JPS6248866A - Read condition deciding method for radiographic information - Google Patents
Read condition deciding method for radiographic informationInfo
- Publication number
- JPS6248866A JPS6248866A JP60188859A JP18885985A JPS6248866A JP S6248866 A JPS6248866 A JP S6248866A JP 60188859 A JP60188859 A JP 60188859A JP 18885985 A JP18885985 A JP 18885985A JP S6248866 A JPS6248866 A JP S6248866A
- Authority
- JP
- Japan
- Prior art keywords
- reading
- information
- radiation
- image
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radiography Using Non-Light Waves (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の分野)
本発明は、放射線画像情報が蓄積記録された蓄積性螢光
体シートに励起光を照射し、それによって該蓄積性螢光
体シートから発せられた輝尽発光光を光電的に検出して
上記放射線画像情報を読み取る放射線画像情報読取方法
において、最適な読取条件を求める方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention is directed to irradiating excitation light to a stimulable phosphor sheet on which radiographic image information is accumulated and recorded, thereby excitation light emitted from the stimulable phosphor sheet. The present invention relates to a method for determining optimal reading conditions in a radiation image information reading method for reading the radiation image information by photoelectrically detecting stimulated luminescence light.
(発明の技術的背景および先行技術)
必る種の螢光体に放射線(X線、α線、β線、γ線、電
子線、紫外線等)を照射すると、この放射線エネルギー
の一部が螢光体中に蓄積され、この螢光体に可視光等の
励起光を照射すると、蓄積されたエネルギーに応じて螢
光体が輝尽発光を示すことが知られており、このような
性質を示す螢光体は蓄積性螢光体(R尿性螢光体)と呼
ばれる。(Technical Background and Prior Art of the Invention) When radiation (X-rays, α-rays, β-rays, γ-rays, electron beams, ultraviolet rays, etc.) is irradiated onto a certain type of phosphor, part of this radiation energy is released into the fluorophore. It is known that the phosphor is accumulated in a phosphor, and when this phosphor is irradiated with excitation light such as visible light, the phosphor exhibits stimulated luminescence depending on the accumulated energy. The fluorophore shown is called a storage fluorophore (Rurinary fluorophore).
この蓄積性螢光体を利用して、人体等の放射線画像情報
を一旦蓄積性螢光体のシートに記録し、この蓄積性螢光
体シートをレーザ光等の励起光で走査して輝尽発光光を
生ぜしめ、得られた輝尽発光光を充電的に読み取って画
像信号を得、この画像信号に基づき写真感光材料等の記
録材料、CRT等の表示装置に放射線画像を可視像とし
て出力させる放射線画像情報記録再生システムが本出願
人によりすでに提案されている。(特開昭55i249
2号、同56−11395号など。)この方法は、従来
の銀塩写真を用いる放射線写真システムと比較して極め
て広い放射線露出域にわたって画像を記録しつるという
実用的な利点を有している。すなわち、蓄積性螢光体に
おいては、放射線露光■に対して蓄積後に励起によって
輝尽発光する発光光の先回が極めて広い範囲にわたって
比例することが認められており、従って種々の扇形条件
により放射線露光量がかなり大幅に変動しても、蓄積性
螢光体シートより放射される輝尽発光光の光電を読取ゲ
インを適当な値に設定して充電変換手段により読み取っ
て電気信号に変換し、この電気信号を用いて写真感光材
料等の記録材料、CRT等の表示装置に放射線画像を可
視像として出力させることによって、放射線透過率の変
動に影響されない放射線画像を得ることができる。Using this stimulable phosphor, radiographic image information of the human body, etc. is once recorded on a stimulable phosphor sheet, and this stimulable phosphor sheet is scanned with excitation light such as a laser beam to stimulate it. Generate luminescent light, read the resulting stimulated luminescent light in a charging manner to obtain an image signal, and based on this image signal, display a radiation image on a recording material such as a photographic light-sensitive material or a display device such as a CRT as a visible image. The applicant has already proposed a radiation image information recording and reproducing system for outputting radiation image information. (Unexamined Japanese Patent Publication No. 55i249
No. 2, No. 56-11395, etc. ) This method has the practical advantage of recording images over a much wider range of radiation exposure compared to conventional radiographic systems using silver halide photography. In other words, in a stimulable phosphor, it is recognized that the amount of emitted light that is stimulated by excitation after accumulation is proportional to radiation exposure (2) over an extremely wide range. Even if the exposure amount varies considerably, the photoelectric charge of the stimulated luminescence light emitted from the stimulable phosphor sheet is read by the charging conversion means with the reading gain set to an appropriate value and converted into an electrical signal. By using this electrical signal to output a radiation image as a visible image to a recording material such as a photographic light-sensitive material or a display device such as a CRT, a radiation image that is not affected by fluctuations in radiation transmittance can be obtained.
またこのシステムによれば、蓄積性螢光体シートに蓄積
記録された放射線画像情報を電気信号に変換した後に適
当な信号処理を施し、この電気信号を用いて写真感光材
料等の記録材料、CRT等の表示装置に放射線画像を可
視像として出力させることによって、観察読影適性(診
断適性)の優れた放射線画像を得ることができるという
ぎわめて大きな効果も得ることができる。Furthermore, according to this system, radiation image information accumulated and recorded on a stimulable phosphor sheet is converted into an electrical signal, then subjected to appropriate signal processing, and this electrical signal is used to produce recording materials such as photographic light-sensitive materials, CRTs, etc. By outputting a radiation image as a visible image on a display device such as the above, it is possible to obtain a very large effect that a radiation image with excellent observation and interpretation suitability (diagnosis suitability) can be obtained.
このように蓄積性螢光体シートを使用する放射線画像シ
ステムにおいては、読取ゲインを適当な値に設定して肘
尽発光光を光電変換し、可視像として出力することがで
きるので、放射線源の管電圧又はMAS値の変動による
放射線露光ωの変動、蓄積性螢光体シートの感度のバラ
ツキ、光検出器の感度のバラツキ、被写体の条件による
露光量の変化、あるいは被写体によって放射線透過率が
異なる等の原因により蓄積性螢光体に蓄積される蓄積エ
ネルギーが異なっても、更には放射線の被ばく口を低減
さばても、これらの因子の変動により影響を受けない1
11fJ4線画像を1qることが可能となる。In this way, in a radiation imaging system using a stimulable phosphor sheet, the reading gain can be set to an appropriate value to photoelectrically convert the exhaust light emitted and output as a visible image. fluctuations in the radiation exposure ω due to fluctuations in the tube voltage or MAS value, fluctuations in the sensitivity of the stimulable phosphor sheet, fluctuations in the sensitivity of the photodetector, changes in the exposure amount due to subject conditions, or changes in radiation transmittance depending on the subject. Even if the accumulated energy stored in the stimulable phosphor varies due to various factors, or even if the radiation exposure port is reduced, it will not be affected by fluctuations in these factors1.
It becomes possible to reduce the 11fJ4-line image by 1q.
しかしながら、このように扇形条件の変動による影響を
なくし、あるいは観察読影適性の優れた放射線画像を得
るためには、蓄積性螢光体シートに蓄積記録された放射
線画像情報の記録状態、あるいは胸部、腹部などの被写
体の部位、単純撮影、造影撮影などの魔彰方法等によっ
て決定される記録パターン(以下、これらを総称する場
合には、「蓄積記録情報」という。)をI2察読影のた
めの可視像の出力に先立って把握し、この把握した蓄積
記録情報に基づいて読取ゲインを適当な値に調節し、ま
た、記録パターンのコントラストに応じて分解能が最適
化されるように収録スケールファクターを決定すること
が必要である。However, in order to eliminate the influence of fluctuations in fan-shaped conditions or to obtain radiographic images that are highly suitable for observation and interpretation, it is necessary to change the recording state of the radiographic image information accumulated and recorded on the stimulable phosphor sheet, or the chest, Recording patterns (hereinafter collectively referred to as ``accumulated recorded information'') determined by the part of the subject such as the abdomen, masonry methods such as plain radiography and contrast radiography, etc., are used for I2 interpretation. The recording scale factor is determined prior to the output of a visible image, and the reading gain is adjusted to an appropriate value based on the acquired accumulated recording information, and the recording scale factor is adjusted to optimize the resolution according to the contrast of the recording pattern. It is necessary to determine the
このように可視像の出力に先立って放射線画像の蓄積記
録情報を把握する方法として、特開昭58−67240
号に開示された方法が知られている。この方法は、観察
読影のための可視像を得る読取り操作(以下、「本読み
」という。)の際に照射1べき励起光よりも低いレベル
の励起光を用いて、前記本読みに先立って予め蓄積性螢
光体シートに蓄積記録されている放射線画像の蓄積記録
情報を把握するだめの読取り操作(以下、「先読み」と
いう。)を行ない、放射線画像の蓄積記録の概要を把握
し、本読みを行なうに際して、この先読み情報に基づい
て前記読取ゲインや収録スケールファクター等の読取条
件を最適に決定するものである。As a method for grasping the accumulated record information of radiographic images before outputting visible images, Japanese Patent Laid-Open No. 58-67240
The method disclosed in No. This method uses excitation light of a lower level than the excitation light that is irradiated during the reading operation (hereinafter referred to as "main reading") to obtain a visible image for observation and interpretation. Perform the reading operation (hereinafter referred to as "read ahead") to understand the accumulated record information of the radiographic image stored on the stimulable phosphor sheet, grasp the outline of the accumulated record of the radiographic image, and read the main reading. When performing this, reading conditions such as the reading gain and recording scale factor are optimally determined based on this pre-read information.
なお、ここで先読みに用いられる励起光が本読みに用い
られる励起光よりも低レベルであるとは、先読みの際に
蓄積性螢光体シートが単位面積当りに受ける励起光の有
効エネルギーが本読みの際のそれよりも小さいことを意
味する。先読みの励起光を本読みの励起光よりも低レベ
ルとする方法として、レーザー光源等の励起光光源の出
力を小とする方法、光源より放射された励起光をその光
路においてNDフィルタ、AOM等によって減衰させる
方法、および先読み用の光源と本読み用の光源とを別個
に設け、前者の出力を後者の出力よりも小とする方法が
挙げられ、さらには励起光のビーム径を犬とする方法、
励起光の走査速度を大とする方法、蓄積性螢光体シート
の移送速度を大とする方法等が挙げられる。Note that the excitation light used for pre-reading is at a lower level than the excitation light used for main reading because the effective energy of the excitation light that the stimulable phosphor sheet receives per unit area during pre-reading is lower than the excitation light used for main reading. This means that it is smaller than the actual value. Methods for making the pre-reading excitation light lower than the main reading excitation light include reducing the output of the excitation light source such as a laser light source, and using an ND filter, AOM, etc. in the optical path of the excitation light emitted from the light source. A method of attenuation, a method of providing a light source for pre-reading and a light source for main reading separately, and making the output of the former smaller than the output of the latter, and a method of reducing the beam diameter of the excitation light,
Examples include a method of increasing the scanning speed of excitation light and a method of increasing the transport speed of the stimulable phosphor sheet.
上記の方法によれば、蓄積性螢光体シートに蓄積記録さ
れている放射線画像情報の記録状態および記録パターン
を本読みの前に予め把握することができるので、格別に
広いダイナミックレンジを有する読取系を使用しなくと
も、この記録情報に基づいて読取ゲインを適当に調節し
、収録スケールファクターを適当に決定することにより
、観察読影適性に優れた放射線画像を得ることが可能に
なる。According to the above method, the recording state and recording pattern of the radiographic image information accumulated and recorded on the stimulable phosphor sheet can be known in advance before the actual reading, so the reading system has an exceptionally wide dynamic range. By appropriately adjusting the reading gain and appropriately determining the recording scale factor based on this recorded information, it is possible to obtain a radiographic image that is highly suitable for observation and interpretation, even without using it.
一方放射線画像情報記録(Ia影)に際しては、診断に
必要の無い部分に放射線を照射しないようにするため、
あるいは診断に不要な部分に放射線を照射するとその部
分から診断に必要な部分に散乱線が入り、コントラスト
分解能が低下するのでこれを防ぐために、蓄積性螢光体
シートの全記録領域に対して放射線照射野を絞って撮影
を行なうことが多い。On the other hand, when recording radiation image information (Ia shadow), in order to avoid irradiating radiation to areas that are not necessary for diagnosis,
Alternatively, if radiation is applied to an area unnecessary for diagnosis, scattered radiation will enter the area necessary for diagnosis from that area, reducing contrast resolution. Photography is often performed by narrowing down the irradiation field.
ところが、このように放射線の照射野を絞った場合には
、通常、蓄積性螢光体シート上の照射野外に照射野の被
写体から発生した散乱放射線が入射し、高感度の蓄積性
螢光体シートはこの散乱放射線をも蓄積記録してしまう
。したがって先読みによって得られた画像情報中には、
この散乱放射線によるものも含まれることになるので、
このような先読み画像情報に基づいて前述の読取条件を
決定しても最適な読取条件を決定することはできず、そ
の結果観察読影適性に優れた再生放射線画像を得ること
が不可能になる。However, when the radiation irradiation field is narrowed down in this way, the scattered radiation generated from the subject in the irradiation field usually enters the irradiation field on the stimulable phosphor sheet, and the highly sensitive stimulable phosphor sheet The sheet also accumulates and records this scattered radiation. Therefore, in the image information obtained by pre-reading,
This includes radiation caused by scattered radiation, so
Even if the above-mentioned reading conditions are determined based on such pre-read image information, the optimum reading conditions cannot be determined, and as a result, it becomes impossible to obtain a reproduced radiation image with excellent observation and interpretation aptitude.
(発明の目的)
本発明は上記のような事情に鑑みてなされたものであり
、照射野絞りをかけて撮影がなされた蓄積性螢光体シー
トから放射線画像情報を読み取る際に、該シートの放射
線照射野外の蓄積情報の影響を排除して、照射野内の画
像情報にとって最適な読取条件を求めることができる、
放射線画像情報の読取条件決定方法を提供することを目
的とするものである。(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to read radiation image information from a stimulable phosphor sheet that has been photographed with an irradiation field aperture. It is possible to eliminate the influence of accumulated information outside the radiation irradiation field and find the optimal reading conditions for image information within the irradiation field.
The purpose of this invention is to provide a method for determining reading conditions for radiation image information.
(発明の構成)
本発明の放Q11m画像情報の読取条件決定方法は、前
述のように照射野絞りをかけて放射線画像情報記録(撮
影)がなされた蓄積性螢光体シートに対して先読みを行
ない、この先読みによって1qられた情報に基づいて本
読み時の読取条件を決定するようにした放射線画像情報
読取方法において、先読みによって得られた先読み画像
信号から、上記シートの記録領域端部から中央側に向か
って延びる任意の画素列に関するサンプル画像信号を抽
出し、
このサンプル画像信号が示す上記端部近傍の所定数画素
間の画像濃度変化を、実質的に1次方稈式からなる近似
式で表わし、
この近似式による想定両件濃度と上記サンプル画像信号
が示す実際の画像濃度との差を求め、上記端部から中央
側に向かって、上述の差が所定値に達するまでの領域を
故rJJ51照射野外部分、それよりも内側の領域を放
射線照射野と認識し、このようにして放射線照射野と認
識した領域に関する先読みの画像情報に基づいて本読み
時の読取条件を決定するようにしたことを特徴とするも
のである。(Structure of the Invention) The method for determining reading conditions for radiation Q11m image information of the present invention is to pre-read a stimulable phosphor sheet on which radiation image information has been recorded (photographed) by applying field aperture as described above. In the radiation image information reading method in which the reading conditions for main reading are determined based on the information 1q obtained by this pre-reading, from the pre-read image signal obtained by the pre-reading, the information from the edge of the recording area of the sheet to the center side is determined. A sample image signal related to an arbitrary pixel column extending toward the end is extracted, and the image density change between a predetermined number of pixels near the end indicated by this sample image signal is expressed by an approximate equation substantially consisting of a linear culm equation. Find the difference between the assumed density based on this approximation formula and the actual image density indicated by the sample image signal, and calculate the area from the edge to the center until the difference reaches a predetermined value. rJJ51 The outside irradiation area and the area inside it are recognized as the radiation irradiation field, and the reading conditions for main reading are determined based on the pre-read image information regarding the area thus recognized as the radiation irradiation field. It is characterized by:
(実1M態様)
以下、図面に示す実施態様に基づいて本発明の詳細な説
明する。(Actual 1M Embodiment) The present invention will be described in detail below based on the embodiment shown in the drawings.
第1図は本発明の一実施態様方法によって本読みの読取
条件を決定するようにした放射線画像情報記録再生シス
テムを示すものである。この放射線画像情報記録再生シ
ステムは基本的に、放射線画像撮影部20、先読み用読
取部30、本読み用読取部40、および画像再生部50
から構成されている。FIG. 1 shows a radiation image information recording and reproducing system in which reading conditions for main reading are determined by a method according to an embodiment of the present invention. This radiation image information recording and reproducing system basically includes a radiation image capturing section 20, a pre-reading reading section 30, a main reading reading section 40, and an image reproducing section 50.
It consists of
放射線画像撮影部20においては、例えばxI+!管球
等の放射線源100から被写体(被検者)101に向け
て、放射1;1102が照射される。この被写体101
を透過した放射線102が照射される位置には、先に述
べたように放射線エネルギーを蓄積する蓄積性螢光体シ
ート103が配置され、この蓄積性螢光体シート103
に被写体101の透過放射線画像情報が蓄積記録される
。なお放射線源100と被写体101との間には、放射
線102の照射野を絞る絞り104が配されている。In the radiation image capturing unit 20, for example, xI+! Radiation 1; 1102 is emitted from a radiation source 100 such as a tube toward a subject (subject) 101. This subject 101
As described above, a stimulable phosphor sheet 103 that accumulates radiation energy is placed at a position where the radiation 102 that has passed through the stimulable phosphor sheet 103 is irradiated.
The transmitted radiation image information of the subject 101 is accumulated and recorded. Note that an aperture 104 that narrows down the irradiation field of the radiation 102 is arranged between the radiation source 100 and the subject 101.
このようにして被写体101の放射線画像情報が記録さ
れた蓄積性螢光体シート103は、移送ローラ等のシー
ト移送手段110により、先読み用読取部30に送られ
る。先読み用読取部30において先読み用レーザ光源2
01から発せられたレーザ光202は、このレーザ光2
02の励起によって蓄積性螢光体シート103から発せ
られる輝尽発光光の波長領域をカットするフィルター2
03を通過した後、ガルバノメータミラー等の光偏向器
204により直線的に偏向され、平面反射鏡205を介
して蓄積性螢光体シート103上に入射する。ここでレ
ーザ光源201は、励起光としてのレーザ光202の波
長域が、蓄積性螢光体シート103が発する輝尽発光光
の波長域と重複しないように選択されている。他方、螢
光体シート103は移送ローラ等のシート移送手段21
0により矢印206の方向に移送されて副走査がなされ
、その結果、螢光体シート103の全面にわたってレー
ザ光202が照射される。ここで、レーザ光源201の
発光強度、レーザ光202のビーム径、レーザ光202
の走査速度、蓄積性螢光体シート103の移送速度は、
先読みの励起光(レーザ光202)のエネルギーが、後
述する本読み用読取部40で行なわれる本読みのそれよ
りも小さくなるように選択されている。The stimulable phosphor sheet 103 on which the radiation image information of the subject 101 has been recorded in this manner is sent to the pre-reading reading section 30 by sheet transport means 110 such as a transport roller. In the pre-reading reading section 30, the pre-reading laser light source 2
The laser beam 202 emitted from the laser beam 2
A filter 2 that cuts the wavelength range of stimulated luminescent light emitted from the stimulable phosphor sheet 103 by excitation of 02
03, the light is linearly deflected by a light deflector 204 such as a galvanometer mirror, and is incident on the stimulable phosphor sheet 103 via a plane reflecting mirror 205. Here, the laser light source 201 is selected so that the wavelength range of the laser light 202 as excitation light does not overlap with the wavelength range of the stimulated luminescence light emitted by the stimulable phosphor sheet 103. On the other hand, the phosphor sheet 103 is transferred to a sheet transport means 21 such as a transport roller.
0 to perform sub-scanning in the direction of arrow 206, and as a result, the entire surface of phosphor sheet 103 is irradiated with laser light 202. Here, the emission intensity of the laser light source 201, the beam diameter of the laser light 202, the laser light 202
The scanning speed of the stimulable phosphor sheet 103 and the transport speed of the stimulable phosphor sheet 103 are as follows.
The energy of the excitation light (laser light 202) for pre-reading is selected to be smaller than that for main reading performed in the main reading reading unit 40, which will be described later.
上述のようにレーザ光202が照射されると、蓄積性螢
光体シート103は、それに蓄積記録されている放射線
エネルギーに対応した光量の輝尽発光光を発し、この発
光光は先読み用光ガイド201に入射する。輝尽発光光
はこの光ガイド207内を導かれ、射出面から射出して
フォトマルチプライヤ−等の光検出器208によって受
光される。該光検出器208の受光面には、輝尽発光光
の波長域の光のみを透過し、励起光の波長域の光をカッ
トするフィルターが貼着されており、輝尽発光光のみを
検出し得るようになっている。検出された輝尽発光光は
蓄積記録情報を担持する電気信号に変換され、増幅器2
09により増幅される。増幅器209から出力された信
号はA/D変換器211によりディジタル化され、先読
み画会信@Spとして本読み用読取部40の本読み制御
回路314に入力される。When the laser beam 202 is irradiated as described above, the stimulable phosphor sheet 103 emits stimulated luminescent light with an amount of light corresponding to the radiation energy stored therein, and this emitted light is transmitted to the pre-reading light guide. 201. The stimulated luminescence light is guided through the light guide 207, exits from the exit surface, and is received by a photodetector 208 such as a photomultiplier. A filter is attached to the light receiving surface of the photodetector 208, which transmits only light in the wavelength range of stimulated luminescence light and cuts light in the wavelength range of excitation light, and detects only stimulated luminescence light. It is now possible to do so. The detected stimulated luminescence light is converted into an electrical signal carrying accumulated recording information, and is sent to an amplifier 2.
09. The signal output from the amplifier 209 is digitized by the A/D converter 211, and is input to the main reading control circuit 314 of the main reading reading section 40 as a pre-reading image signal @Sp.
この本読み制御回路314は、先読み画像信号Spが示
す蓄積記録情報に基づいて、読取ゲイン設定@a、収録
スケールファクター設定値b、再生画像処理条件設定値
Cを決定する。また上記先読み画像信号Spは、後に詳
述する照射野認識回路220にも入力される。This main reading control circuit 314 determines the reading gain setting @a, the recording scale factor setting value b, and the reproduction image processing condition setting value C based on the accumulated recording information indicated by the pre-reading image signal Sp. The pre-read image signal Sp is also input to an irradiation field recognition circuit 220, which will be described in detail later.
以上のようにして先読みを完了した蓄積性螢光体シート
103は本読み用読取部40へ移送される。The stimulable phosphor sheet 103 that has undergone pre-reading as described above is transferred to the main reading reading section 40.
本読み用読取部40にJ5いて本読み用レーザ光源3゜
1から発せられたレーザ光302は、このレーザ光30
2の励起によって蓄積性螢光体シート103がら発せら
れる輝尽発光光の波長領域をカットするフィルター30
3を通過した後、ビームエクスパンダ−304によりビ
ーム径の大きさが厳密に調整され、ガルバノメータミラ
ー等の光偏向器305によって直線的に偏向され、平面
反射鏡306を介して蓄積性螢光体シート103上に入
射する。光偏向器305と平面反射v1306との間に
はfθレンズ307が配され、蓄積性螢光体シート10
3上を走査するレーザ光302のビーム径が均一となる
ようにされている。他方、蓄積性螢光体シート103は
移送ローラなどのシート移送手段320により矢印30
8の方向に移送されて副走査がなされ、その結果、蓄積
性螢光体シート103の全面にわたってレーザ光が照射
される。このようにレーザ光302が照射されると、蓄
積性螢光体シート103はそれに蓄積記録されている放
射線エネルギーに対応した光mの輝尽発光光を発し、こ
の発光光は本読み用光ガイド309に入射する。本読み
用光ガイド309の中を全反射を繰返しつつ導かれた輝
尽発光光はその射出面から射出され、フォトマルチプラ
イヤ−等の光検出器310によって受光される。光検出
器310の受光面には、輝尽発光光の波長域のみを選択
的に透過するフィルターが貼着され、光検出器310が
輝尽発光光のみを検出するようになっている。The laser light 302 emitted from the main reading laser light source 3°1 in the main reading reading section 40 is
A filter 30 that cuts the wavelength range of stimulated luminescent light emitted from the stimulable phosphor sheet 103 by the excitation of the stimulable phosphor sheet 103
3, the beam diameter is strictly adjusted by a beam expander 304, linearly deflected by an optical deflector 305 such as a galvanometer mirror, and then passed through a plane reflector 306 to a stimulable phosphor. The light is incident on the sheet 103. An fθ lens 307 is arranged between the optical deflector 305 and the plane reflection v1306, and the stimulable phosphor sheet 10
The beam diameter of the laser beam 302 that scans the area 3 is made uniform. On the other hand, the stimulable phosphor sheet 103 is moved by the arrow 30 by a sheet transport means 320 such as a transport roller.
The stimulable phosphor sheet 103 is transported in the direction 8 for sub-scanning, and as a result, the entire surface of the stimulable phosphor sheet 103 is irradiated with laser light. When the laser beam 302 is irradiated in this way, the stimulable phosphor sheet 103 emits stimulated luminescent light of light m corresponding to the radiation energy stored and recorded therein, and this luminescent light is transmitted to the main reading light guide 309. incident on . Stimulated luminescent light guided through the main reading light guide 309 while undergoing repeated total reflection is emitted from its exit surface and is received by a photodetector 310 such as a photomultiplier. A filter that selectively transmits only the wavelength range of the stimulated luminescent light is attached to the light receiving surface of the photodetector 310, so that the photodetector 310 detects only the stimulated luminescent light.
蓄積性螢光体シート103に記録されている放射線画像
を示す輝尽発光光を光電的に検出した光検出器310の
出力は、前記制御回路314が決定した読取ゲイン設定
値aに基づいて読取ゲインが設定された増幅器311に
より、適正レベルの電気信号に増幅される。増幅された
電気信号はA/D変換器312に入力され、収録スケー
ルファクター設定値しに基づいて、信号変動幅に適した
収録スケールファクターでディジタル信号に変換されて
信号処理回路313に入力される。上記ディジタル信号
は、この信号処理回路313において、観vX読影適性
の優れた放射線画像が得られるように、再生画像処理条
件設定値Cに基づいて例えば階調処理等の信号処理(画
像処理)を受ける。The output of the photodetector 310 that photoelectrically detects the stimulated luminescent light representing the radiation image recorded on the stimulable phosphor sheet 103 is read based on the read gain setting value a determined by the control circuit 314. An amplifier 311 with a set gain amplifies the electrical signal to an appropriate level. The amplified electrical signal is input to the A/D converter 312, and based on the recording scale factor setting value, it is converted into a digital signal with a recording scale factor suitable for the signal fluctuation range, and is input to the signal processing circuit 313. . The digital signal is subjected to signal processing (image processing) such as gradation processing in the signal processing circuit 313 based on the reproduction image processing condition setting value C so as to obtain a radiographic image with excellent suitability for visual X-ray interpretation. receive.
信号処理回路313から出力された読取画像信号(本読
み画像信@)SOは、画像再生部50の光変調器401
に入力される。この画像再生部50においては、記録用
レーザ光fl 402からのレーザ光403が光変調器
401により、上記信号処理回路313から入力される
本読み画像信号SOに基づいて変調され、走査ミラー4
04によって偏向されて写真フィルム等の感光材料40
5上を走査する。そして感光材料405は上記走査の方
向と直交する方向(矢印406方向)に走査と同期して
移送され、感光材料405上に、上記本読み画像信号S
Oに基づく放射線画像が出力される。放射線画像を再生
する方法としては、このような方法の他、前述したCR
Tによる表示等、種々の方法を採用することができる。The read image signal (main reading image signal @) SO output from the signal processing circuit 313 is transmitted to the optical modulator 401 of the image reproducing unit 50.
is input. In this image reproducing unit 50, a laser beam 403 from a recording laser beam fl 402 is modulated by an optical modulator 401 based on the main reading image signal SO input from the signal processing circuit 313, and the scanning mirror
A photosensitive material 40 such as a photographic film is deflected by
5. Scan above. The photosensitive material 405 is transported in a direction perpendicular to the scanning direction (direction of arrow 406) in synchronization with the scanning, and the book reading image signal S is transferred onto the photosensitive material 405.
A radiation image based on O is output. In addition to this method, the above-mentioned CR method can be used to reproduce radiographic images.
Various methods such as display by T can be adopted.
ここで蓄積性螢光体シート103に放射線画像情報を蓄
積記録(WI影)するに際しては、先に述べたような理
由から、前記絞り104を操作して、例えば第2図(a
>に示すように照射野絞りがかけられることがある。す
なわちこの場合、蓄積性螢光体シート103の記録領域
103A内の一部に放射線照射野(画像記録部分)
103Bが形成されることになる。このような蓄積性螢
光体シート103の記録領域103A仝域からの先読み
画像信号Spに基づいて、本読み読取条件としての読取
ゲイン、収録スケールファクターを決定すると、既述の
通りそれらの読取条件は、照射野103B内の蓄積記録
画像にとって適正でないものとなってしまう。In order to accumulate and record radiation image information (WI shadow) on the stimulable phosphor sheet 103, for the reason mentioned above, the aperture 104 is operated and, for example, as shown in FIG.
As shown in >, irradiation field diaphragm may be applied. That is, in this case, a radiation irradiation field (image recording part) is formed in a part of the recording area 103A of the stimulable phosphor sheet 103.
103B will be formed. Based on the pre-read image signal Sp from the recording area 103A of the stimulable phosphor sheet 103, the reading gain and recording scale factor as the main reading conditions are determined, and as described above, those reading conditions are , the accumulated recorded image within the irradiation field 103B becomes inappropriate.
そこで前記照射野認識回路220が先読み画像信号Sp
に基づいて放射線照射野103Bを認識し、該照射野1
03Bを示す情報Stを制御回路314に送り、この制
御回路314は該照射野情報Stが示す照射野103B
内についての先読み画像信号Spのみから読取ゲイン設
定値a1収録スケールファクター設定(lbを決定する
ようになっている。Therefore, the irradiation field recognition circuit 220 uses the pre-read image signal Sp.
The radiation field 103B is recognized based on the radiation field 1.
The information St indicating 03B is sent to the control circuit 314, and the control circuit 314 sends the information St indicating the irradiation field 103B indicated by the irradiation field information St.
The reading gain setting value a1 recording scale factor setting (lb) is determined only from the pre-read image signal Sp for the inside.
以下、上記照射野認識回路220による照射野認識につ
いて詳しく説明する。この照射野認識回路220はA/
D変換器211より入力される全先読み画像信号spか
ら、第2図(a)にXl−X11itで示すように蓄積
性螢光体シート103の記録領域端部から中央側に向か
って延びる任意の画素列(例えば主走査方向画素列)に
ついての画像信号を抽出する。こうして抽出されたサン
プル画像信号が示す画像1tidの変化は、一般に第2
図の(b)に示すようなものとなる。すなわち照射野1
03B内は比較的高濃度で、画@情報に応じた変化を示
し、この照射野103Bのエツジ部分よりも外側の部分
、つまり放射線照射野外部分においては照射野103B
内よりも低濃度となる。ここで、被写体からの散乱放射
線が上記照射野外部分にも照射され、そしてこの散乱放
射線ωは照射野103Bから離れるにつれて漸減Jるの
で、照射野外部分において画像濃度dは、図示のような
変化を示す。第3図はこの部分の濃度変化を拡大して示
ずものであり、図示されるように画@濃度dはシート端
部近傍においては比較的緩やかで直線的に変化し、照射
野103Bに近づくにつれて急激に増大する。Irradiation field recognition by the irradiation field recognition circuit 220 will be described in detail below. This irradiation field recognition circuit 220 is
From the entire pre-read image signal sp input from the D converter 211, an arbitrary signal extending from the edge of the recording area of the stimulable phosphor sheet 103 toward the center, as shown by Xl-X11it in FIG. An image signal for a pixel row (for example, a pixel row in the main scanning direction) is extracted. Generally, the change in the image 1tid indicated by the sample image signal extracted in this way is
The result will be as shown in (b) of the figure. That is, irradiation field 1
The area within 03B has a relatively high concentration and changes according to the image@information, and the area outside the edge of this irradiation field 103B, that is, the outside area of irradiation field, has a relatively high concentration.
The concentration will be lower than inside. Here, the scattered radiation from the subject is also irradiated to the outdoor irradiation area, and this scattered radiation ω gradually decreases as it moves away from the irradiation field 103B, so the image density d in the outdoor irradiation area changes as shown in the figure. show. FIG. 3 shows an enlarged view of the density change in this part, and as shown in the figure, the image@density d changes relatively slowly and linearly near the edge of the sheet, and approaches the irradiation field 103B. It increases rapidly as the temperature increases.
第3図に示ずように照射野認識回路220は、上記シー
ト端部近傍の所定数Nの画素間の直線的な濃度変化を、
公知の方法によって、例えばy=ax+bなる1次方程
式からなる近似式で表わす。As shown in FIG. 3, the irradiation field recognition circuit 220 detects linear density changes between a predetermined number N of pixels near the edge of the sheet.
It is expressed by a known method, for example, as an approximate expression consisting of a linear equation: y=ax+b.
なおこの近似式は、実質的に直線を表わす式であれば、
その他の高次方程式が採用されてもよい。Note that this approximation formula is a formula that substantially represents a straight line,
Other higher order equations may also be employed.
次に照射野認識回路220は、上記近似式に基づいて画
素列の各画素についての想定画像濃度d′を求め、実際
の濃度dとの差1d−d’ lを各画素について求め
る。次いで照射野認識回路220は、上記濃度差1d−
d’ 1と所定濃度δとを、シート端部側の画素から
順次比較する。シート端部近傍にJ5いては、当然上記
の濃度差1d−d’lは僅少であるが、照射野1033
のエツジ部分の画素XoにJ′−3いては、初めて上記
所定濃度δを超えてしまう。そこで照射野認識回路22
0は、このようにCJ度差1d−d’ lが初めて所
定濃度δを超えた画素Xoを照射野エツジ点画素と認識
する。なお上記所定濃度δの好ましい値は、実験的、経
験的に求めることかできる。以上の解析を、シート10
3の反対側の端部についても行なうことにより、画素列
XI XIについて照射野エツジ点画素X。が2つ検
出できる(第2図(a)参照)。Next, the irradiation field recognition circuit 220 calculates the assumed image density d' for each pixel in the pixel column based on the above approximate expression, and calculates the difference 1d-d'l from the actual density d for each pixel. Next, the irradiation field recognition circuit 220 detects the concentration difference 1d-
d' 1 and the predetermined density δ are sequentially compared starting from the pixels on the sheet edge side. When J5 is near the edge of the sheet, the above concentration difference 1d-d'l is naturally small, but the irradiation field 1033
The predetermined density δ is exceeded for the first time in the pixel Xo of the edge portion J'-3. Therefore, the irradiation field recognition circuit 22
0 recognizes the pixel Xo whose CJ degree difference 1d-d'l exceeds the predetermined density δ for the first time as an irradiation field edge point pixel. Note that the preferable value of the predetermined concentration δ can be determined experimentally or empirically. The above analysis is performed on Sheet 10
3 for the opposite end of field edge point pixel X for pixel column XI. Two can be detected (see Fig. 2(a)).
照射野認識回路220は以上述べた解析を、例えば画素
列Xs Xtと平行な画素列X2 X2、および直
交する画素列YI Yl、Y2 Y2についても行
ない(第2図(a)参照)、その他の照射野エツジ点画
素Xo、Yoを求める。そしてこのようなエツジ点画素
Xo 、Yoよりも外側の部分は照射野外部分、内側の
部分は照射野103Bと認識し、この認識した照射野1
03Bを示す照射野情報Stを前述の通り制御回路31
4に送る。制御回路314が、該情報3tが示す照射野
103B内の先読み画像信号Spのみに基づいて読取ゲ
イン設定値a、収録スケールファクター設定値すを決定
すれば、それらの条件は照射野外部分の蓄積記録情報の
影響を受けず、実際に照射野103B内に記録されてい
る放射線画像情報に対して最適なものとなりうる。The irradiation field recognition circuit 220 performs the above-mentioned analysis, for example, on the pixel row X2 X2 parallel to the pixel row Xs Xt, and the pixel rows YI Yl, Y2 Y2 perpendicular to the pixel row Xs Xt (see FIG. 2(a)). The irradiation field edge point pixels Xo and Yo are determined. Then, the area outside these edge point pixels Xo and Yo is recognized as the outside irradiation area, and the area inside is recognized as the irradiation field 103B, and this recognized irradiation field 1
The irradiation field information St indicating 03B is transmitted to the control circuit 31 as described above.
Send to 4. If the control circuit 314 determines the reading gain setting value a and the recording scale factor setting value S based only on the pre-read image signal Sp in the irradiation field 103B indicated by the information 3t, these conditions will be determined based on the accumulated record of the outside irradiation area. It is not affected by information and can be optimal for the radiation image information actually recorded within the irradiation field 103B.
なお本実施態様においては、画像処理条件設定値Cも上
記照射野103B内についての先読み画像信号Soのみ
に基づいて決定され、照射野103B内の放射線画像情
報に対して最適となるようにされている。In this embodiment, the image processing condition setting value C is also determined based only on the pre-read image signal So for the irradiation field 103B, and is made to be optimal for the radiation image information within the irradiation field 103B. There is.
サンプル画像信号を抽出する画素列は、第2図に示した
例、すなわち蓄積性螢光体シート103の左右方向2u
J (Xi Xi トXz X2 )および上下方
向2列(Yr−YtとY2Y2)に限られるものではな
い。第2図に示したサンプル画像信号の抽出の仕方は、
例えば照射野103Bが蓄積性螢光体シート103上に
おいて四角形に絞られると定まっていて、照射野認識回
路220もこの前提に基づいて照射野を認識するように
構成されているような場合に有効である。照射野がどの
ような形状に絞られるか定まっていない場合には、サン
プル画像信号の抽出を、互いに比較的密な多数の画素列
について行なうようにし、求められた多数の照射野エツ
ジ点画素を結んだ境!IfiI線の内側を照射野と認識
するようにすればよい。The pixel row from which the sample image signal is extracted is the example shown in FIG.
It is not limited to J (Xi Xi to Xz X2) and two vertical rows (Yr-Yt and Y2Y2). The method of extracting the sample image signal shown in Fig. 2 is as follows.
For example, this is effective when it is determined that the irradiation field 103B is narrowed down to a rectangular shape on the stimulable phosphor sheet 103, and the irradiation field recognition circuit 220 is also configured to recognize the irradiation field based on this premise. It is. If the shape of the irradiation field is not determined, sample image signals are extracted from a large number of relatively dense pixel columns, and the obtained irradiation field edge point pixels are extracted. A bound! The area inside the IfiI line may be recognized as the irradiation field.
ざらに第1図に示される装置は、本読み用読取系と先読
み用読取系とを個別に有しているが、例えば特開昭58
−67242号に示されるように本読み用読取系と先読
み用読取系とを兼用し、先読みが終了したならばシート
移送手段により蓄積性螢光体シートを読取系に戻して本
読みを行ない、先読み時には励起光エネルギー調整手段
により、励起光エネルギーが本読み時のそれよりも小さ
くなるように調整してもよく、本発明方法はそのような
装置によって放射線画像情報読取りを行なう場合におい
ても適用可能である。The apparatus roughly shown in FIG. 1 has a reading system for main reading and a reading system for pre-reading separately.
As shown in No. 67242, the reading system for main reading and the reading system for pre-reading are used together, and when the pre-reading is completed, the stimulable phosphor sheet is returned to the reading system by the sheet transport means and the main reading is performed. The excitation light energy adjusting means may be used to adjust the excitation light energy to be smaller than that during main reading, and the method of the present invention is also applicable when reading radiation image information using such an apparatus.
(発明の効果)
以上詳細に説明した通り本発明の放射線画像情報の読取
条件決定方法によれば、先読みにおいて、放射線照射外
部分の影響を排除して、放射線照射野に記録されている
蓄積記録情報を正しく把握し、本読みの読取条件を適正
に設定することができる。(Effects of the Invention) As explained in detail above, according to the method for determining reading conditions for radiation image information of the present invention, in pre-reading, the influence of the portion outside the radiation irradiation area is eliminated, and accumulated records recorded in the radiation irradiation field are It is possible to understand information correctly and appropriately set reading conditions for book reading.
したがって本発明方法によれば、放射線絞りをかけて撮
影がなされた蓄積性や光体シートからも、常に観察読影
適性の優れた放射線画像を再生することが可能となる。Therefore, according to the method of the present invention, it is possible to always reproduce a radiographic image with excellent observation and interpretation aptitude even from an accumulative sheet or a light sheet that has been photographed using a radiation aperture.
第1図は本発明の一実施態様方法により読取条件を決定
する放射線画像情報記録再生システムの概略図、
第2図は本発明に係るMl?I性螢光体シート上の放射
線照射野絞り状態と、該シートの一画素列の画像濃度変
化の例を示す説明図、
第3図は本発明方法を説明する説明図である。
30・・・先読み用読取部 40・・・本読み用読
取部50・・・画像再生部 100・・・放射
線源101・・・被写体 102・・・放射
線線103・・・蓄積性螢光体シート 104・・・絞
り201・・・先読み用レーザ光源
202・・・先読み用レーザ光
204・・・先読み用光偏向器
208・・・先読み用光検出器
210・・・先読み用シート移送手段
220・・・照射野認識回路
301・・・本読み用レーザ光源
302・・・本読み用レーザ光
305・・・本読み用光偏向器
310・・・本読み用光検出器 311・・・増幅器3
12・・・A/D変換器 314・・・制御回路3
20・・・本読み用シート移送手段
a・・・読取ゲイン設定値
b・・・収録スケールファクター設定値Sp・・・先読
み画像信号 So・・・本読みIm像信号St・・・
照射野情報
i1@繁・−でFIG. 1 is a schematic diagram of a radiation image information recording and reproducing system that determines reading conditions according to an embodiment method of the present invention. FIG. FIG. 3 is an explanatory diagram illustrating an example of a radiation field narrowing state on a type I phosphor sheet and a change in image density of one pixel row of the sheet. FIG. 3 is an explanatory diagram illustrating the method of the present invention. 30...Reading unit for pre-reading 40...Reading unit for main reading 50...Image reproduction unit 100...Radiation source 101...Subject 102...Radiation rays 103...Storage phosphor sheet 104... Aperture 201... Laser light source for pre-reading 202... Laser light for pre-reading 204... Optical deflector for pre-reading 208... Photodetector for pre-reading 210... Sheet transport means for pre-reading 220. ... Irradiation field recognition circuit 301 ... Laser light source for main reading 302 ... Laser light for main reading 305 ... Optical deflector for main reading 310 ... Photodetector for main reading 311 ... Amplifier 3
12... A/D converter 314... Control circuit 3
20...Actual reading sheet transporting means a...Reading gain setting value b...Recording scale factor setting value Sp...Pre-reading image signal So...Actual reading Im image signal St...
Irradiation field information i1@Shige・-
Claims (1)
れた蓄積性螢光体シートに励起光を照射し、この励起光
照射により前記シートから発せられた輝尽発光光を光検
出手段により光電的に読み取って可視像再生のための画
像信号を得る本読みに先立って、予めこの本読みに用い
られる励起光よりも低レベルの励起光を前記シートに照
射してこのシートに蓄積記録された画像情報の概略を読
み取る先読みを行ない、この先読みにより得られた情報
に基づいて前記本読みを行なう際の読取条件を決定し、
この読取条件にしたがって前記本読みを行なうようにし
た放射線画像情報読取方法において、 前記先読みによって得られた先読み画像信号から、前記
シートの記録領域端部から中央側に向かって延びる任意
の画素列に関するサンプル画像信号を抽出し、 このサンプル画像信号が示す前記端部近傍の所定数画素
間の画像濃度変化を、実質的に1次方程式からなる近似
式で表わし、 この近似式による想定画像濃度と前記サンプル画像信号
が示す実際の画像濃度との差を求め、前記端部から中央
側に向かって、前記差が所定値に達するまでの領域を放
射線照射野外部分、それよりも内側の領域を放射線照射
野と認識し、この放射線照射野と認識した領域に関する
先読みの情報に基づいて前記読取条件を決定することを
特徴とする放射線画像情報の読取条件決定方法。(1) Excitation light is irradiated onto a stimulable phosphor sheet on which radiographic image information is accumulated and recorded by applying an irradiation field aperture, and the stimulated luminescence light emitted from the sheet by the irradiation with this excitation light is detected by a photodetector. Prior to reading photoelectrically to obtain an image signal for visible image reproduction, the sheet is irradiated with excitation light at a lower level than the excitation light used for this reading, and the information is stored and recorded on this sheet. Performing pre-reading to read an outline of image information, and determining reading conditions for performing the main reading based on the information obtained by this pre-reading;
In the radiation image information reading method in which the main reading is performed according to the reading conditions, a sample regarding an arbitrary pixel column extending from the edge of the recording area of the sheet toward the center from the pre-read image signal obtained by the pre-reading is provided. An image signal is extracted, and the image density change between a predetermined number of pixels near the edge indicated by this sample image signal is expressed by an approximate equation consisting essentially of a linear equation, and the assumed image density according to this approximate equation and the sample The difference between the image density and the actual image density indicated by the image signal is determined, and the area from the edge to the center until the difference reaches a predetermined value is defined as the radiation exposure area, and the area inside of that area is defined as the radiation exposure area. A method for determining reading conditions for radiation image information, characterized in that the reading conditions are determined based on pre-read information regarding the area recognized as the radiation irradiation field.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60188859A JPS6248866A (en) | 1985-08-28 | 1985-08-28 | Read condition deciding method for radiographic information |
US06/901,110 US4864133A (en) | 1985-08-28 | 1986-08-28 | Method of adjusting radiation image read-out conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60188859A JPS6248866A (en) | 1985-08-28 | 1985-08-28 | Read condition deciding method for radiographic information |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6248866A true JPS6248866A (en) | 1987-03-03 |
JPH0525425B2 JPH0525425B2 (en) | 1993-04-12 |
Family
ID=16231105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60188859A Granted JPS6248866A (en) | 1985-08-28 | 1985-08-28 | Read condition deciding method for radiographic information |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6248866A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106775662A (en) * | 2016-11-29 | 2017-05-31 | 北京小米移动软件有限公司 | The display methods and device of PUSH message |
CN109190582A (en) * | 2018-09-18 | 2019-01-11 | 河南理工大学 | A kind of new method of micro- Expression Recognition |
-
1985
- 1985-08-28 JP JP60188859A patent/JPS6248866A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106775662A (en) * | 2016-11-29 | 2017-05-31 | 北京小米移动软件有限公司 | The display methods and device of PUSH message |
CN106775662B (en) * | 2016-11-29 | 2021-01-01 | 北京小米移动软件有限公司 | Display method and device of push message |
CN109190582A (en) * | 2018-09-18 | 2019-01-11 | 河南理工大学 | A kind of new method of micro- Expression Recognition |
CN109190582B (en) * | 2018-09-18 | 2022-02-08 | 河南理工大学 | Novel micro-expression recognition method |
Also Published As
Publication number | Publication date |
---|---|
JPH0525425B2 (en) | 1993-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0584505B2 (en) | ||
JPS63183435A (en) | Method for determining image processing condition | |
JP2613049B2 (en) | Radiation field recognition method | |
JPH0617983B2 (en) | Radiation image information reading method and apparatus | |
JPH0533375B2 (en) | ||
JPS61287380A (en) | Reading method for radiation image information | |
JPS6248866A (en) | Read condition deciding method for radiographic information | |
JPH0532741B2 (en) | ||
JP2525648B2 (en) | Radiation field contour candidate point correct / incorrect judgment method | |
JPH0464228B2 (en) | ||
JPH0556061B2 (en) | ||
JPH0525427B2 (en) | ||
JPS6255640A (en) | Reading method for radiation image information | |
JPS6248867A (en) | Read condition deciding method for radiographic information | |
US4864133A (en) | Method of adjusting radiation image read-out conditions | |
JPS63172261A (en) | Method for recognizing radiation field and method for determining image processing condition | |
JPH04314432A (en) | Method and apparatus for photographing and reading radiation image | |
JPS63100437A (en) | Method for recognizing irradiation field | |
JP2761691B2 (en) | Radiation field recognition method | |
JPH0281277A (en) | Method for determining desired picture signal range | |
JPH01267634A (en) | Method for determining range of picture signal within radiation exposure field | |
JPH0677572B2 (en) | Medical image capturing posture determination method | |
JPS63172262A (en) | Method for recognizing irradiation field and method for determining image processing condition | |
JPS63106642A (en) | Reading method for radiation image information | |
JPH0677570B2 (en) | Medical image capturing posture determination method |