JP2005261487A - Method and apparatus for reading radiograph - Google Patents

Method and apparatus for reading radiograph Download PDF

Info

Publication number
JP2005261487A
JP2005261487A JP2004074511A JP2004074511A JP2005261487A JP 2005261487 A JP2005261487 A JP 2005261487A JP 2004074511 A JP2004074511 A JP 2004074511A JP 2004074511 A JP2004074511 A JP 2004074511A JP 2005261487 A JP2005261487 A JP 2005261487A
Authority
JP
Japan
Prior art keywords
image
distortion correction
image distortion
reading
correction data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004074511A
Other languages
Japanese (ja)
Inventor
Osamu Kuroda
黒田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004074511A priority Critical patent/JP2005261487A/en
Publication of JP2005261487A publication Critical patent/JP2005261487A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Radiography Using Non-Light Waves (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiographs free from distortions due to errors in precision of a scan optical system without making a structure complicated in both a method and an apparatus for reading radiographs which scan or emit excitation light to an accumulative phosphor sheet through the scan optical system and read radiographs by detecting photostimulable light emitted from an irradiation part photoelectrically. <P>SOLUTION: The distortions are corrected by image processing through a software without using a hard means. In other words, the correspondence of positions of each pixel on the read radiograph to positions of sampling points on the sheet corresponding to each pixel is acquired from fluctuation characteristics of the scanning speed of the excitation light obtained in advance. The coordinate transformation for each pixel is so performed that the position of each pixel on the image relatively corresponds to the positions of the sampling points on the corresponding sheet from the correspondence. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は放射線画像読取方法および装置に関し、詳しくは、放射線画像情報が蓄積記録された蓄積性蛍光体シートに、励起光を、走査光学系を介して走査し、上記放射線画像情報に応じた輝尽発光光を生じさせ、当該輝尽発光光を光電的に検出して画像信号を得る読取手段により読取りを行う放射線画像読取方法および装置に関する。   The present invention relates to a radiographic image reading method and apparatus, and more specifically, scans a stimulable phosphor sheet on which radiographic image information is accumulated and recorded with excitation light through a scanning optical system, and generates a brightness corresponding to the radiographic image information. The present invention relates to a radiographic image reading method and apparatus for generating read-out light and performing reading by a reading unit that photoelectrically detects the emitted light and obtains an image signal.

従来、放射線(X線、α線、β線、γ線、電子線、紫外線等)を照射するとこの放射線エネルギーの一部が蓄積され、その後可視光等の励起光を照射すると蓄積されたエネルギーに応じた光量の輝尽発光光を放射する蓄積性蛍光体(輝尽性蛍光体)を利用して、人体等の被写体の放射線画像を一旦シート状の蓄積性蛍光体を備えた蓄積性蛍光体シート(以下単にシートともいう)に撮影記録し、この蓄積性蛍光体シートをレーザ光等の励起光で走査して輝尽発光光を発生させ、得られた輝尽発光光をフォトマルチプライヤー等の検出器により光電的に読み取って画像信号を得、この画像信号に基づいて被写体の放射線画像を写真感光材料等の記録材料、CRT等に可視像として出力させる放射線記録再生システムが提案されている(例えば、特許文献1〜5等)。   Conventionally, when radiation (X-rays, α-rays, β-rays, γ-rays, electron beams, ultraviolet rays, etc.) is irradiated, a part of the radiation energy is accumulated, and when irradiated with excitation light such as visible light, the accumulated energy is Using a stimulable phosphor (stimulable phosphor) that emits a corresponding amount of stimulated luminescence, a radiation image of a subject such as a human body is temporarily stored with a sheet-like stimulable phosphor. Photographed and recorded on a sheet (hereinafter also referred to simply as a sheet), this stimulable phosphor sheet is scanned with excitation light such as laser light to generate stimulated emission light, and the resulting stimulated emission light is photomultiplier, etc. A radiation recording / reproducing system has been proposed in which an image signal is obtained photoelectrically by a detector, and a radiographic image of a subject is output as a visible image to a recording material such as a photographic material, a CRT or the like based on the image signal. (E.g. special Documents 1 to 5, etc.).

ところで、このような放射線記録再生システムに用いられる、放射線画像情報が蓄積記録された蓄積性蛍光体シートを励起光で走査して輝尽発光光を発生させ、得られた輝尽発光光を検出器により光電的に読み取って放射線画像を表す画像信号を得る放射線画像読取装置として、放射線画像情報の蓄積記録された蓄積性蛍光体シートに対して、ガルバノメータミラーやポリゴンミラー等の光偏向器、fθレンズ、平面反射鏡等からなる走査光学系を介して、レーザ光等の励起光のビームを等速走査させ、ビーム走査の所定のタイミングに同期したクロック周波数で検出器からの信号をサンプリングするものが知られている(例えば、特許文献6記載の読取走査装置等)。   By the way, a stimulable phosphor sheet used for such a radiation recording / reproducing system, in which radiation image information is accumulated and recorded, is scanned with excitation light to generate stimulated emission light, and the obtained stimulated emission light is detected. As a radiographic image reading device that photoelectrically reads an image signal representing a radiographic image by an optical device, an optical deflector such as a galvanometer mirror or a polygon mirror is applied to a stimulable phosphor sheet on which radiographic image information is accumulated and recorded, fθ A scanning optical system consisting of a lens, a plane reflecting mirror, etc., scans a beam of excitation light such as laser light at a constant speed, and samples a signal from a detector at a clock frequency synchronized with a predetermined timing of the beam scanning. (For example, a reading and scanning device described in Patent Document 6).

このような装置の場合、上記走査光学系が光学的な精度誤差のない理想的な系であれば、蓄積性蛍光体シート上のビームが照射される位置の時間的変化は、図6(1)に示すように、線形となるので、一定の時間間隔すなわち一定の周波数で検出器からの信号をサンプリングすれば、画素ピッチ(シート上での読み取る位置の間隔)の揃った画像信号が得られる。   In the case of such an apparatus, if the scanning optical system is an ideal system having no optical accuracy error, the temporal change of the position on the stimulable phosphor sheet irradiated with the beam is shown in FIG. ), The signal is linear. Therefore, if the signal from the detector is sampled at a constant time interval, that is, a constant frequency, an image signal having a uniform pixel pitch (interval between reading positions on the sheet) can be obtained. .

ところが、実際には、上記走査光学系において光学的な精度誤差が存在する場合があり、このような場合には、その精度誤差に起因して、ビームの走査速度がその照射位置によって変動することがある。ビームの走査速度が変動すると、蓄積性蛍光体シート上のビームが照射される位置の時間的変化は、例えば、図6(2)に示すように、非線形となり、このような状態で一定の周波数でサンプリングを行うと、画素ピッチの不揃いな画像信号が得られ、この画像信号が表す放射線画像においては、その走査速度の変動に応じた画歪が生じることとなる。   However, in reality, there may be an optical accuracy error in the scanning optical system. In such a case, the beam scanning speed varies depending on the irradiation position due to the accuracy error. There is. When the scanning speed of the beam fluctuates, the temporal change in the position where the beam on the stimulable phosphor sheet is irradiated becomes non-linear, for example, as shown in FIG. When sampling is performed, an image signal with an uneven pixel pitch is obtained, and in the radiographic image represented by this image signal, image distortion corresponding to the variation in the scanning speed occurs.

そこで、励起光の走査速度を検出し、実際の走査速度と上記サンプリングの周波数とが適正に対応するようにサンプリングのクロック周波数を調整して、画素ピッチを一定に保ち、画歪の発生を防ぐようにした放射線画像読取装置が提案されている(例えば、特許文献7記載の画像読取装置)。
特開昭55−12429号公報 特開昭56−11395号公報 特開昭55−163472号公報 特開昭56−164645号公報 特開昭55−116340号公報 特公平5−20027号公報 特開昭64−86130号公報
Therefore, the scanning speed of the excitation light is detected, the sampling clock frequency is adjusted so that the actual scanning speed and the sampling frequency correspond appropriately, and the pixel pitch is kept constant to prevent image distortion. A radiation image reading apparatus configured as described above has been proposed (for example, an image reading apparatus described in Patent Document 7).
JP-A-55-12429 JP-A-56-11395 JP 55-163472 A JP 56-164645 A JP 55-116340 A Japanese Patent Publication No.5-20027 JP-A 64-86130

しかしながら、上記のような、励起光の走査速度を検出してサンプリングのクロック周波数を調整する放射線画像読取装置では、走査速度を検出する手段や、クロック周波数を調整する手段等が必要となるため、構造が複雑化し、製造コストの増大につながるという問題がある。   However, in the radiation image reading apparatus that detects the scanning speed of the excitation light and adjusts the sampling clock frequency as described above, a means for detecting the scanning speed, a means for adjusting the clock frequency, and the like are required. There is a problem that the structure becomes complicated and the manufacturing cost increases.

本発明は、上記事情に鑑み、構造の複雑化を伴わず、走査光学系の光学的な精度誤差に起因する画歪が除去された放射線画像を得ることが可能な放射線画像読取方法および装置を提供することを目的とするものである。   In view of the above circumstances, the present invention provides a radiological image reading method and apparatus capable of obtaining a radiographic image from which image distortion caused by an optical accuracy error of a scanning optical system is removed without complicating the structure. It is intended to provide.

本発明の放射線画像読取方法は、放射線画像情報が蓄積記録された蓄積性蛍光体シートに、走査光学系を介して励起光を走査し、前記放射線画像情報に応じた輝尽発光光を生じさせ、該輝尽発光光を光電的に検出して画像信号を得る読取手段により読取りを行う放射線画像読取方法において、前記走査光学系の特性による前記励起光の走査速度の変動の特性に基づいて、前記読取手段により読み取られた放射線画像における、前記走査速度の変動による画歪を除去する画歪補正を行うための画歪補正データを算出し、前記読取手段により読み取られた被写体の放射線画像に対して、前記画歪補正データに基づいて画歪補正を行うことを特徴とする方法である。   In the radiation image reading method of the present invention, the stimulable phosphor sheet on which radiation image information is accumulated and recorded is scanned with excitation light via a scanning optical system to generate stimulated emission light according to the radiation image information. In the radiation image reading method in which reading is performed by reading means that photoelectrically detects the stimulated emission light and obtains an image signal, based on the characteristics of fluctuations in the scanning speed of the excitation light due to the characteristics of the scanning optical system, Image distortion correction data for performing image distortion correction for removing image distortion due to fluctuations in the scanning speed in the radiation image read by the reading unit is calculated, and the radiographic image of the subject read by the reading unit is calculated. Thus, the image distortion correction is performed based on the image distortion correction data.

本発明の放射線画像読取方法においては、前記画歪補正データの算出の後に、前記読取手段により読み取られた被写体なしの放射線画像に対して、前記画歪補正データに基づいて画歪補正を行うことにより画歪補正後被写体なし画像を得、該画歪補正後被写体なし画像に基づいて、該画像における濃度むらを除去する濃度補正を行うための濃度補正データを算出し、前記被写体の放射線画像に対する前記画歪補正の後に、前記画歪補正後の前記被写体の放射線画像に対して、前記濃度補正データに基づいて濃度補正を行うようにすることもできる。   In the radiological image reading method of the present invention, after the calculation of the image distortion correction data, image distortion correction is performed based on the image distortion correction data for a radiographic image without a subject read by the reading unit. To obtain an image without a subject after image distortion correction, calculate density correction data for performing density correction to remove density unevenness in the image based on the image without a subject after image distortion correction, and After the image distortion correction, the density correction may be performed on the radiographic image of the subject after the image distortion correction based on the density correction data.

また、本発明の放射線画像読取装置は、放射線画像情報が蓄積記録された蓄積性蛍光体シートに、走査光学系を介して励起光を走査し、前記放射線画像情報に応じた輝尽発光光を生じさせ、該輝尽発光光を光電的に検出して画像信号を得る読取手段により読取りを行う放射線画像読取装置において、前記走査光学系の特性による前記励起光の走査速度の変動の特性に基づいて算出された補正データであって、前記読取手段により読み取られた放射線画像における、前記走査速度の変動による画歪を除去する画歪補正を行うための画歪補正データを記憶する画歪補正データ記憶手段と、前記読取手段により読み取られた被写体の放射線画像に対して、前記画歪補正データに基づいて画歪補正を行う画歪補正手段とを備えたことを特徴とするものである。   The radiographic image reading apparatus of the present invention scans the stimulable phosphor sheet on which radiographic image information is accumulated and recorded by scanning excitation light via a scanning optical system, and emits the stimulated emission light according to the radiographic image information. In the radiation image reading apparatus that generates and outputs the image signal by photoelectrically detecting the stimulated emission light, based on characteristics of fluctuations in the scanning speed of the excitation light due to characteristics of the scanning optical system Correction data calculated in the above-described manner, and image distortion correction data for storing image distortion correction data for performing image distortion correction for removing image distortion caused by fluctuations in the scanning speed in the radiographic image read by the reading unit The image processing apparatus includes: a storage unit; and an image distortion correction unit that performs image distortion correction based on the image distortion correction data with respect to a radiographic image of the subject read by the reading unit. A.

本発明の放射線画像読取装置において、前記読取手段により読み取られた被写体なしの放射線画像に対して、前記画歪補正データに基づいて画歪補正を行うことにより画歪補正後被写体なし画像を得、該画歪補正後被写体なし画像に基づいて、該画像における濃度むらを除去する濃度補正を行うための濃度補正データを算出する濃度補正データ算出手段と、前記画歪補正後の前記被写体の放射線画像に対して、前記濃度補正データに基づいて濃度補正を行う濃度補正手段とをさらに備えるようにすることもできる。   In the radiological image reading apparatus of the present invention, an image without a subject after image distortion correction is obtained by performing image distortion correction based on the image distortion correction data for a radiographic image without an object read by the reading unit, Density correction data calculating means for calculating density correction data for performing density correction for removing density unevenness in the image based on the image without subject after image distortion correction, and a radiation image of the subject after image distortion correction On the other hand, it is possible to further include density correction means for performing density correction based on the density correction data.

ここで、「走査光学系」とは、励起光を蓄積性蛍光体シート上で等速走査させるように構成された光学系であり、例えば、ガルバノメータミラーやポリゴンミラー等の光偏向器、fθレンズ、平面反射鏡等からなる光学系が考えられる。   Here, the “scanning optical system” is an optical system configured to scan excitation light at a constant speed on the stimulable phosphor sheet. For example, an optical deflector such as a galvanometer mirror or a polygon mirror, or an fθ lens. An optical system composed of a plane reflecting mirror or the like is conceivable.

「前記走査光学系の特性による前記励起光の走査速度の変動の特性」は、走査光学系を構成するレンズやミラー等の光学的特性を表す情報、配置設計の情報等から理論的に求めてもよいし、実験的に励起光のビームの走査速度を測定して求めてもよい。   “Characteristics of fluctuations in the scanning speed of the excitation light due to the characteristics of the scanning optical system” are theoretically obtained from information indicating optical characteristics of lenses and mirrors constituting the scanning optical system, information on arrangement design, and the like. Alternatively, it may be obtained by experimentally measuring the scanning speed of the beam of excitation light.

「画歪補正」としては、例えば、事前に把握された励起光の走査速度の変動特性に基づいて、読み取られた放射線画像上での各画素の位置と当該各画素に対応するシート上でのサンプリング点の位置との対応関係を求め、当該対応関係に基づいて、各画素の位置がそれぞれ対応するサンプリング点の位置と相対的に一致するように当該各画素の座標変換を行うものとすることができる。この場合、座標変換後の画素点同士の間隔は不均一となるので、例えば、座標軸上において実際の画素間隔で各領域に区切り、該各領域毎にその領域内に存在する座標変換された画素点の値を平均化して新たな画素の値を算出し、その値をその領域に対応する画素の値とする方法が考えられる。なお、上記領域内に一つも画素点が存在しない場合は近隣の画素の値に基づいて補間するようにすればよい。   As the “image distortion correction”, for example, the position of each pixel on the read radiation image and the sheet corresponding to each pixel on the basis of the fluctuation characteristics of the scanning speed of the excitation light grasped in advance. A correspondence relationship with the position of the sampling point is obtained, and based on the correspondence relationship, coordinate conversion of each pixel is performed so that the position of each pixel relatively matches the position of the corresponding sampling point. Can do. In this case, since the intervals between the pixel points after the coordinate conversion are non-uniform, for example, each pixel is divided into each region at an actual pixel interval on the coordinate axis, and the coordinate-converted pixels existing in the region for each region. A method is conceivable in which the values of the points are averaged to calculate a new pixel value, and that value is used as the pixel value corresponding to the region. If no pixel point exists in the region, interpolation may be performed based on the values of neighboring pixels.

また、「画歪補正」を上記のような画素の座標変換とする場合には、「画歪補正データ」は、その座標変換の演算式あるいは座標変換前後の座標の対応関係を示すテーブル等とすることができる。   When “image distortion correction” is coordinate conversion of the pixel as described above, the “image distortion correction data” includes an equation for the coordinate conversion or a table indicating the correspondence between coordinates before and after the coordinate conversion. can do.

「被写体なしの放射線画像」とは、被写体のない状態で放射線撮影して得られた蓄積性蛍光体シートを読取手段により読み取って得られる放射線画像のことである。   The “radiation image without a subject” is a radiation image obtained by reading a storage phosphor sheet obtained by radiography in the absence of a subject with a reading unit.

「濃度むら」とは、蓄積性蛍光体シート上での各読取り位置に対する、読取手段の系による読取感度のばらつきや、励起光の走査速度の変動により生じる励起光の照射時間のむらに起因する輝尽発光光の光量のばらつき等が原因で発生する放射線画像上の濃度のばらつきを意味する。   “Density unevenness” refers to brightness caused by unevenness in the irradiation time of excitation light caused by variations in reading sensitivity due to the reading means system and fluctuations in the scanning speed of excitation light at each reading position on the stimulable phosphor sheet. It means a variation in density on a radiographic image caused by a variation in the amount of exhausted light.

「濃度補正」とは、いわゆるシェーディング補正のことであり、「濃度補正」としては、例えば、上記の濃度のばらつきを含む濃度分布すなわち画素値の分布を、均一な画素値の分布に変換する画素値変換とすることができる。   “Density correction” refers to so-called shading correction. As “density correction”, for example, a pixel that converts a density distribution including the above-described density variation, that is, a distribution of pixel values into a uniform distribution of pixel values. It can be a value conversion.

「濃度補正」を上記のような画素値変換とする場合には、「濃度補正データ」は、画素値変換の演算式あるいは各画素毎の画素値に乗ずる重み付け係数等とすることができる。   When the “density correction” is the pixel value conversion as described above, the “density correction data” can be a pixel value conversion arithmetic expression or a weighting coefficient by which the pixel value for each pixel is multiplied.

本発明の放射線画像読取方法および装置によれば、読取手段の走査光学系の特性による励起光の走査速度の変動の特性に基づいて算出された補正データであって、読取手段により読み取られた放射線画像における、上記走査速度の変動に起因する画歪を除去する画歪補正を行うための画歪補正データに基づいて、読取手段により読み取られた被写体の放射線画像に対し画歪補正を行い、画歪を除去するので、励起光の走査速度を検出する手段やサンプリングのクロック周波数を調整する手段等のハード的な手段を用いずに、画像処理であるソフト的な画歪補正により画歪を除去することができ、構造の複雑化を伴わず、走査光学系の光学的な精度誤差に起因する画歪が除去された放射線画像を得ることができる。   According to the radiation image reading method and apparatus of the present invention, the correction data calculated based on the characteristics of the fluctuation in the scanning speed of the excitation light due to the characteristics of the scanning optical system of the reading means, the radiation read by the reading means Based on the image distortion correction data for performing image distortion correction for removing the image distortion caused by the fluctuation in the scanning speed in the image, the image distortion correction is performed on the radiographic image of the subject read by the reading unit, and the image is corrected. Since distortion is removed, image distortion is removed by software image distortion correction, which is image processing, without using hardware means such as means for detecting the scanning speed of the excitation light or means for adjusting the sampling clock frequency. Therefore, it is possible to obtain a radiation image from which image distortion caused by an optical accuracy error of the scanning optical system is removed without complicating the structure.

以下、本発明の放射線画像読取装置の実施の形態について説明する。   Hereinafter, embodiments of the radiation image reading apparatus of the present invention will be described.

図1は、本発明の一実施形態による放射線画像読取装置の構成を示す概略ブロック図であり、図2は、図1に示す放射線画像読取装置が備えている読取手段20の構成を示す図である。   FIG. 1 is a schematic block diagram showing a configuration of a radiographic image reading apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing a configuration of reading means 20 provided in the radiographic image reading apparatus shown in FIG. is there.

図1に示す放射線画像読取装置は、放射線画像情報が蓄積記録された蓄積性蛍光体シートに、後述の走査光学系12を介して励起光Lを走査し、上記放射線画像情報に応じた輝尽発光光を生じさせ、当該輝尽発光光を光電的に検出して画像信号を得る読取手段20と、走査光学系12の特性による励起光の走査速度の変動に基づいて算出された補正データであって、読取手段20により読み取られた放射線画像における、上記走査速度の変動による画歪を除去する画歪補正を行うための画歪補正データDを記憶する画歪補正データ記憶手段31と、画歪補正データDに基づいて、読取手段20により読み取られた被写体なしの画像P0に対して画歪補正を行って画歪補正後被写体なし画像P0′を得、画歪補正後被写体なし画像P0′に基づいて、当該画像P0′における濃度むらを除去する濃度補正を行うための濃度補正データHを算出する濃度補正データ算出手段32と、画歪補正データDに基づいて、読取手段20により読み取られた被写体の放射線画像P1に対して画歪補正を行って画歪補正後の被写体の放射線画像P1′を得る画歪補正手段33と、濃度補正データHに基づいて、画歪補正後の被写体の放射線画像P1′に対して濃度補正を行って補正済の被写体の放射線画像P1″を得る濃度補正手段34とを備えている。   The radiographic image reading apparatus shown in FIG. 1 scans the stimulable phosphor sheet on which radiographic image information is accumulated and recorded by scanning the excitation light L via a scanning optical system 12 described later, and performs the excitation according to the radiographic image information. Readout means 20 that generates emission light, photoelectrically detects the stimulated emission light and obtains an image signal, and correction data calculated based on fluctuations in the scanning speed of excitation light due to the characteristics of the scanning optical system 12 An image distortion correction data storage unit 31 for storing image distortion correction data D for performing image distortion correction for removing image distortion caused by the fluctuation of the scanning speed in the radiographic image read by the reading unit 20, and an image Based on the distortion correction data D, image distortion correction is performed on the image P0 without the subject read by the reading unit 20 to obtain an image P0 'without the subject after image distortion correction, and an image P0' without the subject after image distortion correction. Based on Then, the density correction data calculation means 32 for calculating density correction data H for performing density correction for removing density unevenness in the image P0 ′, and the subject read by the reading means 20 based on the image distortion correction data D Image distortion correction means 33 for performing image distortion correction on the radiation image P1 of the subject to obtain a radiation image P1 ′ of the object after image distortion correction, and the radiation image of the object after image distortion correction based on the density correction data H Density correction means for obtaining a corrected radiation image P1 ″ of the subject by performing density correction on P1 ′.

また、読取手段20は、励起光Lを発する励起光源1と、この励起光Lのビーム径を調整するビーム・エクスパンダー2と、ビーム・エクスパンダー2を通過した励起光Lを偏向するガルバノメータミラーやポリゴンミラー等の光偏向器3と、光偏向器3により偏向された光を蓄積性蛍光体シート11に向けて反射する平面反射鏡4と、平面反射鏡4により反射された励起光Lが蓄積性蛍光体シート11上を均一なビーム径を有して等速走査されるように、光偏向器3と平面反射鏡4との間に配されたfθレンズ5と、シート11上の励起光Lが照射された部分から発せられる輝尽発光光を集光する集光ガイド6と、集光ガイド6により集光された輝尽発光光を検出して電気信号に変換するフォトマルチプライヤー等の光検出器7と、光検出器7により変換された電気信号を増幅する増幅器8と、増幅器8から出力される電気信号をデジタル信号に変換するA/D変換器9と、A/D変換器9により変換されたデジタル信号に基づいて画像信号を得る信号処理部10とを備えている。なお、光偏向器3、平面反射鏡4およびfθレンズ5により走査光学系12が構成されている。   The reading unit 20 includes an excitation light source 1 that emits excitation light L, a beam expander 2 that adjusts the beam diameter of the excitation light L, and a galvanometer mirror that deflects the excitation light L that has passed through the beam expander 2. And a light deflector 3 such as a polygon mirror, a plane reflecting mirror 4 that reflects the light deflected by the light deflector 3 toward the stimulable phosphor sheet 11, and an excitation light L reflected by the plane reflecting mirror 4 Excitation on the sheet 11 and the fθ lens 5 disposed between the optical deflector 3 and the flat reflector 4 so that the stimulable phosphor sheet 11 is scanned at a constant speed with a uniform beam diameter. A condensing guide 6 for condensing the stimulated emission light emitted from the portion irradiated with the light L, a photomultiplier for detecting the stimulated emission light collected by the condensing guide 6 and converting it into an electrical signal, etc. Photodetector 7 and light detection Based on the digital signal converted by the A / D converter 9, the amplifier 8 that amplifies the electrical signal converted by the amplifier 7, the A / D converter 9 that converts the electrical signal output from the amplifier 8 into a digital signal, and the like. And a signal processing unit 10 for obtaining an image signal. The optical deflector 3, the plane reflecting mirror 4, and the fθ lens 5 constitute a scanning optical system 12.

次に、本実施形態による放射線画像読取装置の作用について説明する。   Next, the operation of the radiation image reading apparatus according to the present embodiment will be described.

まず、読取手段20の作用について説明する。   First, the operation of the reading unit 20 will be described.

励起光源1により発せられた励起光Lは、ビーム・エクスパンダー2によりビーム径の大きさが厳密に調整され、走査光学系12に入射される。走査光学系12では、入射された励起光Lが、光偏向器3によって偏向され、fθレンズ5、平面反射鏡4を介して放射線画像情報が蓄積記録されている蓄積性蛍光体シート11上に偏向されて入射される。このとき、fθレンズ5の働きにより、励起光Lはシート11上を均一なビーム径を有して、矢印Cの方向に等速走査される。シート11は矢印Aの方向に移送されて副走査がなされ、その結果、シート11の全面にわたって励起光Lが照射される。このように励起光Lが照射されると、シート11は蓄積記録されている放射線エネルギーに比例する光量の輝尽発光光を発し、この発光光は、集光ガイド(導光性シート)6に入射し、集光ガイド6内を全反射しながら進行して光検出器7によって受光される。光検出器7により検出された輝尽発光光は電気信号に変換され、この電気信号は、増幅器8、A/D変換器9を介して信号処理部10に送られる。信号処理部10は、励起光Lの主走査方向Cの走査が開始されるタイミングを検出する不図示のタイミング検出手段からそのタイミングを示す検出信号を受信し、当該検出信号に基づいて、励起光Lの主走査の開始に同期して一定の周波数で信号をサンプリングし、このサンプリングを励起光Lの副走査に対して連続的に行って放射線画像を表す画像信号を得る。   The excitation light L emitted from the excitation light source 1 is adjusted in the beam diameter strictly by the beam expander 2 and is incident on the scanning optical system 12. In the scanning optical system 12, the incident excitation light L is deflected by the optical deflector 3, and the radiation image information is accumulated and recorded on the stimulable phosphor sheet 11 via the fθ lens 5 and the plane reflecting mirror 4. The incident light is deflected. At this time, the excitation light L has a uniform beam diameter on the sheet 11 and is scanned at a constant speed in the direction of arrow C by the function of the fθ lens 5. The sheet 11 is transferred in the direction of the arrow A and subjected to sub-scanning. As a result, the excitation light L is irradiated over the entire surface of the sheet 11. When the excitation light L is irradiated in this way, the sheet 11 emits the stimulated emission light whose amount is proportional to the radiation energy stored and recorded, and this emission light is emitted to the light collection guide (light guide sheet) 6. Incident light travels through the light collecting guide 6 while being totally reflected, and is received by the photodetector 7. The stimulated emission light detected by the photodetector 7 is converted into an electrical signal, and this electrical signal is sent to the signal processing unit 10 via the amplifier 8 and the A / D converter 9. The signal processing unit 10 receives a detection signal indicating the timing from a timing detection unit (not shown) that detects the timing at which scanning of the excitation light L in the main scanning direction C is started, and based on the detection signal, the excitation light A signal is sampled at a constant frequency in synchronization with the start of L main scanning, and this sampling is continuously performed on the sub-scanning of the excitation light L to obtain an image signal representing a radiation image.

次に、放射線画像読取装置全体の作用について説明する。   Next, the operation of the entire radiation image reading apparatus will be described.

図3は、本実施形態における処理フローを示すブロック図である。   FIG. 3 is a block diagram showing a processing flow in the present embodiment.

まず、準備段階として、予め得られている、走査光学系12の特性(光学的な精度誤差等)による励起光のビーム走査速度の変動の特性に基づいて、読取手段20により読み取られた放射線画像における、走査速度の変動による画歪を除去する画歪補正を行うための画歪補正データDを算出する(ステップS1)。   First, as a preparatory stage, a radiographic image read by the reading unit 20 based on characteristics of fluctuations in the beam scanning speed of excitation light due to characteristics (such as optical accuracy errors) of the scanning optical system 12 obtained in advance. In step S1, image distortion correction data D for performing image distortion correction for removing image distortion due to fluctuations in scanning speed is calculated.

画歪補正は、具体的には、読取手段20により読取られた放射線画像において当該画像の各画素について座標変換することにより行うことができる。例えば、励起光Lの走査速度が、図6(2)に示すような、主走査方向CにおけるS字状の変動、すなわち、走査速度が遅い領域Rsと速い領域Rfとが現れるような変動である場合、上記のように一定の周波数で信号をサンプリングすると、読取手段20により読み取られた放射線画像(原画像)においては、図4に示すように、走査速度の遅い領域Rsに対応する部分が主走査方向Cにおいて引き伸ばされ、走査速度の速い領域Rfに対応する部分が主走査方向Cにおいて縮められて画歪が生じる。このような励起光Lの走査速度の変動の特性が、走査光学系12の特性から予め分かっている場合には、得られた放射線画像における各画素ついて座標変換を行うことで画歪補正をすることができる。すなわち、事前に把握された励起光の走査速度の変動特性に基づいて、読み取られた放射線画像上での各画素の位置と当該各画素に対応するシート上でのサンプリング点の位置との対応関係を求め、当該対応関係に基づいて、各画素の位置がそれぞれ対応するサンプリング点の位置と相対的に一致するように当該各画素の座標変換を行う。この場合、座標変換後の画素点同士の間隔は不均一となるので、例えば、座標軸上において実際の画素間隔で各領域に区切り、当該各領域毎にその領域内に存在する座標変換された画素点の値を平均化して新たな画素の値を算出し、その値をその領域に対応する画素の値とする方法が考えられる。なお、上記領域内に一つも画素点が存在しない場合は近隣の画素の値に基づいて補間するようにすればよい。   Specifically, the image distortion correction can be performed by performing coordinate conversion on each pixel of the image in the radiographic image read by the reading unit 20. For example, the scanning speed of the excitation light L is an S-shaped variation in the main scanning direction C as shown in FIG. 6B, that is, a variation in which a region Rs having a low scanning speed and a region Rf having a high scanning speed appear. In some cases, when a signal is sampled at a constant frequency as described above, in the radiographic image (original image) read by the reading unit 20, as shown in FIG. 4, there is a portion corresponding to the region Rs where the scanning speed is low. The image is stretched in the main scanning direction C, and the portion corresponding to the region Rf having a high scanning speed is contracted in the main scanning direction C to cause image distortion. When the characteristics of the fluctuation of the scanning speed of the excitation light L are known in advance from the characteristics of the scanning optical system 12, the image distortion is corrected by performing coordinate conversion for each pixel in the obtained radiation image. be able to. That is, the correspondence between the position of each pixel on the read radiographic image and the position of the sampling point on the sheet corresponding to each pixel based on the fluctuation characteristics of the scanning speed of the excitation light grasped in advance Based on the correspondence relationship, coordinate conversion of each pixel is performed so that the position of each pixel relatively matches the position of the corresponding sampling point. In this case, since the intervals between the pixel points after the coordinate conversion are not uniform, for example, the pixels that are coordinate-converted exist in each region by dividing each region at the actual pixel interval on the coordinate axis. A method is conceivable in which the values of the points are averaged to calculate a new pixel value, and that value is used as the pixel value corresponding to the region. If no pixel point exists in the region, interpolation may be performed based on the values of neighboring pixels.

したがって、画歪補正データDは、このような座標変換の演算式あるいは座標変換前後の対応関係を示すテーブル等とすることができる。なお、この画歪補正データDは、理論的に求めてもよいし実験的に求めてもよい。   Accordingly, the image distortion correction data D can be such a coordinate conversion arithmetic expression or a table indicating the correspondence before and after the coordinate conversion. The image distortion correction data D may be obtained theoretically or experimentally.

画歪補正データDが算出されたら、これを画歪補正データ記憶手段31に入力し記憶させる(ステップS2)。   When the image distortion correction data D is calculated, it is input and stored in the image distortion correction data storage means 31 (step S2).

一方、被写体のない状態で放射線撮影して得られた蓄積性蛍光体シートを準備し、このシートを読取手段20により読み取って、被写体なし画像P0を得る(ステップS3)。この被写体なし画像P0には、励起光Lの走査速度の変動による画歪を有するとともに、励起光Lの走査速度の変動に起因する濃度むら、および、読取手段20の走査光学系12や集光ガイド6等を含む系の信号の読取り感度のばらつき等に起因する濃度むらが現れる。   On the other hand, a stimulable phosphor sheet obtained by radiography in the absence of a subject is prepared, and this sheet is read by the reading means 20 to obtain a no-subject image P0 (step S3). This object-free image P0 has image distortion due to fluctuations in the scanning speed of the excitation light L, density unevenness due to fluctuations in the scanning speed of the excitation light L, and the scanning optical system 12 of the reading means 20 and the light collection. Density unevenness due to variations in the read sensitivity of the system signal including the guide 6 and the like appears.

読取手段20により被写体なし画像P0が得られると、濃度補正データ算出手段32は、この被写体なし画像P0に対して、画歪補正データ記憶手段31に記憶されている画歪補正データDに基づいて画歪補正(座標変換)を行い、画歪補正後被写体なし画像P0′を得る(ステップS4)。この画像P0′では、画像P0に含まれていた励起光Lの走査速度の変動による画歪は補正されるが、濃度むらはその位置を変化させながらも依然残ることとなる。   When the subjectless image P0 is obtained by the reading unit 20, the density correction data calculating unit 32 is based on the image distortion correction data D stored in the image distortion correction data storage unit 31 with respect to the objectless image P0. Image distortion correction (coordinate conversion) is performed to obtain an image P0 ′ having no subject after image distortion correction (step S4). In this image P0 ′, the image distortion due to the fluctuation of the scanning speed of the excitation light L included in the image P0 is corrected, but the density unevenness still remains while changing its position.

濃度補正条件算出手段32は、さらに、その画歪補正後被写体なし画像P0′に基づいて、当該画像P0′における、励起光Lの走査速度の変動に起因する濃度むらKと読取手段20の系による濃度むらJとが合成された、濃度むらK+Jを均一な濃度にする濃度補正を行うための濃度補正データHを算出する。図5は、上記濃度むらKと上記濃度むらJとが合成された濃度むらK+Jが均一な濃度に補正する濃度補正の概念を示した図である。なお、図5中のK0は走査速度の変動がない場合のフラットな濃度を示している。   Further, the density correction condition calculation unit 32 is based on the non-subjected image P0 ′ after image distortion correction, and the density unevenness K due to the fluctuation in the scanning speed of the excitation light L in the image P0 ′ and the reading unit 20 system. The density correction data H for performing density correction to make the density unevenness K + J uniform density, which is synthesized with the density unevenness J by the above, is calculated. FIG. 5 is a diagram showing the concept of density correction in which density unevenness K + J, which is a combination of density unevenness K and density unevenness J, is corrected to a uniform density. Note that K0 in FIG. 5 indicates a flat density when there is no variation in the scanning speed.

濃度補正は、具体的には、濃度のばらつきを含む濃度分布すなわち画素値の分布を、均一な画素値の分布に変換する画素値変換により行うことができる。   Specifically, the density correction can be performed by pixel value conversion for converting a density distribution including density variations, that is, a distribution of pixel values into a uniform distribution of pixel values.

したがって、濃度補正データHは、画素値変換の演算式あるいは各画素毎の画素値に乗ずる重み付け係数等とすることができる。   Therefore, the density correction data H can be an arithmetic expression for pixel value conversion or a weighting coefficient by which the pixel value for each pixel is multiplied.

画歪補正データDと濃度補正データHとが得られたら、被写体を放射線撮影して得られた蓄積性蛍光体シートを読取手段20により読み取り、被写体の放射線画像P1を得る(ステップS6)。   When the image distortion correction data D and the density correction data H are obtained, the stimulable phosphor sheet obtained by radiographing the subject is read by the reading means 20 to obtain a radiation image P1 of the subject (step S6).

そして、画歪補正手段33が、被写体の放射線画像P1に対して、画歪補正データDに基づいて画歪補正を行い、画歪補正後の被写体の放射線画像P1′を得(ステップS7)、濃度補正手段34が、画歪補正後の被写体の放射線画像P1′に対して、濃度補正データHに基づいて濃度補正を行い、画歪補正と濃度補正がなされた補正済の被写体の放射線画像P1″を得る(ステップS8)。   Then, the image distortion correction means 33 performs image distortion correction on the radiographic image P1 of the subject based on the image distortion correction data D to obtain a radiographic image P1 ′ of the subject after image distortion correction (step S7). The density correction unit 34 performs density correction on the radiographic image P1 ′ of the subject after image distortion correction based on the density correction data H, and the corrected radiographic image P1 of the object subjected to image distortion correction and density correction. ″ Is obtained (step S8).

このように、本発明の上記実施形態による放射線画像読取装置によれば、読取手段20の走査光学系12による励起光Lの走査速度の変動の特性に基づいて算出された、読取手段20により読み取られた放射線画像における、上記走査速度の変動に起因する画歪を除去する画歪補正を行うための画歪補正データDに基づいて、読取手段20により読み取られた被写体の放射線画像P1に対し画歪補正を行い、画歪を除去するので、励起光Lの走査速度を検出する手段やサンプリングのクロック周波数を調整する手段等のハード的な手段を用いずに、画像処理であるソフト的な画歪補正により画歪を除去することができ、構造の複雑化を伴わず、走査光学系12の光学的な精度誤差に起因する画歪が除去された被写体の放射線画像P1′を得ることができる。   As described above, according to the radiological image reading apparatus according to the above-described embodiment of the present invention, reading is performed by the reading unit 20 which is calculated based on the characteristics of the fluctuation in the scanning speed of the excitation light L by the scanning optical system 12 of the reading unit 20. Based on the image distortion correction data D for performing image distortion correction for removing the image distortion caused by the fluctuation of the scanning speed in the obtained radiographic image, the image is applied to the radiation image P1 of the subject read by the reading unit 20. Since distortion correction is performed and image distortion is removed, software image processing that is image processing can be performed without using hardware means such as a means for detecting the scanning speed of the excitation light L or a means for adjusting the sampling clock frequency. Image distortion can be removed by distortion correction, and a radiation image P1 ′ of a subject from which image distortion caused by an optical accuracy error of the scanning optical system 12 is removed without complicating the structure is obtained. Door can be.

また、本放射線画像読取装置では、さらに、画歪補正データDの算出の後に、読取手段20により読み取られた被写体なしの放射線画像P0に対して、画歪補正データDに基づいて画歪補正を行うことにより画歪補正後被写体なし画像P0′を得、画歪補正後被写体なし画像P0′に基づいて、当該画像P0′における濃度むらを除去する濃度補正を行うための濃度補正データHを算出し、被写体の放射線画像P1に対する画歪補正の後に、画歪補正後の被写体の放射線画像P1′に対して、濃度補正データHに基づいて濃度補正を行うようにしているので、励起光Lの走査速度の変動に起因する濃度むらおよび読取手段20の系による濃度むらをも補正することができ、観察、画像処理等に対してより有用な被写体の放射線画像を得ることができる。   Further, in the present radiation image reading apparatus, after calculating the image distortion correction data D, image distortion correction is performed based on the image distortion correction data D on the radiation image P0 without the subject read by the reading unit 20. By doing this, an image P0 ′ without subject after image distortion correction is obtained, and density correction data H for performing density correction for removing density unevenness in the image P0 ′ is calculated based on the image P0 ′ without subject after image distortion correction. After the image distortion correction for the radiographic image P1 of the subject, the density correction is performed on the radiographic image P1 ′ of the subject after the image distortion correction based on the density correction data H. It is also possible to correct density unevenness due to fluctuations in scanning speed and density unevenness due to the system of the reading means 20, and obtain a radiation image of a subject that is more useful for observation, image processing, and the like. It can be.

本発明の一実施形態による放射線画像読取装置の構成を示した図The figure which showed the structure of the radiographic image reading apparatus by one Embodiment of this invention. 本実施形態による放射線画像読取装置の読取手段の構成を示した図The figure which showed the structure of the reading means of the radiographic image reading apparatus by this embodiment 本実施形態による放射線画像読取装置における処理フローを示した図The figure which showed the processing flow in the radiographic image reading apparatus by this embodiment. シート上でのサンプリング位置と放射線画像上での画素位置との対応関係を示した図Diagram showing the correspondence between the sampling position on the sheet and the pixel position on the radiation image 放射線画像における濃度補正の概念を示した図Diagram showing the concept of density correction in radiographic images シート上での励起光ビーム位置の時間的変化を示した図The figure which showed the temporal change of the position of the excitation light beam on the sheet

符号の説明Explanation of symbols

1 励起光源
2 ビーム・エクスパンダー
3 光偏向器
4 平面反射鏡
5 fθレンズ
6 集光ガイド
7 光検出器
8 増幅器
9 A/D変換器
10 信号処理部
11 蓄積性蛍光体シート
12 走査光学系
20 読取手段
31 画歪補正データ記憶手段
32 濃度補正データ算出手段
33 画歪補正手段
34 濃度補正手段
DESCRIPTION OF SYMBOLS 1 Excitation light source 2 Beam expander 3 Optical deflector 4 Plane reflecting mirror 5 f (theta) lens 6 Condensing guide 7 Photodetector 8 Amplifier 9 A / D converter 10 Signal processing part 11 Storage phosphor sheet 12 Scanning optical system 20 Reading means 31 Image distortion correction data storage means 32 Density correction data calculation means 33 Image distortion correction means 34 Density correction means

Claims (4)

放射線画像情報が蓄積記録された蓄積性蛍光体シートに、走査光学系を介して励起光を走査し、前記放射線画像情報に応じた輝尽発光光を生じさせ、該輝尽発光光を光電的に検出して画像信号を得る読取手段により読取りを行う放射線画像読取方法において、
前記走査光学系の特性による前記励起光の走査速度の変動の特性に基づいて、前記読取手段により読み取られた放射線画像における、前記走査速度の変動による画歪を除去する画歪補正を行うための画歪補正データを算出し、
前記読取手段により読み取られた被写体の放射線画像に対して、前記画歪補正データに基づいて画歪補正を行うことを特徴とする放射線画像読取方法。
The stimulable phosphor sheet on which the radiation image information is accumulated and recorded is scanned with excitation light through a scanning optical system to generate stimulated emission light according to the radiation image information. In the radiation image reading method of reading by the reading means for detecting the image signal to obtain
Based on the characteristics of fluctuations in the scanning speed of the excitation light due to the characteristics of the scanning optical system, image distortion correction for removing image distortion due to fluctuations in the scanning speed in the radiation image read by the reading means is performed. Calculate image distortion correction data,
A radiation image reading method, wherein image distortion correction is performed on a radiation image of a subject read by the reading unit based on the image distortion correction data.
前記画歪補正データの算出の後に、
前記読取手段により読み取られた被写体なしの放射線画像に対して、前記画歪補正データに基づいて画歪補正を行うことにより画歪補正後被写体なし画像を得、
該画歪補正後被写体なし画像に基づいて、該画像における濃度むらを除去する濃度補正を行うための濃度補正データを算出し、
前記被写体の放射線画像に対する前記画歪補正の後に、
前記画歪補正後の前記被写体の放射線画像に対して、前記濃度補正データに基づいて濃度補正を行うことを特徴とする請求項1記載の放射線画像読取方法。
After calculating the image distortion correction data,
An image without a subject after image distortion correction is obtained by performing image distortion correction based on the image distortion correction data with respect to a radiation image without an object read by the reading unit,
Based on the image without subject after image distortion correction, density correction data for performing density correction for removing density unevenness in the image is calculated,
After the image distortion correction for the radiographic image of the subject,
The radiographic image reading method according to claim 1, wherein density correction is performed on the radiographic image of the subject after the image distortion correction based on the density correction data.
放射線画像情報が蓄積記録された蓄積性蛍光体シートに、走査光学系を介して励起光を走査し、前記放射線画像情報に応じた輝尽発光光を生じさせ、該輝尽発光光を光電的に検出して画像信号を得る読取手段により読取りを行う放射線画像読取装置において、
前記走査光学系の特性による前記励起光の走査速度の変動の特性に基づいて算出された補正データであって、前記読取手段により読み取られた放射線画像における、前記走査速度の変動による画歪を除去する画歪補正を行うための画歪補正データを記憶する画歪補正データ記憶手段と、
前記読取手段により読み取られた被写体の放射線画像に対して、前記画歪補正データに基づいて画歪補正を行う画歪補正手段とを備えたことを特徴とする放射線画像読取装置。
The stimulable phosphor sheet on which the radiation image information is accumulated and recorded is scanned with excitation light through a scanning optical system to generate stimulated emission light according to the radiation image information. In a radiographic image reading apparatus that performs reading by a reading means that detects an image signal and
Correction data calculated based on characteristics of fluctuations in the scanning speed of the excitation light due to characteristics of the scanning optical system, and removing image distortion due to fluctuations in the scanning speed in a radiographic image read by the reading unit Image distortion correction data storage means for storing image distortion correction data for performing image distortion correction;
A radiation image reading apparatus, comprising: an image distortion correction unit configured to perform image distortion correction based on the image distortion correction data with respect to a radiographic image of a subject read by the reading unit.
前記読取手段により読み取られた被写体なしの放射線画像に対して、前記画歪補正データに基づいて画歪補正を行うことにより画歪補正後被写体なし画像を得、
該画歪補正後被写体なし画像に基づいて、該画像における濃度むらを除去する濃度補正を行うための濃度補正データを算出する濃度補正データ算出手段と、
前記画歪補正後の前記被写体の放射線画像に対して、前記濃度補正データに基づいて濃度補正を行う濃度補正手段とをさらに備えたことを特徴とする請求項3記載の放射線画像読取装置。
An image without a subject after image distortion correction is obtained by performing image distortion correction based on the image distortion correction data with respect to a radiation image without an object read by the reading unit,
Density correction data calculating means for calculating density correction data for performing density correction for removing density unevenness in the image based on the image without subject after image distortion correction;
4. The radiographic image reading apparatus according to claim 3, further comprising density correction means for performing density correction on the radiographic image of the subject after the image distortion correction based on the density correction data.
JP2004074511A 2004-03-16 2004-03-16 Method and apparatus for reading radiograph Withdrawn JP2005261487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074511A JP2005261487A (en) 2004-03-16 2004-03-16 Method and apparatus for reading radiograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074511A JP2005261487A (en) 2004-03-16 2004-03-16 Method and apparatus for reading radiograph

Publications (1)

Publication Number Publication Date
JP2005261487A true JP2005261487A (en) 2005-09-29

Family

ID=35086636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074511A Withdrawn JP2005261487A (en) 2004-03-16 2004-03-16 Method and apparatus for reading radiograph

Country Status (1)

Country Link
JP (1) JP2005261487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146811A1 (en) * 2011-04-29 2012-11-01 Consejo Superior De Investigaciones Científicas (Csic) Method for calibrating and correcting the scanning distortion of an optical coherence tomography system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146811A1 (en) * 2011-04-29 2012-11-01 Consejo Superior De Investigaciones Científicas (Csic) Method for calibrating and correcting the scanning distortion of an optical coherence tomography system
ES2391510A1 (en) * 2011-04-29 2012-11-27 Consejo Superior De Investigaciones Científicas (Csic) Method for calibrating and correcting the scanning distortion of an optical coherence tomography system
US9593933B2 (en) 2011-04-29 2017-03-14 Consejo Superior De Investigaciones Cientificas (Csic) Method for calibrating and correcting the scanning distortion of an optical coherence tomography system

Similar Documents

Publication Publication Date Title
JPH0584505B2 (en)
JPH0786924B2 (en) Image scaling method and apparatus
JP2849964B2 (en) Image processing method and apparatus
JPS63183435A (en) Method for determining image processing condition
US20020191829A1 (en) Image reproduction system
JP3545517B2 (en) Radiation image information reader
JP2005261487A (en) Method and apparatus for reading radiograph
JP3945976B2 (en) Image display method and apparatus
JPH03155267A (en) Nonuniform sensitivity correcting method for picture reader
JP2001245140A (en) Image processing apparatus and image processing method
JP3399684B2 (en) Image processing method and apparatus
US7366358B2 (en) Method of and system for generating image signal
JP3738851B2 (en) Shading correction method in radiographic image reading
JP3903406B2 (en) Image information reading method and apparatus
JPH0532741B2 (en)
JPH03198039A (en) Image reader
JPH08116435A (en) Shading correction method in radiation image reading
JPH07109482B2 (en) Radiation image information reading method and apparatus
JP3305749B2 (en) Radiation image reader
JPH04154387A (en) Method and device for energy subtraction of radiation image
JPS63153048A (en) Radiation image data reading method and apparatus
JP2001094743A (en) Shading correction data management method and image reader
JP2003283770A (en) Shading correction method and apparatus for image processing apparatus
JPH04314432A (en) Method and apparatus for photographing and reading radiation image
JP2005303448A (en) Radiation image processor, radiation image reader, radiation image processing method and radiation image reading method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081030