JPS6186620A - Infrared-ray detector - Google Patents

Infrared-ray detector

Info

Publication number
JPS6186620A
JPS6186620A JP59209429A JP20942984A JPS6186620A JP S6186620 A JPS6186620 A JP S6186620A JP 59209429 A JP59209429 A JP 59209429A JP 20942984 A JP20942984 A JP 20942984A JP S6186620 A JPS6186620 A JP S6186620A
Authority
JP
Japan
Prior art keywords
infrared
detecting element
cold aperture
light receiving
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209429A
Other languages
Japanese (ja)
Inventor
Kozo Taniguchi
谷口 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59209429A priority Critical patent/JPS6186620A/en
Publication of JPS6186620A publication Critical patent/JPS6186620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof

Abstract

PURPOSE:To obtain an infrared-ray detector having high resolution, by using a cold aperture, in which an opening part is provided in a region facing the light receiving part of each infrared-ray detecting element, and making the angle of visual field of the detecting element narrow. CONSTITUTION:Square opening parts 22A, 22B... are formed in a thin copper plate at a specified pitch by etching. The copper plate is fixed to an insulating substrate 2 by a bonding resin through a spacer 23, which is molded in a thin plate and comprises an epoxy resin. Thus a cold aperture 21 is formed. The areas of the opening parts 22A, 22B... are made approximately equal to the areas of the light receiving surfaces of infrared-ray detecting element 24A, 24B... formed on the substrate 2. The opening parts 22A, 22B... are aligned with the elements 24A, 24B... by using microscope and the like. In this constitution, the cold aperture is said to be provided for every detecting element. Since the angle of visual field of the light receiving element of the detecting element is made narrow, the infrared-ray detector having high resolution is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外線検知器に係り、特に赤外線検知器に入射
する赤外線の視野角を規制するコールドアパーチュアに
於いて、該アパーチュアの熱容量を小さくし、かつ背景
輻射光のような迷光の入射を規制したコールドアパーチ
ュアの改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an infrared detector, and in particular, to a cold aperture that regulates the viewing angle of infrared rays incident on the infrared detector, the heat capacity of the aperture is reduced. , and relates to an improvement of a cold aperture that restricts the incidence of stray light such as background radiation.

例えば、水銀(■g)・カドミウム(Cd)・テルル(
Te)よりなる化合物半導体のようなエネルギーギアツ
ブの狭い材料を用いて赤外線検知器を形成する際、赤外
線検知素子に入射する赤外線の視野角を出来るだけ狭く
して、検知対象物から放射される赤外線以外の余分な背
景輻射光を排除するため、通常検知素子の周囲に、例え
ば銅(Cu)等の金属部材で形成されたコールドアパー
チュアが設置されている。このようなコールドアバーチ
エアは出来  。
For example, mercury (■g), cadmium (Cd), tellurium (
When forming an infrared detector using a material with a narrow energy gear, such as a compound semiconductor consisting of In order to eliminate unnecessary background radiation other than infrared radiation, a cold aperture made of a metal member such as copper (Cu) is usually installed around the detection element. This kind of cold aperture air is possible.

るだけ、熱容量が小さく、かつ出来るだけ視野角を絞っ
た状態で設置されることが望ましい。
Therefore, it is desirable that the heat capacity is small and that the viewing angle is narrowed down as much as possible.

〔従来の技術〕[Conventional technology]

第4図に示すように、このような従来のコールドアパー
チュアは、銅等の金属薄板で形成され、上部が開放の箱
型形状構造の底部を長方形状に別り抜いた金属部材lを
、セラミック等の絶縁性基板2の上に設置した赤外線検
知素子3A、3B・・・・・の周囲に、接着材等を用い
て固着することで形成し、このコールドアパーチュア1
の水平方向に張り出した、屋根の庇のような構造で、こ
れら赤外線検知素子3A、3B・・・・・の視野角θを
規制している。
As shown in Figure 4, such a conventional cold aperture is made of a metal thin plate made of copper or the like, and has a box-shaped structure with an open top, with a rectangular bottom cut out. The cold aperture 1 is formed around the infrared detecting elements 3A, 3B, etc. installed on an insulating substrate 2 such as
The horizontally projecting eaves-like structure of the roof regulates the viewing angle θ of these infrared detecting elements 3A, 3B, . . . .

更に第5図に示すように赤外線検知素子11が1個のみ
、セラミック等の絶縁性基板12の上に設置されている
時には、上部開放の円筒形の底部を9Jり抜いた金属部
材より成るコールドアパーチュア13を赤外線検知素子
11の周囲に設けている。
Furthermore, as shown in FIG. 5, when only one infrared sensing element 11 is installed on an insulating substrate 12 made of ceramic or the like, a cold metal member made of a metal member with a cylindrical bottom with an open top cut out by 9J is used. An aperture 13 is provided around the infrared sensing element 11.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このような赤外線検知素子3A、3B・・・
・・、11を設置している絶縁性基板2.12は、銅等
の冷却基体を介して液体窒素等を用いて冷却されており
1.二のコールドアパーチュアも出来るだけ容量を小さ
くしてそれ自体の熱容量を小さくすることが望まれてい
る。
By the way, such infrared sensing elements 3A, 3B...
The insulating substrate 2.12 on which the . It is desired that the capacity of the second cold aperture be made as small as possible to reduce its own heat capacity.

更にこのような従来のコールドアパーチュアの構造では
、特に赤外線検知素子3A、3B・・・・・を多数基板
の上に設けた多素子型赤外線検知器の場合、各赤外線検
知素子毎にコールドアパーチュアが設置されていない構
造となっているため、これら赤外線検知素子3A、3B
・・・・・の内、基板2の中央部に設置されている赤外
線検知素子3C,30の視野角は太き(なり、この部分
に位置されている赤外線検知素子3C,3Dの受光面よ
り、検知すべき赤外線以外の背景輻射光等の迷光が入射
し、高感度の赤外線検知器が得られないといった問題点
がある。
Furthermore, with such a conventional cold aperture structure, especially in the case of a multi-element infrared detector in which a large number of infrared detecting elements 3A, 3B, etc. are provided on a board, a cold aperture is required for each infrared detecting element. Since the structure is such that these infrared detection elements 3A and 3B are not installed.
..., the viewing angle of the infrared sensing elements 3C and 30 installed in the center of the board 2 is wide (so that it is wider than the light receiving surface of the infrared sensing elements 3C and 3D located in this part). However, there is a problem in that stray light such as background radiation other than the infrared light to be detected is incident, making it impossible to obtain a highly sensitive infrared detector.

更に従来のコールドアパーチュアは、機械加工に頼って
おり、このような加工法では微細な寸法のコールドアパ
ーチュアを熱容量が小さくなるように、容量を小さくし
た状態で精度良く加工形成することが困難である。
Furthermore, conventional cold apertures rely on machining, and with such processing methods, it is difficult to form cold apertures with minute dimensions with high precision while reducing heat capacity. .

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、絶縁性基体上に設置した赤外線検知素子
より所定の間隔を隔てて、板状部材を配設し、該板状部
材の前記赤外線素子の受光面に対向する領域は赤外線が
透過する手段を施し、前記板状部材を検知素子に入射す
る赤外線の入射角を規制するコールドアパーチュアとし
た本発明の赤外線検知器により解決される。
The above problem is solved by disposing a plate-like member at a predetermined distance from an infrared sensing element installed on an insulating substrate, and infrared rays are transmitted through the area of the plate-like member facing the light-receiving surface of the infrared element. The problem is solved by the infrared detector of the present invention, in which the plate member is a cold aperture that regulates the angle of incidence of infrared rays incident on the detection element.

〔作用〕[Effect]

即ち、本発明の赤外線検知器は、赤外線検知素子を設置
している絶縁性基板の上に所定の間隔を隔てて、薄板状
の部材を設置し、この薄板状部材で赤外線検知素子の受
光面に対応する部分は、赤外線が透過するような手段を
講じ、各赤外線検知素子毎にコールドアパーチュアを有
するようにして、各赤外線検知素子のコールドアパーチ
ュアの視野角を狭く絞って高解像度の赤外線検知器を得
るようにしたものである。
That is, in the infrared detector of the present invention, a thin plate-like member is installed at a predetermined interval on an insulating substrate on which an infrared detecting element is installed, and this thin plate-like member covers the light receiving surface of the infrared detecting element. In the corresponding part, measures are taken to allow infrared rays to pass through, and each infrared sensing element has a cold aperture, and the viewing angle of the cold aperture of each infrared sensing element is narrowed down to create a high-resolution infrared detector. It was designed to obtain the following.

〔実施例〕〔Example〕

以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の赤外線検知器の第1の実施例の要部を
示す平面図で、第2図は第1図をn−n ’線に沿って
切断した断面図である。
FIG. 1 is a plan view showing the essential parts of a first embodiment of the infrared detector of the present invention, and FIG. 2 is a cross-sectional view of FIG. 1 taken along line nn'.

第1図、第2図に示すように本発明の赤外線検知器に用
いるコールドアパーチュア21は、薄板状の銅板に所定
のピッチの方形の開口部22A、22B・・・・・をホ
トリソグラフィ法を用いたエツチングにより開口形成し
、それを薄板状に成形加工したエポキシ樹脂等よりなる
スペーサ23を介して、絶縁性基板2に接着樹脂により
固着する。この開口部22八。
As shown in FIGS. 1 and 2, the cold aperture 21 used in the infrared detector of the present invention is made by forming rectangular openings 22A, 22B, etc. at a predetermined pitch in a thin copper plate by photolithography. An opening is formed by etching, which is then fixed to the insulating substrate 2 with an adhesive resin via a spacer 23 made of epoxy resin or the like formed into a thin plate. This opening 228.

22B、・・・・・・の面積は絶縁性基板2上に形成し
た赤外線検知素子24A、24B・・・・・・の受光面
と略同−面積となるようにする。
The area of 22B, . . . is made to be approximately the same as the light receiving surface of the infrared detecting elements 24A, 24B, .

更に上記開口部22A 、 22B・・・・・は各赤外
線検知素子24A、24B・・・・・に対応するように
、顕微鏡等を用いて位置合わせを行う。このようにすれ
ば、各赤外線検知素子24A、24B・・・・・に対応
して検知素子24A。
Further, the openings 22A, 22B, . . . are aligned using a microscope or the like so that they correspond to the respective infrared sensing elements 24A, 24B, . In this way, the detection element 24A corresponds to each infrared detection element 24A, 24B, .

24B・・・・・・の受光面と略同面積の開孔部を有す
るコールドアパーチュアが設けられたことになり、各赤
外線検知素子24A、24Bの受光面に対する視野角が
狭くなり、高解像度の赤外線検知器が得られる。
Since a cold aperture having an opening having approximately the same area as the light-receiving surface of 24B... is provided, the viewing angle with respect to the light-receiving surface of each infrared sensing element 24A, 24B is narrowed, making it possible to achieve high resolution. An infrared detector is obtained.

またこのようなコールドアパーチュアは上記した第1の
実施例の他に、第2の実施例として、第3図に示すよう
に赤外線を透過させるサファイア基板31の上に、所定
のピッチの方形の赤外線を透過しない金属アルミニウム
膜32をマスク蒸着法により形成し、この金属膜32を
蒸着しない部分が、赤外線検知素子24^、24B・・
・・・に対応するように、スペーサ23を介して接着材
を用いて基Fi2に固着するようにしても良い。
In addition to the first embodiment described above, such a cold aperture has a second embodiment in which, as shown in FIG. A metal aluminum film 32 that does not transmit the light is formed by a mask vapor deposition method, and the parts where the metal film 32 is not vapor-deposited are the infrared sensing elements 24^, 24B...
. . , it may be fixed to the base Fi2 using an adhesive via the spacer 23.

また上記薄板31の材料としては、サファイアの他に赤
外線検知器が検知すべき赤外線の波長に対応して、3〜
5μmの波長ならば、ゲルマニウムの薄板を用い、10
μmまでの波長帯ならば硫化亜鉛(ZnS)の薄板を用
いるようにしても良い。
In addition to sapphire, the material for the thin plate 31 is 3 to 3, depending on the wavelength of infrared rays to be detected by the infrared detector.
If the wavelength is 5 μm, use a germanium thin plate and
If the wavelength range is up to μm, a thin plate of zinc sulfide (ZnS) may be used.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように本発明の赤外線検知器によれば、各
検知素子毎にコールドアパーチュアが設置されたことに
なり、検知素子の受光面の視野角が狭く絞られるので、
高解像度の赤外線検知器が得られる効果がある。
As described above, according to the infrared detector of the present invention, a cold aperture is installed for each detection element, and the viewing angle of the light receiving surface of the detection element is narrowed.
This has the effect of providing a high-resolution infrared detector.

また本発明によれば、コールドアパーチュアを機械加工
法によって形成していないため、コールドアパーチュア
の容量を小さく微細に形成することができるので、コー
ルドアパーチュアの熱容量が小さくなり、赤外線検知素
子に対する冷却効果も向上する利点があり、また形成さ
れる検知器も小型軽量となる利点がある。
Further, according to the present invention, since the cold aperture is not formed by a machining method, the capacity of the cold aperture can be formed small and finely, so the heat capacity of the cold aperture is reduced, and the cooling effect on the infrared sensing element is also reduced. There is an advantage that the sensor is improved, and the formed detector is also advantageous in that it is small and lightweight.

また本実施例では、多素子型赤外線検知器に例を用いて
述べたが、検知素子が1個の単素子型赤外線検知器に於
いても本発明は適用可能である。
Furthermore, although this embodiment has been described using a multi-element type infrared detector as an example, the present invention is also applicable to a single-element type infrared detector having one detection element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の赤外線検知器の第1の実施例を示す要
部平面図、 第2図は第1図をn−n′線に沿って切断した断面図、 第3図は本発明の赤外線検知器の第2の実施例を示す断
面図、 第4図は従来の多素子型赤外線検知器の要部を示す断面
図、 第5図は従来の単素子型赤外線検知器の要部を示す断面
図である。 図に於いて、2は絶縁性基板、2L31はコールドアパ
ーチュア、22^、 22B、 22C・・・・・は開
口部、23はスペーサ、24^、24B・・・・・は赤
外線検知素子、32はアルミニウム膜を示す。
Fig. 1 is a plan view of essential parts showing a first embodiment of an infrared detector of the present invention, Fig. 2 is a cross-sectional view of Fig. 1 taken along the line nn', and Fig. 3 is a plan view of the present invention. FIG. 4 is a sectional view showing the main parts of a conventional multi-element infrared detector; FIG. 5 is a main part of a conventional single-element infrared detector. FIG. In the figure, 2 is an insulating substrate, 2L31 is a cold aperture, 22^, 22B, 22C... are openings, 23 is a spacer, 24^, 24B... are infrared detection elements, 32 indicates an aluminum film.

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基体上に設置した赤外線検知素子より所定の間
隔を隔てて、板状部材を配設し、該板状部材の前記赤外
線検知素子の受光面に対向する領域に赤外線が透過する
手段を施し、前記板状部材を、前記検知素子に入射する
赤外線の入射角を規制するコールドアパーチュアとした
ことを特徴とする赤外線検知器。
A plate-like member is arranged at a predetermined distance from an infrared detecting element installed on an insulating substrate, and a means is provided for transmitting infrared rays to a region of the plate-like member facing a light-receiving surface of the infrared detecting element. . An infrared detector, characterized in that the plate member is a cold aperture that regulates the angle of incidence of infrared rays incident on the detection element.
JP59209429A 1984-10-04 1984-10-04 Infrared-ray detector Pending JPS6186620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209429A JPS6186620A (en) 1984-10-04 1984-10-04 Infrared-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209429A JPS6186620A (en) 1984-10-04 1984-10-04 Infrared-ray detector

Publications (1)

Publication Number Publication Date
JPS6186620A true JPS6186620A (en) 1986-05-02

Family

ID=16572717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209429A Pending JPS6186620A (en) 1984-10-04 1984-10-04 Infrared-ray detector

Country Status (1)

Country Link
JP (1) JPS6186620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006711A (en) * 1988-10-05 1991-04-09 Fujitsu Limited Multielement infrared detector for thermal imaging

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142526A (en) * 1981-02-27 1982-09-03 Fujitsu Ltd Infrared detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142526A (en) * 1981-02-27 1982-09-03 Fujitsu Ltd Infrared detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006711A (en) * 1988-10-05 1991-04-09 Fujitsu Limited Multielement infrared detector for thermal imaging

Similar Documents

Publication Publication Date Title
US4675525A (en) Matrix device for the detection of light radiation with individual cold screens integrated into a substrate and its production process
US6828560B2 (en) Integrated light concentrator
US4446372A (en) Detector cold shield
US5567941A (en) Pyroelectric type infrared sensor
US8575712B2 (en) Manufacturing of a camera module
EP3380820A1 (en) Thermal infrared sensor array in wafer-level package
US4575631A (en) Infra-red detector
DE112009002170T5 (en) Planar thermopile infrared sensor
US20140285671A1 (en) Infrared imaging device and infrared imaging module
JPS6351495B2 (en)
JP2004257885A (en) Multi-element type infrared detector
JPH11258038A (en) Infrared ray sensor
JPS6186620A (en) Infrared-ray detector
GB2132757A (en) Infra-red detector assembly
JPH0458567B2 (en)
JPS61723A (en) Infrared ray detector
JPH0961536A (en) Semiconductor radiation detector and its manufacture
US4924297A (en) Semiconductor device package structure
JPS61205827A (en) Multielement type infrared detector and its preparation
US20240045123A1 (en) Lens and camera module
JPS6050426A (en) Infrared ray detector
JPH0525183B2 (en)
JPH0481128B2 (en)
JPH04315018A (en) Thin-film pyroelectric type infrared rays sensor
JP2019029752A (en) Wafer cap, far infrared ray sensor, far infrared ray detection device, and cap