JPS6186644A - Manufacture of biosensor - Google Patents

Manufacture of biosensor

Info

Publication number
JPS6186644A
JPS6186644A JP59208626A JP20862684A JPS6186644A JP S6186644 A JPS6186644 A JP S6186644A JP 59208626 A JP59208626 A JP 59208626A JP 20862684 A JP20862684 A JP 20862684A JP S6186644 A JPS6186644 A JP S6186644A
Authority
JP
Japan
Prior art keywords
enzyme
biosensor
ion
film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59208626A
Other languages
Japanese (ja)
Other versions
JPH0519654B2 (en
Inventor
Jun Kimura
純 木村
Toshihide Kuriyama
敏秀 栗山
Yoshie Kawana
川名 美江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59208626A priority Critical patent/JPS6186644A/en
Publication of JPS6186644A publication Critical patent/JPS6186644A/en
Publication of JPH0519654B2 publication Critical patent/JPH0519654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain economical manufacturing method of a biosensor characterized by a small amount of consumption of enzyme, by forming a plurality of ion sensitive parts on a chip, coating a part other than the sensitive parts by a hydrophobic resin beforehand, holding a liquid including the enzyme, and forming an immobilized enzyme film. CONSTITUTION:A part on a substrate 1 other than ion sensitive parts 2 is coated by a hydrophobic resin 3. A solution including enzyme 4 having albumin and enzyme is formed on one gate by a syringe. The solution including enzyme 4 loses water and a film including enzyme 5 is formed in several minutes. Then glutaraldehyde is supplied thereon as a bringing agent 6. It is repelled by a resin layer (fluoride) and held on the previously formed protein film. This is made to remain for several minutes. Then the protein bridge is favorably expanded, and a fixed enzyme film 7 is formed. Then the product is made to remain intact for a specified time period. After washing with water and glycine treatment, the product is stored in a buffer. Thus a small amount of the enzyme can be well fixed on a minute sensor.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は微小なイオン感応部をワンチップ上に少々くと
も2種有し部分的に酵素活性を有するバイオセンサの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a method for producing a biosensor that has at least two types of minute ion-sensitive parts on one chip and partially has enzymatic activity.

(従来技術) 1チップ上に2種のイオン感応部を有し一方のみに酵素
活性を有するものとしては先に本発明者は以下のような
提案をしている。ここでは、イオン感受性電界効果型ト
ランジスタ(I8FET)のウェハなどの全面にあらか
じめ形成された酵素固定膜に一対の電極の一方のみを酵
素活性を有する様にするため、石英製フォトマスクでお
おって酵素活性を持たせる部分のみを光が当らないよう
にしてから光を照射し、残部、とりわけもう一方のイオ
ン感受部の酵素活性を失活させる事で差動電極全作成す
る方法であった。
(Prior Art) The present inventor has previously proposed the following as a chip having two types of ion-sensing regions and only one having enzymatic activity. Here, in order to make only one of a pair of electrodes have enzymatic activity on an enzyme-immobilized film previously formed on the entire surface of an ion-sensitive field effect transistor (I8FET) wafer, etc., the enzyme was covered with a quartz photomask. The entire differential electrode was created by shielding only the active part from light and then irradiating it with light to deactivate the remaining part, especially the other ion-sensing part.

この方法の場合酵素膜に光照射をするのみで一対のイオ
ン感応部の一方を酵素活性測定用、他方を比較用に出来
るため簡単に差動型バイオセンサを提供する事が出来る
。反面、使用した酵素薬剤の殆んどは失活するため薬剤
使用量が多いことと、基本的に2種類以上の基質を同時
に測定するマルチバイオセンサの製作が不可能である欠
点を有していた。
In this method, by simply irradiating the enzyme membrane with light, one of the pair of ion-sensitive sections can be used for enzyme activity measurement and the other for comparison, making it possible to easily provide a differential biosensor. On the other hand, most of the enzyme drugs used are inactivated, so the amount of drug used is large, and the disadvantage is that it is basically impossible to create a multi-biosensor that measures two or more types of substrates at the same time. Ta.

又、1つのチップ上に2種以上の酵素を固定化した例に
ついては現在まで報告はない。
Furthermore, to date, there has been no report on an example in which two or more types of enzymes are immobilized on one chip.

(発明の目的) 本発明はワンチップに2つ以上イオン感応部を有する素
子を用いたマルチバイオセンサの効果的かつ経済的9 
r、d遣方法を提供するものである。
(Objective of the Invention) The present invention provides an effective and economical way to develop a multi-biosensor using an element having two or more ion-sensing parts on one chip.
This provides a method for sending r and d.

(発明の構成) 本発明は、チップ上に複数のイオン感応部を形成し、少
なくとも1種の酵素全固定化するノ(イオセンサの製造
方法において、イオン感応部以外の部分をあらかじめ疎
水性樹脂で被覆せしめた後、前記イオン感応部に酵素含
有液を保持せしめることによって固定化酵素膜を形成す
ることを特孕とするバイオセンサの製造方法。
(Structure of the Invention) The present invention involves forming a plurality of ion-sensing regions on a chip and completely immobilizing at least one enzyme (in an iosensor production method, parts other than the ion-sensing regions are preliminarily coated with a hydrophobic resin). A method for producing a biosensor, which comprises forming an immobilized enzyme membrane by causing the ion-sensitive portion to retain an enzyme-containing liquid after coating.

(構成の詳細な説明) 本発明によれば通常では固定化酵素を形成させるのが困
難な非常に微細々イオン感応部への酵素の固定化が可能
と々る。電極上へ酵素を固定化する方法のうち良く知ら
れているのは酵素を可溶性タンパクと混合しグルタール
・アルデヒドなどで架橋する方法である。可溶性タンパ
クとしてアルブミンを使った例がM、マツシー二とG、
 G、ギルボー (’M、 Mascini and 
G、G、 Guローb3ut)によってアナリティカル
・ケミストリー第49巻、6号、1977年5月(An
alytical Chemistry、 vol、 
49 。
(Detailed description of the structure) According to the present invention, it is possible to immobilize an enzyme in a very fine ion-sensitive region where it is normally difficult to form an immobilized enzyme. A well-known method for immobilizing enzymes on electrodes is to mix enzymes with soluble proteins and crosslink them with glutaraldehyde or the like. An example of using albumin as a soluble protein is M, Matsushiji and G.
G, Guilbeault ('M, Mascini and
Analytical Chemistry Volume 49, No. 6, May 1977 (An.
analytic chemistry, vol.
49.

No6)に述べられている。ここでは、ウレアーゼを固
定化して尿素測定用電極を得ている。文献中でマッシー
二らけ、酵素をアルブミンと混合したイ、のを電極へ塗
付する寸前にゲルタールアルデヒドと混合、素早く電極
表面へ塗付する様に指示している。水沫によると架橋は
大気中で速やかに反応するため粘性がすぐに大きくなる
。マツシーニラハアンモニアガスセンサーを用いて酵素
反応の結果生成するアンモニアで尿素を定量している。
No. 6). Here, urease is immobilized to obtain an electrode for urea measurement. In the literature, it is instructed to mix a mixture of enzyme and albumin with gel tar aldehyde just before applying it to the electrode, and to quickly apply it to the electrode surface. According to water droplets, crosslinking reacts quickly in the atmosphere, so the viscosity increases quickly. Urea is quantified using ammonia produced as a result of an enzyme reaction using a Matsushi Niraha ammonia gas sensor.

この場合比較的広い面精に塗付するためまだしも操作は
簡単である。
In this case, since the coating is applied over a relatively wide area, the operation is simple.

発明者らが、イオン感応部として使用しているもので最
もφさいものはゲート部の大きさが、50μmx400
.am位のものが、250μm間隔で2つ並んでいる、
全体で巾が0.6罷のプーアル型l5FETである。こ
の構造を第2図に示す。第2図で11はサファイア基板
、12はリード線増り出し部、13はドレイン領域、1
4はゲート部、15けソース領域である。
The gate section of the smallest φ one that the inventors are using as an ion-sensing section is 50 μm x 400 mm.
.. Two am-sized ones are lined up at 250 μm intervals.
It is a Puer type 15 FET with a total width of 0.6 strips. This structure is shown in FIG. In Fig. 2, 11 is a sapphire substrate, 12 is a lead wire extension, 13 is a drain region, 1
4 is a gate portion and 15 is a source region.

この一方のみに固定化酵素を保持させるのけ従来困難と
されていた。例えば先に示したマッシ一二らの方法では
固定化酵素用混合物の粘りが強く細い針状センサの一方
のみに酵素をつける事はわけても困難である。
It was previously considered difficult to retain the immobilized enzyme in only one of these. For example, in the method of Massi et al. shown above, the viscosity of the mixture for immobilized enzymes makes it extremely difficult to apply the enzyme to only one side of the thin needle-like sensor.

本発明者らは実用性の低い酵素固定化法を解決するため
マッシー二らの方法を改良、先に酵素とアルブミンの混
合液を一方のゲート上へ保持、続いてゲルタールアルデ
ヒドをその上へつける事で架橋させる方法を見出した。
In order to solve the impractical enzyme immobilization method, the present inventors improved Massini et al.'s method. First, a mixture of enzyme and albumin was held on one gate, and then geltaraldehyde was placed on top of it. We have found a way to create cross-links by attaching them.

しかしながらこの場合アルブミンと酵素の混合液の半導
体表面への濡れ性が非常に艮いため付着させるのは容易
であるがセンサ全域に酵素膜が流れることが判明した。
However, in this case, the wettability of the albumin-enzyme mixture to the semiconductor surface is very poor, so it was found that although it was easy to adhere, the enzyme film flowed over the entire sensor area.

本発明者らはかかる微小領域で選択的に酵素を固定化す
る方法について検討した結果、酵素を固定化する部分以
外をあらかじめ疎水性ポリマーで被覆することで前記酵
素アルブミン混合物をマスクロシリンジレζよってゲー
ト上ヘピベクティングする方法を見出した。すなわち通
常集積回路のバターニングに使用されるネガ型レジスト
材によってゲート部以外が被覆された前記l5FETを
有するウェハと同じくゲート部以外がフッ素樹脂によっ
て被覆されたウェハ金準備し、一対の電極の一方のみに
酵素とアルブミンを含有した溶液をマイクロシリンジで
保持した。第1図(alに示すのが、ウェハゲート部に
おける断面図であり基板1上のイオン感応部2以外の部
分が疎水性樹脂3によって被覆されている様子を示す。
The present inventors investigated a method for selectively immobilizing an enzyme in such a micro region, and found that by pre-coating the area other than the area where the enzyme is immobilized with a hydrophobic polymer, the enzyme-albumin mixture can be transferred to a mascrosyringe. Therefore, we discovered a method of hepivectoring on gates. That is, a wafer having the above-mentioned 15FET whose parts other than the gate part are covered with a negative resist material usually used for patterning integrated circuits, and whose parts other than the gate part are covered with a fluororesin is prepared, and one of the pair of electrodes is prepared. A solution containing enzyme and albumin was held in a microsyringe. FIG. 1 (al) is a cross-sectional view of the wafer gate portion, showing that portions of the substrate 1 other than the ion-sensitive portion 2 are covered with the hydrophobic resin 3.

第1図(b)に示すのが一方のゲート部にシリンジ例よ
ってアルブミンとnf素を含有する酵素含有溶液4を形
成せしめた時の断面であるが、ここに示すようにゲート
の横に形成さf″した樹脂層の疎水性のためはじかれ、
ゲート上にうまく保持されている。なお樹脂については
2種を比較したが、フッ化樹脂の方がすぐれている事が
判明した。これはネガ型レジスト材の材料である環化ゴ
ムよりもフッ素樹脂の方が疎水性が大きいためであると
思われる。
Figure 1(b) shows a cross section when an enzyme-containing solution 4 containing albumin and NF element is formed on one gate using a syringe. Due to the hydrophobic nature of the resin layer, it is repelled,
Holds well on the gate. Two types of resin were compared, and it was found that fluorinated resin was superior. This is thought to be because the fluororesin has greater hydrophobicity than the cyclized rubber that is the material of the negative resist material.

第1図(b)に示した酵素とアルブミン混合液は水分を
失ない、数分で第1図(c)のよう々酵素含有膜5が形
成される。ひき続きこの上に架橋剤6として例えばゲル
タールアルデヒドを供給すると、やはり樹脂F’f4K
uじかれ先のタンパク膜上に保持される(第1図(d)
)。これを数分放置するとタンパクの架橋は順調に進展
し、同定化酵素膜7が形成される(第1図(e))。あ
とはマッシー二の論文にあるように一定時間放置し、水
洗、グリシン処理後バッファー中で保管した。
The enzyme and albumin mixture shown in FIG. 1(b) does not lose water, and an enzyme-containing film 5 as shown in FIG. 1(c) is formed in a few minutes. If, for example, geltaraldehyde is subsequently supplied thereon as a crosslinking agent 6, the resin F'f4K is also formed.
It is retained on the protein membrane at the tip of the tip (Fig. 1(d)
). When this is left for several minutes, the crosslinking of the proteins progresses smoothly, and an identified enzyme membrane 7 is formed (FIG. 1(e)). Afterwards, as described in Massini's paper, it was left to stand for a certain period of time, washed with water, treated with glycine, and then stored in a buffer.

この様に本発明全採用する事によってわずかな酵素で微
小センサー上にうまく酵素を固定化することが可能とな
った。
In this way, by fully adopting the present invention, it has become possible to successfully immobilize an enzyme on a microsensor using only a small amount of enzyme.

ここでは単一の酵素を固定化する差動型バイオセンサに
ついて述べたが、同様の操作を別種の酵素によってくり
返す事によりワンチップで同時に多種の基質を測定する
マルチバイオセンサが容易に揚供出来る。
Here we have described a differential biosensor that immobilizes a single enzyme, but by repeating the same operation with different types of enzymes, it is easy to create a multi-biosensor that measures multiple substrates simultaneously with a single chip. I can do it.

(実施例) ワンチップ上に3つのゲート’2有するISF’ETを
用いて2つのゲートに各々ウレアーゼ・グルコースオキ
シダーゼを固定化、1つ’ip)!電極とする事で差動
型マルチバイオセンサーを1チップ化した。参照電極は
本発明者らが「1984*国際素子材料コンファレンス
(1984InternationalCnnfere
nce  on  5olid  5tate Dev
ices  andM;Berials)Jに於て[ア
ン インテグレーテッドS OS/F ETバイオセン
サ」と題して発表した内容の様に裏面に金電極を擬似参
照電極として有している。
(Example) Using ISF'ET with three gates '2 on one chip, urease and glucose oxidase are immobilized on each of the two gates, one 'ip)! By using it as an electrode, we have integrated a differential multi-biosensor into one chip. The reference electrode was developed by the present inventors at the 1984 International Conference on Element Materials.
nce on 5olid 5tate Dev
A gold electrode is provided on the back surface as a pseudo reference electrode, as described in the publication titled "Unintegrated SOS/FET Biosensor" in ICES and M; Berials) J.

素子の平面図とA−A’部分の断面をそれぞれ第3図(
a+ 、 (b)に示す。素子のゲート部以外はフッ素
樹脂であらかじめ被覆しである。酵素を固定化した時の
断面を第4図に示す。
A plan view of the device and a cross section taken along line A-A' are shown in Figure 3 (
a+, shown in (b). The parts other than the gate part of the element are coated with fluororesin in advance. FIG. 4 shows a cross section of the enzyme immobilized.

酵素の固定化は前記マッシー二らの方法を基本的に踏襲
した。
Enzyme immobilization basically followed the method of Massey et al.

す々わち0.2 M  pl(8,5)リスバクファー
に溶解した15%のアルブミン液50μlに51n9ノ
ウレアーゼ(ベーリンガーマンハイム社製Lot。
51n9 nourease (Boehringer Mannheim Lot.

No、 1513.(39,111In915000U
 ) f溶解したものに蒸留水450μl!を入れたウ
レアーゼストック液、同じ(’15%のアルブミン液5
0μlに2■のグルコースオキシダーゼ(ベーリンガー
・マンハイム社製Lot、 No、 1273334.
 90’7/25,0OOIJ )を溶解蒸留水450
μl を入れたグルコースオキシダーゼストック2.5
係ゲルタールアルデヒド水溶液を固定化酵素用に準備し
た。素子表面上へのフッ素樹脂被覆は以下の手法によっ
て容易に実現出来た。すなわち、素子の3つのゲート部
22のみをポジ型レジスト材によってあらかじめ被覆し
た後、全面にフッ素樹脂を塗付した。フッ素樹脂の厚み
は約5μm程度であった。
No. 1513. (39,111In915000U
) Add 450 μl of distilled water to the dissolved solution! urease stock solution containing the same ('15% albumin solution 5
2 μl of glucose oxidase (Boehringer Mannheim Lot, No. 1273334.
90'7/25,0OOIJ) dissolved in distilled water 450
Glucose oxidase stock containing 2.5 μl
An aqueous gel taraldehyde solution was prepared for immobilized enzyme. Fluororesin coating on the element surface was easily achieved by the following method. That is, only the three gate portions 22 of the device were previously coated with a positive resist material, and then the entire surface was coated with fluororesin. The thickness of the fluororesin was approximately 5 μm.

ひき続きアセトンをハク離削とする事でノボラック樹脂
より成るレジスト材を溶解、同時にゲート上のフッ素樹
脂がとり去られた。この様にして容易にゲート部のみが
表面Si3N4 (♀化シリコン)層をむき出しに逼れ
、残りはリード線傘り出し部を除外してフッ素樹脂で蓮
われた素子を得fc0第3図に示す3つのゲート22の
うち左端のゲートにマイクロシリンジで先に述べたウレ
アーゼストックを約0.05μ14いた。結果は第1図
(blに示す様にうまく保持された。
Subsequently, the resist material made of novolac resin was dissolved by abrasion with acetone, and at the same time, the fluororesin on the gate was removed. In this way, only the gate part can be easily closed to expose the surface Si3N4 (ferrous silicon) layer, and the remaining parts can be covered with fluororesin by excluding the lead wire extension part to obtain an element covered with fluororesin as shown in fc0 Fig. 3. Of the three gates 22 shown, about 0.05 μl of the above-mentioned urease stock was placed in the leftmost gate using a microsyringe. The results were well preserved as shown in Figure 1 (bl).

ひキ続キグルフースオキシダーゼストックを右端のゲー
ト表面へ導いたが、結果は同じく第1図(b)に示す様
にうまく稈持された。上記2つの操作に要した時間は約
1分である。両ストック液をゲート上へ保持してから5
分経過後第1図(c)に示す様に両方のゲート上には酵
素とアルブミンの嘆が形成され続いて同様マイクロシリ
ンジで2.5チグルタールアルデヒド水溶液を第1図(
d)の様に酵素とアルブミンで出来た膜の上へ導いた。
Subsequently, the kiglufus oxidase stock was introduced to the rightmost gate surface, and as a result, the culm was successfully maintained as shown in FIG. 1(b). The time required for the above two operations was about 1 minute. After holding both stock solutions on the gate,
After a few minutes, as shown in Figure 1(c), a layer of enzyme and albumin was formed on both gates.Subsequently, a 2.5 tiglutaraldehyde aqueous solution was injected with the same microsyringe as shown in Figure 1(c).
It was guided onto a membrane made of enzyme and albumin as shown in d).

このまま15分放置して第1図(e)K示す酵素固定化
膜を得た。この素子を用いて測定した結果を第5図第6
図に示す。測定値は差動であり第3図左端と中央のゲー
ト電圧の差が尿素センサ出力で右端と中央のゲート電圧
の差がグルコースセンサ出力である。測定結果は良好で
このマルチセンサの優秀性を示している。々お尿素に対
するグルコースセンサ、グルコースに対する尿素センサ
の応答はゼロ近辺であった。
This was left as it was for 15 minutes to obtain the enzyme-immobilized membrane shown in FIG. 1(e)K. The results measured using this element are shown in Figure 5 and Figure 6.
As shown in the figure. The measured values are differential; the difference between the gate voltages at the left end and the center in FIG. 3 is the urea sensor output, and the difference between the gate voltages at the right end and the center is the glucose sensor output. The measurement results were good, demonstrating the superiority of this multi-sensor. The responses of the glucose sensor to urea and the urea sensor to glucose were close to zero.

(発明の効果) 今まで述べてきた様に本発明は酵素の消費量を少なくシ
、かつ簡単にマルチバイオセンサを得る事の出来る画期
的発明である。ゲート部以外に疎水性を持たせるにはこ
こで示した様にフッ素樹脂などの■う水性の強い樹脂を
表面に形成させる方法が最も効果的であり、又更にセン
サの保護にも役立つ。
(Effects of the Invention) As described above, the present invention is an epoch-making invention that can reduce the consumption of enzymes and easily obtain a multi-biosensor. In order to impart hydrophobicity to areas other than the gate part, the most effective method is to form a highly hydrophobic resin such as fluororesin on the surface as shown here, and it is also useful for protecting the sensor.

しかしながらこれにとど寸らず例えばゲート部以外にワ
ックスなどを塗付する事によってもこれと同等の効果を
もたらすことも明白である。
However, it is clear that the same effect can be brought about by applying wax or the like to areas other than the gate area, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(elid本発明の詳細な説明する概略
図、第2図はイオン感受性のPETの概略図である。 第3図(a) 、 (b)H13つのイオン感応部を持
ち共通ドレインを持つイオン感受性FFTの概略図。 第4図は、マルチバイオセンサのゲート部断面図である
。 第5図ViFBTのゲート電圧の差出力と尿素濃度の相
関図、第6図はPETのゲート電圧の差出力とグルコー
ス濃度の相関図を示す。 図中、1は基板、2はイオン感応部、3は疎水性樹脂、
4は酵素含有溶液、5は酵素含有膜、6は架橋剤、7は
固定化酵素膜、12はリード線をり出し部、13.23
はドレイン領域、14.22はゲート部、15.21は
ソース領域、30はウレアーゼ固定化膜、31はグルコ
ースオキシダーゼ固定化膜。 オ  1  図 第2図 第3図 A−A’断面
Figure 1 (al~(elid) is a schematic diagram explaining the details of the present invention, Figure 2 is a schematic diagram of ion-sensitive PET. Figure 3 (a), (b) H1 has three ion-sensitive parts and a common A schematic diagram of an ion-sensitive FFT with a drain. Figure 4 is a cross-sectional view of the gate part of the multi-biosensor. Figure 5 is a correlation diagram between the differential output of the gate voltage of ViFBT and the urea concentration. Figure 6 is the diagram of the gate of PET. A correlation diagram between voltage difference output and glucose concentration is shown. In the figure, 1 is the substrate, 2 is the ion sensing part, 3 is the hydrophobic resin,
4 is an enzyme-containing solution, 5 is an enzyme-containing membrane, 6 is a crosslinking agent, 7 is an immobilized enzyme membrane, 12 is a lead wire extension part, 13.23
14.22 is a gate region, 15.21 is a source region, 30 is a urease-immobilized film, and 31 is a glucose oxidase-immobilized film. E 1 Figure 2 Figure 3 A-A' cross section

Claims (6)

【特許請求の範囲】[Claims] (1)1チップ上に複数のイオン感応部を形成し、少な
くとも1種の酵素を固定化するバイオセンサの製造方法
において、イオン感応部以外の部分をあらかじめ疎水性
樹脂で被覆せしめた後、前記イオン感応部に酵素含有液
を保持せしめることによって固定化酵素膜を形成するこ
とを特徴とするバイオセンサの製造方法。
(1) In a method for manufacturing a biosensor in which a plurality of ion-sensitive parts are formed on one chip and at least one type of enzyme is immobilized, the parts other than the ion-sensitive parts are coated with a hydrophobic resin in advance, and then the A method for producing a biosensor, comprising forming an immobilized enzyme membrane by holding an enzyme-containing liquid in an ion-sensing part.
(2)酵素含有液が少なくとも酵素を含有する第1の液
と、該第1の液に含有される酵素またはこの酵素とそれ
以外の物質を架橋せしめる第2の液とからなる特許請求
の範囲第1項記載のバイオセンサの製造方法。
(2) A claim in which the enzyme-containing liquid comprises a first liquid containing at least an enzyme, and a second liquid that crosslinks the enzyme contained in the first liquid or this enzyme and other substances. 2. A method for producing a biosensor according to item 1.
(3)第1の液をまずイオン感応部に塗付し、そのあと
第2の液を含浸せしめる特許請求の範囲第2項記載のバ
イオセンサの製造方法。
(3) The method for manufacturing a biosensor according to claim 2, wherein the first liquid is first applied to the ion-sensitive part, and then the second liquid is impregnated.
(4)第1の液が酵素と可溶性タンパクを緩衝液に溶解
した液で、第2の液が分子の両側に反応基を有する化合
物を含む液である特許請求の範囲第2項又は第3項記載
のバイオセンサの製造方法。
(4) Claim 2 or 3, wherein the first solution is a solution in which an enzyme and a soluble protein are dissolved in a buffer solution, and the second solution is a solution containing a compound having reactive groups on both sides of the molecule. The method for manufacturing the biosensor described in Section 1.
(5)可溶性タンパクがアルブミンである特許請求の範
囲第4項記載のバイオセンサの製造方法。
(5) The method for producing a biosensor according to claim 4, wherein the soluble protein is albumin.
(6)分子の両側に反応基を有する化合物がグルタール
・アルデヒドである特許請求の範囲第4項記載のバイオ
センサの製造方法。
(6) The method for producing a biosensor according to claim 4, wherein the compound having reactive groups on both sides of the molecule is glutaraldehyde.
JP59208626A 1984-10-04 1984-10-04 Manufacture of biosensor Granted JPS6186644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59208626A JPS6186644A (en) 1984-10-04 1984-10-04 Manufacture of biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59208626A JPS6186644A (en) 1984-10-04 1984-10-04 Manufacture of biosensor

Publications (2)

Publication Number Publication Date
JPS6186644A true JPS6186644A (en) 1986-05-02
JPH0519654B2 JPH0519654B2 (en) 1993-03-17

Family

ID=16559338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59208626A Granted JPS6186644A (en) 1984-10-04 1984-10-04 Manufacture of biosensor

Country Status (1)

Country Link
JP (1) JPS6186644A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245051A (en) * 1985-04-23 1986-10-31 Nec Corp Production of semiconductor multi-biosensor
JPH0261548A (en) * 1988-08-26 1990-03-01 Matsushita Electric Works Ltd Manufacture of enzyme electrode
US7811829B2 (en) 2006-06-08 2010-10-12 Canon Kabushiki Kaisha Measuring probe and production process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245051A (en) * 1985-04-23 1986-10-31 Nec Corp Production of semiconductor multi-biosensor
JPH0261548A (en) * 1988-08-26 1990-03-01 Matsushita Electric Works Ltd Manufacture of enzyme electrode
US7811829B2 (en) 2006-06-08 2010-10-12 Canon Kabushiki Kaisha Measuring probe and production process thereof

Also Published As

Publication number Publication date
JPH0519654B2 (en) 1993-03-17

Similar Documents

Publication Publication Date Title
EP0228259B1 (en) Enzyme immobilized membrane for a semiconductor sensor and method for producing same
Nakamoto et al. A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors
van der Schoot et al. ISFET based enzyme sensors
JPH0548418B2 (en)
Starodub et al. Optimisation methods of enzyme integration with transducers for analysis of irreversible inhibitors
JPS6186644A (en) Manufacture of biosensor
KR870008189A (en) Enzyme sensor and manufacturing method
JPS6029658A (en) Urea sensor
US5356757A (en) Immobilized enzyme film, protein immobilized film and process for forming the same
Kuriyama et al. FET-based biosensors
JPS61234349A (en) Manufacture of semiconductor multi-biosensor
JPH0349388B2 (en)
JPS61153559A (en) Semiconductor enzyme sensor
JPH09210955A (en) Protein sensor
JPS6029657A (en) Glucose sensor
JPH0519947B2 (en)
JPS62132160A (en) Biosensor using separation gate type isfet
JPS6366454A (en) Enzyme sensor and manufacture thereof
JPS62225941A (en) Method of forming semiconductor biosensor enzyme immobilized membrane
JP2617745B2 (en) Immobilization method of biocatalyst in small and narrow areas
JP2604857B2 (en) Enzyme electrode
Factor ISFET-BASED BIOSENSOR ISFET Principle
JPS6188136A (en) Production of semiconductor multibiosensor
JPS61283862A (en) Manufacture of enzyme immobilized film
JPS63241346A (en) Manufacture of planar type biosensor