JP2617745B2 - Immobilization method of biocatalyst in small and narrow areas - Google Patents

Immobilization method of biocatalyst in small and narrow areas

Info

Publication number
JP2617745B2
JP2617745B2 JP62304922A JP30492287A JP2617745B2 JP 2617745 B2 JP2617745 B2 JP 2617745B2 JP 62304922 A JP62304922 A JP 62304922A JP 30492287 A JP30492287 A JP 30492287A JP 2617745 B2 JP2617745 B2 JP 2617745B2
Authority
JP
Japan
Prior art keywords
biocatalyst
substrate
concave portion
film
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62304922A
Other languages
Japanese (ja)
Other versions
JPH01144975A (en
Inventor
博章 鈴木
文雄 武井
明夫 菅間
尚美 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62304922A priority Critical patent/JP2617745B2/en
Publication of JPH01144975A publication Critical patent/JPH01144975A/en
Application granted granted Critical
Publication of JP2617745B2 publication Critical patent/JP2617745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 [概要] 本発明は、細微狭小な領域への生体触媒の固定化方法
に関し、 生体触媒を所定の細微狭小領域のみに固定化すること
ができ、しかも、生体触媒の利用効率を向上させること
を可能とする細微狭小領域への生体触媒の固定化方法を
提供することを目的とし、 裏面を撥水性膜で被覆した親水性基板の表面の生体触
媒を固定する所定の領域に凹部を形成し、該基板の表面
に露光によって溶けにくくなる高分子化合物の膜を形成
し、生体触媒を固定する所定の領域以外の領域に透光領
域を有するフォトマスクを使用して前記高分子化合物の
膜を露光した後、現像し、この基板を、生体触媒および
固定化担体を含む水溶液中に浸漬した後、引き上げ、前
記生体触媒および固定化担体を含む水溶液を前記凹部中
のみに選択的に滞留させ、前記生体触媒を前記凹部に固
定化する工程をもって構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for immobilizing a biocatalyst in a fine and narrow area, and can immobilize the biocatalyst only in a predetermined fine and narrow area. The purpose of the present invention is to provide a method for immobilizing a biocatalyst in a fine and narrow area that can improve utilization efficiency, and to fix a biocatalyst on the surface of a hydrophilic substrate having a back surface coated with a water-repellent film. Forming a concave portion in the region, forming a film of a polymer compound that is hardly dissolved by exposure on the surface of the substrate, and using a photomask having a light-transmitting region in a region other than a predetermined region for fixing the biocatalyst; After exposing the film of the polymer compound, developing, this substrate is immersed in an aqueous solution containing a biocatalyst and an immobilization carrier, then pulled up, and the aqueous solution containing the biocatalyst and the immobilization carrier is only in the concave portion. Choice And fixing the biocatalyst in the recess.

[産業上の利用分野] 本発明は、細微狭小な領域への生体触媒の固定化をす
る方法に関する。
[Industrial Application Field] The present invention relates to a method for immobilizing a biocatalyst in a fine and narrow area.

[従来の技術] 酵素、微生物、細胞、抗原、抗体等の生物活性あるい
は生物反応性を有する物質(以下生体触媒と称す)が、
特定の物質と特異的に反応する性質を利用し、そのとき
生じる物質的変化や物理的変化を探知し、電気信号等に
変換して検出定量する、いわゆる、バイオセンサーは、
臨床医学、臨床検査、食品等製造プラント、農業等の分
野で、測定機器、診断機器、食品分析機器、プラント工
程制御手段、水質管理手段等として広く用いられてい
る。通常、バイオセンサーの生体触媒部分は、上記の特
異的反応にもとづく変化量を電気信号に変換する部分、
いわゆる、トランスデューサーと一体に構成されるか、
その近傍に配置され、形状としては、膜状にして用いら
れることが多い。
[Prior art] Enzymes, microorganisms, cells, antigens, antibodies and other substances having biological activity or bioreactivity (hereinafter referred to as biocatalysts)
The so-called biosensor, which utilizes the property of reacting specifically with a specific substance, detects material changes and physical changes that occur at that time, converts it into an electric signal, etc., and detects and quantifies it,
In the fields of clinical medicine, clinical examination, food production plants, agriculture, and the like, they are widely used as measurement devices, diagnostic devices, food analysis devices, plant process control means, water quality management means, and the like. Normally, the biocatalyst portion of the biosensor is a portion that converts the amount of change based on the specific reaction into an electric signal,
So-called integrated with the transducer,
It is arranged in the vicinity thereof and is often used in the form of a film.

トランスデューサーとしては生体触媒の反応によって
種々あり得るが、(イ)酸素イオン濃度の変化に応答し
て電気信号を発生する酸素電極、(ロ)炭酸ガス濃度、
炭酸イオン濃度などの変化に応答して電気信号を発生す
る二酸化炭素電極、(ハ)過酸化水素濃度の変化に応答
して電気信号を発生する過酸化水素電極、(ニ)溶液中
の水素イオン濃度に応じて電気信号を発生する水素イオ
ン感応性電界効果型トランジスタ(pH−ISFET)等が知
られている。
There can be various transducers depending on the reaction of the biocatalyst. (A) An oxygen electrode that generates an electric signal in response to a change in oxygen ion concentration, (b) a carbon dioxide gas concentration,
A carbon dioxide electrode that generates an electric signal in response to a change in the concentration of carbonate ions, (c) a hydrogen peroxide electrode that generates an electric signal in response to a change in the concentration of hydrogen peroxide, (d) hydrogen ions in a solution A hydrogen-ion-sensitive field-effect transistor (pH-ISFET) that generates an electric signal in accordance with the concentration is known.

生体触媒を固定化することは、固定化によって生体触
媒が安定化すること、高密度化できること等からバイオ
センサーを小型化あるいは高集積化する一方法として広
く用いられている。
Immobilization of a biocatalyst is widely used as one method for miniaturizing or highly integrating a biosensor because the immobilization stabilizes the biocatalyst and enables high density.

従来用いられている固定化の方法としては、生体触媒
の担体の中に懸濁させ、これをトランスデューサー部
分、例えば、ISFETのゲート部に塗布あるいは滴下し、
その後に架橋反応を進行させて、生体触媒の固定化膜を
形成する方法が一般的である。
As a conventional immobilization method, a suspension is applied to a biocatalyst carrier, and the suspension is applied or dropped on a transducer portion, for example, an ISFET gate portion.
Thereafter, a general method is to form a biocatalyst immobilized film by advancing a crosslinking reaction.

しかし、このような従来の固定化方法をもってして
は、酵素や微生物等の生体触媒を細微狭小な箇所に選択
的に固定することが困難であることから、集積化が困難
であり、また、不要な箇所に生体触媒が塗布されること
になり、高価な生体触媒の利用効率が悪いという欠点が
ある。
However, with such a conventional immobilization method, it is difficult to selectively immobilize a biocatalyst such as an enzyme or a microorganism in a fine and narrow place, so that integration is difficult, and Unnecessary portions are coated with the biocatalyst, and there is a disadvantage that the use efficiency of the expensive biocatalyst is poor.

従来法の改良法として、半導体等のプロセスでよく用
いられるリフトオフ法を固定化に応用する試みがなさ
れ、実際に集積化ISFETバイオセンサー等に応用されて
いる。
As an improvement of the conventional method, an attempt has been made to apply a lift-off method often used in a process of a semiconductor or the like to immobilization, and is actually applied to an integrated ISFET biosensor or the like.

[本発明が解決しようとする問題点] 上記の従来法の欠点は、リフトオフ法を固定化に転用
することによって一部は解決したようではあるが、しか
し、この方法でもなお酵素や微生物の無駄があり、ま
た、この改良法はISFET感応部上への固定化には適して
いても、例えば、小型酸素電極の感応部のカス透過性膜
上への固定化には密着性の点等から応用困難という問題
がある。
[Problems to be solved by the present invention] The above-mentioned drawbacks of the conventional method seem to have been partially solved by using the lift-off method for immobilization, but this method still wastes enzymes and microorganisms. Although the improved method is suitable for immobilization on the ISFET sensitive part, for example, the immobilization of the sensitive part of the small oxygen electrode on the permeable film is not suitable from the viewpoint of adhesion. There is a problem of application difficulty.

本発明の目的は、これら固定化のための従来法および
改良法の欠点を解消することにあり、生体触媒を所定の
細微狭小領域のみに固定化することができ、しかも、生
体触媒の利用効率を向上させることを可能とする細微狭
小領域への生体触媒の固定化方法を提供することにあ
り、換言すれば、ISFET以外の基板にも応用可能である
生体触媒の固定化方法を提供することにある。
An object of the present invention is to eliminate the drawbacks of the conventional method and the improved method for immobilization, so that the biocatalyst can be immobilized only in a predetermined fine and narrow area, and the utilization efficiency of the biocatalyst can be improved. To provide a method for immobilizing a biocatalyst in a fine and narrow area that can improve the biocatalyst, in other words, to provide a method for immobilizing a biocatalyst that can be applied to substrates other than ISFET. It is in.

[問題点を解決するための手段] 上記の目的を達成するために本発明が採った手段は、
次の構成からなる。
[Means for Solving the Problems] Means taken by the present invention to achieve the above object are:
It has the following configuration.

第1a図〜第1f図は本発明の製造工程の原理図である。 1a to 1f are principle views of the manufacturing process of the present invention.

ガラス板等親水性基板1の表面に生体触媒を固定する
所定の領域に凹部3を形成し、裏面を撥水性膜7で被覆
した基板1(第1a図参照)の表面に、露光によって溶け
にくくなる高分子化合物の膜2を形成し(第1b図参
照)、生体触媒を固定する所定の領域以外のところに透
光領域を有するフォトマスク4を使用して前記高分子化
合物の膜2を露光した後(第1c図参照)、現像し、第1d
図に示すように、前記凹部3を除く部分が前記高分子化
合物の膜2で被覆された基板1を製造する。
A concave portion 3 is formed in a predetermined region for fixing a biocatalyst on the surface of a hydrophilic substrate 1 such as a glass plate, and the surface of the substrate 1 (see FIG. 1a) whose back surface is covered with a water-repellent film 7 is hardly melted by exposure. Is formed (see FIG. 1b), and the polymer compound film 2 is exposed using a photomask 4 having a light-transmitting region other than a predetermined region where the biocatalyst is fixed. (See Fig.1c)
As shown in the figure, a substrate 1 in which a portion excluding the concave portion 3 is covered with the polymer compound film 2 is manufactured.

この基板1を生体触媒および固定化担体を含む水溶液
5中に浸漬した後、引き上げ、前記生体触媒および固定
化担体を含む水溶液5を前記凹部3中のみに選択的に滞
留させ(第1e図参照)、これに固定化架橋剤などに応じ
た処理、例えば、水銀灯光等の紫外線照射や架橋剤の蒸
着などを行って前記生体触媒を前記凹部3中に固定化し
て、固定化された生体触媒6に転換する(第1f図参
照)。
After the substrate 1 is immersed in an aqueous solution 5 containing a biocatalyst and an immobilized carrier, the substrate 1 is pulled up, and the aqueous solution 5 containing the biocatalyst and the immobilized carrier is selectively retained only in the concave portion 3 (see FIG. 1e). The biocatalyst is immobilized in the concave portion 3 by performing a treatment corresponding to an immobilized cross-linking agent or the like, for example, irradiation with ultraviolet light such as mercury lamp light, or vapor deposition of a cross-linking agent. 6 (see FIG. 1f).

基板1の生体触媒を固定する凹部3は、予めフォトリ
ソグラフィー法等を用いてエッチング等により形成して
おく。すなわち、基板1に、露光によって可溶化または
溶けにくくなる高分子化合物を塗布して該高分子化合物
の膜を形成し、該高分子化合物の膜を露光マスクを利用
して露光・現像し、エッチングを行い、第1a図に示すよ
うな凹部3を形成しておいた基板1を用いる。
The concave portion 3 for fixing the biocatalyst of the substrate 1 is formed in advance by etching using a photolithography method or the like. That is, a polymer compound which is solubilized or hardly dissolved by exposure is applied to the substrate 1 to form a film of the polymer compound, and the polymer compound film is exposed and developed using an exposure mask, and etched. Then, the substrate 1 on which the concave portion 3 is formed as shown in FIG. 1a is used.

また、基板1は、予め裏面が撥水性膜7で被覆された
ものを使用するが、この被膜は、例えば、ネガ型フォト
レジストを裏面全面に塗布し、プリベークを施して形成
する。
As the substrate 1, a substrate whose back surface is previously coated with the water-repellent film 7 is used. This film is formed, for example, by applying a negative photoresist on the entire back surface and performing pre-baking.

使用可能な基板としては、少なくとも凹部形成領域が
水と馴じみやすいものが好ましく、例えばガラス、アク
リル等が好適であるが、選択の範囲はかなり広い。
As a substrate that can be used, a substrate in which at least the concave portion forming region is easily compatible with water is preferable. For example, glass, acrylic, or the like is preferable, but the range of selection is considerably wide.

凹部を除く部分を被覆する膜を形成する高分子化合物
は、例えば、ネガ型フォトレジスト等の溌水性化合物を
用いれば、生体触媒や固定化担体を含む水溶液は、その
濃度が高い場合を除き、完全に被覆高分子化合物の膜面
から撥かれる。したがって、凹部以外のところに被覆高
分子化合物を被覆して形成したこのような基板を生体触
媒および固定化担体を含む水溶液中に浸漬し、ゆっくり
引き上げると、水溶液は凹部内のみに残って他の部分に
は残らない。
The polymer compound that forms the film covering the portion excluding the concave portion is, for example, if a water-repellent compound such as a negative photoresist is used, an aqueous solution containing a biocatalyst or an immobilized carrier is used except when the concentration is high, It is completely repelled from the film surface of the coating polymer compound. Therefore, when such a substrate formed by coating the coating polymer compound in a portion other than the concave portion is immersed in an aqueous solution containing a biocatalyst and an immobilization carrier and slowly pulled up, the aqueous solution remains only in the concave portion and remains in the concave portion. Does not remain in the part.

このようにして製造した固定化生体触媒を有する基板
は、ISFET、小型酸素電極、二酸化炭素電極等の感応部
に近接させて利用することによって、バイオセンサーと
して使用しうる。
The substrate having the immobilized biocatalyst manufactured in this manner can be used as a biosensor by using it in close proximity to a sensitive part such as an ISFET, a small oxygen electrode, or a carbon dioxide electrode.

なお、当然のことながら、上記使用の基板、架橋剤お
よび被覆高分子化合物はいずれも固定化する生体触媒を
失活させないものを用いる必要がある。
As a matter of course, it is necessary to use a substrate, a cross-linking agent, and a coating polymer compound that do not deactivate the biocatalyst to be immobilized.

[作用] 本発明は、基板に生体触媒を所定の細微狭小領域に固
定化する方法において、少なくとも生体触媒を固定化す
る所定の領域が親水性である基板に凹部を形成し、さら
に、該凹部を除く部分に溌水性の高分子化合物を被覆し
て生体触媒および固定化担体を含む水溶液に浸漬する。
従って、該水溶液は基板の凹部内のみに滞留するため
に、無駄なくそこで固定化が行われる。
[Function] The present invention provides a method of immobilizing a biocatalyst on a substrate in a predetermined fine and narrow area, wherein at least the predetermined area for immobilizing the biocatalyst is formed in a substrate having a hydrophilic portion, and further comprising the concave portion. Is coated with a water-repellent polymer compound and immersed in an aqueous solution containing a biocatalyst and an immobilized carrier.
Therefore, since the aqueous solution stays only in the concave portion of the substrate, the aqueous solution is fixed without waste.

[実施例] 以下、図面を参照しながら、本発明の一実施例に係る
生体触媒の固定化方法を、生体触媒としてグルコースオ
キシダーゼを用いた場合について説明する。
Example Hereinafter, a method for immobilizing a biocatalyst according to an example of the present invention will be described with reference to the drawings, in the case where glucose oxidase is used as the biocatalyst.

実施例 下記のようにして基板に生体触媒を固定化する。Example A biocatalyst is immobilized on a substrate as follows.

(1)ガラス基板1の片面に高分子化合物として例えば
ネガ型フォトレジスト(東京応化製OMR−83)を塗布し
た後、生体触媒を固定化する領域以外の領域を露光し、
露光されたネガ型フォトレジストを現像し、プリベーク
して、生体触媒を固定化する領域に開口を有するレジス
トマスク(図示せず)を形成する。レジストマスク(図
示せず)の開口のサイズは約0.5mm×1mmとする。このと
き、裏面にも同じフォトレジストを塗布して、ポストベ
ークを行う。
(1) After applying, for example, a negative photoresist (OMR-83 manufactured by Tokyo Ohka) as a polymer compound to one surface of the glass substrate 1, an area other than the area where the biocatalyst is immobilized is exposed,
The exposed negative photoresist is developed and pre-baked to form a resist mask (not shown) having an opening in a region where the biocatalyst is immobilized. The size of the opening of the resist mask (not shown) is about 0.5 mm × 1 mm. At this time, the same photoresist is applied to the back surface, and post-baking is performed.

(2)50%フッ化水素酸水溶液と50%フッ化アンモニウ
ム水溶液を1:6(v/v)の比に含む溶液中に、上記のよう
に処理した基板1を浸漬し、ガラス基板1をエッチング
する。深さは約0.3−0.5mmとする。このようにして、第
1a図に示す凹部3を形成する。
(2) The substrate 1 treated as described above is immersed in a solution containing a 50% aqueous hydrofluoric acid solution and a 50% ammonium fluoride aqueous solution in a ratio of 1: 6 (v / v), and the glass substrate 1 Etch. The depth shall be about 0.3-0.5mm. In this way,
The recess 3 shown in FIG. 1a is formed.

(3)上記(1)と同様に、基板1にネガ型フォトレジ
スト2を塗布し(第1b図参照)、凹部3以外のところに
透光領域を有するフォトマスク4を用いて露光、現像し
(第1c図参照)、凹部3の周囲のみに、ネガ型フォトレ
ジストの高分子化合物の膜2を残留する(第1d図参
照)。
(3) In the same manner as in (1) above, a negative photoresist 2 is applied to the substrate 1 (see FIG. 1b), and exposed and developed using a photomask 4 having a light-transmitting region other than the concave portion 3. (See FIG. 1c), the polymer film 2 of the negative photoresist remains only around the recess 3 (see FIG. 1d).

(4)次のようにして調製したA、BおよびCの溶液を
1:2:4(v/v)の割合で混合し、この混合液700μlに対
して約10mgのグルコースオキシダーゼを加える。
(4) A, B and C solutions prepared as follows
Mix at a ratio of 1: 2: 4 (v / v), and add about 10 mg of glucose oxidase to 700 μl of this mixture.

なお、A液は、アクリルアミド30gとN,N′−メチレン
ビスアクリルアミド0.8gとを100mlの純水に溶かした水
溶液であり、B液は、リボフラビン4mgを100mlの純水に
溶かした水溶液であり、C液は、N,N,N′,N′−テトラ
メチレンジアミン0.23mlを100mlの純水に溶かした水溶
液である。
Solution A is an aqueous solution obtained by dissolving 30 g of acrylamide and 0.8 g of N, N'-methylenebisacrylamide in 100 ml of pure water. Liquid B is an aqueous solution obtained by dissolving 4 mg of riboflavin in 100 ml of pure water. Solution C is an aqueous solution obtained by dissolving 0.23 ml of N, N, N ', N'-tetramethylenediamine in 100 ml of pure water.

(5)(3)のようにして製造した、生体触媒が固定化
される領域には凹部3が形成され、この凹部3を囲んで
ネガ型フォトレジスト等の膜2が形成されているガラス
基板1を(4)に示した工程をもって調製した生体触媒
および固定化担体を含む水溶液5中に浸漬し、ゆっくり
これを引き上げ、ガラス基板1の凹部3中のみに該生体
触媒および固定化担体を含む水溶液5を滞留させる(第
1e図参照)。
(5) A glass substrate manufactured as described in (3), in which a concave portion 3 is formed in a region where the biocatalyst is fixed, and a film 2 such as a negative photoresist is formed around the concave portion 3. 1 is immersed in an aqueous solution 5 containing the biocatalyst and the immobilized carrier prepared in the step shown in (4), and slowly pulled up, and the biocatalyst and the immobilized carrier are contained only in the concave portion 3 of the glass substrate 1. Retain the aqueous solution 5 (No.
1e).

(6)凹部3に滞留した生体触媒および固定化担体を含
む水溶液5に紫外線照射等を施して、酵素を固定化して
固定化された生体触媒6に転換する(第1f図参照)。
(6) The aqueous solution 5 containing the biocatalyst and the immobilized carrier retained in the concave portion 3 is irradiated with ultraviolet light or the like to immobilize the enzyme and convert it into the immobilized biocatalyst 6 (see FIG. 1f).

この酵素が表面に固定化された基板をpH−ISFETまた
は小型酸素電極の感応部に近接させて配置してバイオセ
ンサーを完成する。
A substrate having the enzyme immobilized on the surface is disposed close to the sensitive part of a pH-ISFET or a small oxygen electrode to complete a biosensor.

[本発明の効果] 以上説明せるとおり、本発明の生体触媒の固定化法を
用いると、周囲は溌水性の膜で被覆されており、内部が
親水性である凹部が所定の細微狭小の領域に形成される
ので、この基板を生体触媒および固定化担体を含む水溶
液に浸漬すると、該凹部のみに該生体触媒および担体を
含む水溶液が滞留し、所定の狭小の領域のみへの生体触
媒の固定化が可能になる。したがって、バイオセンサー
の高集積化が可能になり、さらに、生体触媒の無駄が少
なくなり、経済的負担を軽減する利益を有する。
[Effects of the present invention] As described above, when the method for immobilizing a biocatalyst of the present invention is used, the periphery is covered with a water-repellent film, and the concave portion having a hydrophilic inside is formed in a predetermined fine and narrow area. When the substrate is immersed in an aqueous solution containing a biocatalyst and an immobilizing carrier, the aqueous solution containing the biocatalyst and the carrier stays only in the concave portion, and the biocatalyst is fixed only in a predetermined narrow area. Becomes possible. Therefore, the biosensor can be highly integrated, and further, there is an advantage that the waste of the biocatalyst is reduced and the economic burden is reduced.

また、所望によっては、生体触媒の固定化箇所をトラ
ンスデューサー等の感応部とは別の領域にも設定するこ
とができるので、種々のバイオセンサーの製造に利用す
ることができる。
In addition, if desired, the biocatalyst-immobilized portion can be set in a region other than the sensitive portion such as a transducer, so that it can be used for manufacturing various biosensors.

【図面の簡単な説明】[Brief description of the drawings]

第1a図〜第1f図は、本発明の製造工程の原理の説明図で
ある。 図中 1:ガラス基板(親水性基板)、2:高分子化合物の膜(ネ
ガ型フォトレジストの膜)、3:凹部、4:フォトマスク、
5:生体触媒および固定化担体を含む水溶液、6:固定化さ
れた生体触媒、7:撥水性膜。
1a to 1f are explanatory views of the principle of the manufacturing process of the present invention. In the figure, 1: glass substrate (hydrophilic substrate), 2: polymer compound film (negative photoresist film), 3: concave, 4: photomask,
5: an aqueous solution containing a biocatalyst and an immobilized carrier, 6: an immobilized biocatalyst, 7: a water-repellent membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小嶋 尚美 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭62−32351(JP,A) 特開 昭62−144060(JP,A) 特開 昭62−54155(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Naomi Kojima 1015 Ueodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited (56) References JP-A-62-32351 (JP, A) JP-A-62-144060 (JP, A) JP-A-62-54155 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】裏面を撥水性膜(7)で被覆した親水性基
板(1)の表面の生体触媒を固定する所定の領域に凹部
(3)を形成し、 該基板(1)の表面に露光によって溶けにくくなる高分
子化合物の膜(2)を形成し、 生体触媒を固定する所定の領域以外の領域に透光領域を
有するフォトマスク(4)を使用して前記高分子化合物
の膜(2)を露光した後、現像し、 前記現像した基板(1)を生体触媒および固定化担体を
含む水溶液(5)中に浸漬した後、引き上げ、 前記生体触媒および固定化担体を含む水溶液(5)を前
記凹部(3)中のみに選択的に滞留させ、 前記生体触媒を前記凹部(3)中に固定化する ことを特徴とする細微狭小領域への生体触媒の固定化方
法。
1. A concave portion (3) is formed in a predetermined area for fixing a biocatalyst on a surface of a hydrophilic substrate (1) having a back surface covered with a water-repellent film (7), and a concave portion is formed on the surface of the substrate (1). A film (2) of a polymer compound that is hardly dissolved by exposure is formed, and the film of the polymer compound is formed using a photomask (4) having a light-transmitting region in a region other than a predetermined region for fixing a biocatalyst. After exposing 2), the developed substrate (1) is immersed in an aqueous solution (5) containing a biocatalyst and an immobilized carrier, and then lifted up. ) Is selectively retained only in the concave portion (3), and the biocatalyst is immobilized in the concave portion (3).
【請求項2】前記露光によって溶けにくくなる高分子化
合物がネガ型フォトレジストであることを特徴とする特
許請求の範囲第1項記載の細微狭小領域への生体触媒の
固定化方法。
2. The method for immobilizing a biocatalyst on a fine and narrow area according to claim 1, wherein the polymer compound which is hardly dissolved by the exposure is a negative photoresist.
【請求項3】前記固定化担体がポリアクリルアミトゲル
であることを特徴とする特許請求の範囲第1項または第
2項記載の細微狭小領域への生体触媒の固定化方法。
3. The method for immobilizing a biocatalyst on a fine and narrow area according to claim 1, wherein the immobilization carrier is a polyacrylamide gel.
JP62304922A 1987-12-02 1987-12-02 Immobilization method of biocatalyst in small and narrow areas Expired - Lifetime JP2617745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304922A JP2617745B2 (en) 1987-12-02 1987-12-02 Immobilization method of biocatalyst in small and narrow areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304922A JP2617745B2 (en) 1987-12-02 1987-12-02 Immobilization method of biocatalyst in small and narrow areas

Publications (2)

Publication Number Publication Date
JPH01144975A JPH01144975A (en) 1989-06-07
JP2617745B2 true JP2617745B2 (en) 1997-06-04

Family

ID=17938925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304922A Expired - Lifetime JP2617745B2 (en) 1987-12-02 1987-12-02 Immobilization method of biocatalyst in small and narrow areas

Country Status (1)

Country Link
JP (1) JP2617745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919073B1 (en) 2007-07-19 2010-10-15 Commissariat Energie Atomique OPTICAL DEVICE WITH MEANS FOR ACTUATING A COMPACT DEFORMABLE MEMBRANE
DE102013210138A1 (en) * 2013-05-30 2014-12-04 Boehringer Ingelheim Vetmedica Gmbh Method for generating a plurality of measuring ranges on a chip and chip with measuring ranges

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232351A (en) * 1985-08-06 1987-02-12 Nok Corp Enzyme sensor
JPS6254155A (en) * 1985-09-02 1987-03-09 Nec Corp Formation of enzyme immobilized film for semiconductor biosensor
JPS62144060A (en) * 1985-12-18 1987-06-27 Seitai Kinou Riyou Kagakuhin Shinseizou Gijutsu Kenkyu Kumiai Formation of immobilized enzyme membrane for semiconductor bio sensor

Also Published As

Publication number Publication date
JPH01144975A (en) 1989-06-07

Similar Documents

Publication Publication Date Title
US4894339A (en) Immobilized enzyme membrane for a semiconductor sensor
Nakamoto et al. A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors
JP3826189B2 (en) Micro-assembled sensor with aperture
US5445920A (en) Fabrication process of biosensor
US5602029A (en) Method for fabricating substrate for cell culture and method for cell arrangements
Suzuki et al. Fabrication of an oxygen electrode using semiconductor technology
US5543024A (en) Glucose sensitive FET sensor and method of making same
JPH04503249A (en) Completely microfabricated biosensor, its manufacturing method and its use
JP2617745B2 (en) Immobilization method of biocatalyst in small and narrow areas
JP2770783B2 (en) Method for manufacturing biosensor element
JPH0548418B2 (en)
JPH0365866B2 (en)
JPH0584458B2 (en)
JP2530341B2 (en) Glucose sensitive FET sensor and method of manufacturing the same
Jimenez et al. Glucose sensor based on an amperometric microelectrode with a photopolymerizable enzyme membrane
JPH0418624B2 (en)
JP2567387B2 (en) Glucose sensitive FET sensor
JPS63186139A (en) Method for selective inactivation of enzyme immobilized film
JPS6275346A (en) Enzyme sensor
JPS6232351A (en) Enzyme sensor
JPS61234349A (en) Manufacture of semiconductor multi-biosensor
JPS63241346A (en) Manufacture of planar type biosensor
JPH0349388B2 (en)
JPS62172255A (en) Semiconductive enzyme sensor
JP2661240B2 (en) Small L-lysine sensor and method of manufacturing the same