときのkの値を求め、その
値を上記所定の補正係数Kの値として決定することを特
徴とする補正係数決定方法。
[Claims] Detecting the scanning speed of a light beam scanned over the reading object by the scanning means, obtaining a signal H related to the scanning speed, and multiplying this speed signal H by a predetermined correction coefficient K. A correction signal H_1 is formed, and this correction signal H_1
and a read signal S obtained by scanning an object to be read with the light beam, thereby removing a noise component caused by the light beam scanning speed fluctuation in the read signal S. In the speed fluctuation correction method, a reading target for determining a correction coefficient is scanned by a light beam whose scanning speed is forcibly changed by inputting a signal that causes a scanning speed fluctuation to the scanning means, and this scanning The scanning speed of the light beam in the center is detected to obtain a signal h related to the scanning speed, and this signal h is multiplied by an arbitrary coefficient k to obtain a correction signal h_1.
A read signal s obtained by scanning the read target for determining the correction coefficient with the light beam and this correction signal h_1 are calculated to obtain a corrected read signal s_1, and from this corrected read signal s_1 the above The above-mentioned signal s_2 is extracted by a feedback method in which a signal portion containing only noise components caused by forcibly applied light beam scanning speed fluctuations is extracted, and the value of the above-mentioned constant k is sequentially changed according to the value of the extracted signal s_2. A correction coefficient determining method characterized in that the value of k at which the value of k is the smallest is determined, and that value is determined as the value of the predetermined correction coefficient K.
JP59208830A 1984-09-12 1984-10-04 Correcting coefficient determining method in scanning speed variation correcting method Granted JPS6186721A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59208830A JPS6186721A (en) 1984-10-04 1984-10-04 Correcting coefficient determining method in scanning speed variation correcting method
EP85111540A EP0174659B1 (en) 1984-09-12 1985-09-12 Scanning read-out apparatus with scanning speed fluctuation compensating means and correction coefficient adjusting method
DE8585111540T DE3585478D1 (en) 1984-09-12 1985-09-12 SCAN READING DEVICE WITH COMPENSATION AGAINST SCAN SPEED VARIATIONS, AND METHOD FOR ADJUSTING THE CORRECTION COEFFICIENT.
US07/016,481 US4754143A (en) 1984-09-12 1987-02-17 Scanning read-out apparatus with scanning speed fluctuation compensating means and correction coefficient adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59208830A JPS6186721A (en) 1984-10-04 1984-10-04 Correcting coefficient determining method in scanning speed variation correcting method

Publications (2)

Publication Number Publication Date
JPS6186721A true JPS6186721A (en) 1986-05-02
JPH0545002B2 JPH0545002B2 (en) 1993-07-08

Family

ID=16562813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59208830A Granted JPS6186721A (en) 1984-09-12 1984-10-04 Correcting coefficient determining method in scanning speed variation correcting method

Country Status (1)

Country Link
JP (1) JPS6186721A (en)

Also Published As

Publication number Publication date
JPH0545002B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
JPS6239842A (en) Radiographic picture information reading method
US4896222A (en) Method of and apparatus for correcting image signal
US5060081A (en) Method of adjusting read-out condition and/or image processing condition for radiation image
EP0174659B1 (en) Scanning read-out apparatus with scanning speed fluctuation compensating means and correction coefficient adjusting method
US5602402A (en) Radiation image read-out method and apparatus
JPH0439947B2 (en)
US4870277A (en) Radiation image read-out method and apparatus, and radiation image read-out and reproducing method and apparatus
JPS6186721A (en) Correcting coefficient determining method in scanning speed variation correcting method
JPH02280460A (en) Picture recorder
US5081356A (en) Image read-out apparatus
JPH07120853A (en) Radiation image reader
JPH07109482B2 (en) Radiation image information reading method and apparatus
JPH0520027B2 (en)
JPH09114026A (en) Radiation image reading method and radiation image reader
JPS6184959A (en) Method of correcting laser noise
JPS62245777A (en) Radiographic image information reader
JPH10232452A (en) Method and device for reading radiograph information
JPS61230563A (en) Radiographic image information reader
JPS62295043A (en) Method for reading and reproducing radiation image information
JPS61230562A (en) Radiographic image information reader
JPH11112730A (en) Method and device for adjusting read sensitivity of radiation picture information reader
JPS6248866A (en) Read condition deciding method for radiographic information
JP2005261487A (en) Method and apparatus for reading radiograph
JPH08286292A (en) Radiation image reader
JPS61114646A (en) Method for reading picture information

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees