JPH0525183B2 - - Google Patents

Info

Publication number
JPH0525183B2
JPH0525183B2 JP58225650A JP22565083A JPH0525183B2 JP H0525183 B2 JPH0525183 B2 JP H0525183B2 JP 58225650 A JP58225650 A JP 58225650A JP 22565083 A JP22565083 A JP 22565083A JP H0525183 B2 JPH0525183 B2 JP H0525183B2
Authority
JP
Japan
Prior art keywords
infrared
semiconductor substrate
detector
elements
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58225650A
Other languages
Japanese (ja)
Other versions
JPS60117662A (en
Inventor
Hiroshi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58225650A priority Critical patent/JPS60117662A/en
Publication of JPS60117662A publication Critical patent/JPS60117662A/en
Publication of JPH0525183B2 publication Critical patent/JPH0525183B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は赤外線検知器およびその製造方法、特
に赤外線検知器のコールドフイルタおよびコール
ドシールドとその形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an infrared detector and a method of manufacturing the same, and particularly to a cold filter and a cold shield of an infrared detector and a method of forming the same.

(2) 技術の背景 赤外線(波長2〜15μm程度)検知器における
コールドフイルタおよびコールドシールドは、背
景雑音を抑圧し、赤外線検知器の解像度(画素分
離)の向上にとつて重要な構成要素である。なお
コールドフイルタは主として検知器周辺の物体か
らの赤外線を遮断し、コールドシールドは目標か
らの赤外線のみをとらえて指向性を向上させるた
めのものである。
(2) Technical background Cold filters and cold shields in infrared (wavelength approximately 2 to 15 μm) detectors are important components for suppressing background noise and improving the resolution (pixel separation) of infrared detectors. . Note that the cold filter mainly blocks infrared rays from objects around the detector, and the cold shield captures only infrared rays from the target to improve directivity.

赤外線検知器は工業計測、物理測定、医学用、
人工衛星からのリモートセンシングによる資源分
布、気象観測などに用いられている赤外線技術の
中心となる装置である。そして例えば半導体装置
製造技術を利用して形成される量子形検知素子か
らなる検知器においては、微細化、多素子化が進
行し、半導体基板上に二次元に検知素子を配列し
た二次元アレイ構造が主流となつている。
Infrared detectors are used for industrial measurement, physical measurement, medical use,
It is a central device for infrared technology used for resource distribution and weather observation through remote sensing from artificial satellites. For example, in detectors made of quantum-type sensing elements formed using semiconductor device manufacturing technology, miniaturization and multi-element technology are progressing, and a two-dimensional array structure in which sensing elements are arranged two-dimensionally on a semiconductor substrate is progressing. has become the mainstream.

かかる二次元アレイ構造の検知器においては、
検知器周辺の機器および目標物以外の物体からの
背景輻射を除外するとともに各赤外線検知素子
(画素)間のクロストークを防止して低雑音、確
実な画素分離を達成することが重要であり、その
ためには各画素に対応したコールドシールドが設
けられる。
In such a two-dimensional array structure detector,
It is important to exclude background radiation from equipment around the detector and objects other than the target, and to prevent crosstalk between each infrared sensing element (pixel) to achieve low noise and reliable pixel separation. For this purpose, a cold shield corresponding to each pixel is provided.

初期の赤外線検知器においては、コールドフイ
ルタシリコン(Si)またはゲルマニウム(Ge)
薄板に硫化亜鉛(ZnS)や酸化シリコン(SiO)
等の無反射コートし、またはこれを多層として波
長選択性をもたせたものを赤外線検知器素子の入
射面に冷却して配した構成であり、他方、視野角
を決定するコールドシールドは無反射処理を施し
た所定の開口をもつ金属板などで別途構成してい
た。この構成では検知器構成が複雑化し、特に検
知素子の多素子化、二次元アレイ化には対応でき
ない欠点があつた。
In early infrared detectors, cold filter silicon (Si) or germanium (Ge)
Zinc sulfide (ZnS) and silicon oxide (SiO) on thin plates
The configuration consists of a non-reflective coating such as , or a multi-layered coating with wavelength selectivity, which is cooled and placed on the incident surface of the infrared detector element.On the other hand, the cold shield that determines the viewing angle is coated with non-reflective coating. It was made up of a separate metal plate with a predetermined opening. This configuration has the disadvantage that the detector configuration becomes complicated, and in particular cannot be adapted to multi-element detection elements or two-dimensional arrays.

(3) 従来技術と問題点 第1図は従来技術におけるコールドフイルタ、
コールドシールドを具備した赤外線検知器の要部
断面図で、同図において符号1は半導体基板、2
は半導体基板1に形成された赤外線検知素子(画
素)を示す。
(3) Conventional technology and problems Figure 1 shows the cold filter in the conventional technology.
This is a cross-sectional view of the main parts of an infrared detector equipped with a cold shield, in which reference numeral 1 indicates a semiconductor substrate, 2
indicates an infrared sensing element (pixel) formed on the semiconductor substrate 1.

他方、符号3は例えばシリコンの板からなるコ
ールドフイルタを示し、かかるコールドフイルタ
3内は画素2に対応して等間隔に形成された帯状
の溝に赤外線に対して透明でない物質を充填して
コールドシールド4が形成されている。そしてコ
ールドシールド4が形成されたコールドフイルタ
3は基板1の画素2が形成されている面に接着さ
れ(図では説明のため分離して示す)、かかる接
着はコールドシールド4が隣り合う画素2の中間
に位置するように位置合せをして行われていた。
なおコールドフイルタ3の材質は検出波長に応じ
て選択されていて、例えば波長3〜5μmに対して
はシリコン、また波長8〜12μmに対してはゲル
マニウムなどが用いられていた。
On the other hand, the reference numeral 3 indicates a cold filter made of a silicon plate, for example, and inside the cold filter 3, band-shaped grooves formed at equal intervals corresponding to the pixels 2 are filled with a substance that is not transparent to infrared rays. A shield 4 is formed. The cold filter 3 on which the cold shield 4 is formed is adhered to the surface of the substrate 1 on which the pixels 2 are formed (separated in the figure for explanation), and such adhesion is applied to the surface of the substrate 1 on which the pixels 2 are formed. It was done by aligning it so that it was located in the middle.
The material of the cold filter 3 is selected depending on the detection wavelength; for example, silicon is used for wavelengths of 3 to 5 μm, and germanium is used for wavelengths of 8 to 12 μm.

ところで従来は上述した構成とすることにより
背景輻射を除外し、目標からの赤外線を検出して
いたが、コールドフイルタ3の接着における位置
合せを精度良く行うことが困難であり、特に二次
元アレイ構成による多素子化においては位置ずれ
によりすべての画素において均一の感度特性を達
成できないこと、および検知器の構成が複雑化す
るなどの問題があつた。
By the way, in the past, background radiation was excluded and infrared rays from the target were detected by using the above-mentioned configuration, but it was difficult to accurately align the cold filter 3 when bonding it, especially when using a two-dimensional array configuration. When increasing the number of elements, there were problems such as the inability to achieve uniform sensitivity characteristics in all pixels due to positional deviation, and the complexity of the detector configuration.

(4) 発明の目的 本発明は上記従来の欠点に鑑み、検知素子の微
細化および二次元アレイなどによる多素子化に対
応でき、また構成が簡単である赤外線検知器のコ
ールドフイルタおよびコールドシールドを提供す
ることを目的とする。
(4) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides a cold filter and a cold shield for an infrared detector, which can cope with miniaturization of detection elements and multi-element by two-dimensional array, etc., and which have a simple configuration. The purpose is to provide.

(5) 発明の構成 そしてこの目的は本発明によれば半導体基板の
一方の面に複数の赤外線検知素子が形成され、該
基板の他方の面から入射する光を受光する赤外線
検知器において、該半導体基板の該一方の面側に
該赤外線検知素子間を垂直に二等分し、該赤外線
検知素子の周囲をかこんで形成された溝に赤外線
に対して不透明な材料が充填されてなり、該赤外
線検知素子間距離Sと溝の深さLにより決定され
る赤外線検知素子の視野角θが複数の赤外線検知
素子について同一であることを特徴とする赤外線
検知器、および半導体基板の一方の面に複数の赤
外線検知素子を形成し、他方の面から入射する光
を受光する赤外線検知器の製造において、前記他
方の入射光面側の半導体基板に、各赤外線検知素
子の中間部分を通り、該素子の周囲をかこむよう
に溝を形成し、該溝に赤外線に対して不透明な材
料を充填することを特徴とする赤外線検知器の製
造方法を提供することによつて達成される。
(5) Structure of the Invention According to the present invention, a plurality of infrared detection elements are formed on one side of a semiconductor substrate, and the infrared detector receives light incident from the other side of the substrate. The one surface side of the semiconductor substrate is vertically divided into two halves between the infrared sensing elements, and a groove formed around the infrared sensing elements is filled with a material that is opaque to infrared rays. An infrared detector characterized in that the viewing angle θ of the infrared detecting elements determined by the distance S between the infrared detecting elements and the depth L of the groove is the same for a plurality of infrared detecting elements, and one surface of a semiconductor substrate. In manufacturing an infrared detector that forms a plurality of infrared sensing elements and receives light incident from the other surface, a semiconductor substrate on the side of the other incident light surface is provided with an infrared ray that passes through an intermediate portion of each infrared sensing element, This is achieved by providing a method for manufacturing an infrared detector, characterized in that a groove is formed so as to surround the periphery of the infrared rays, and the groove is filled with a material that is opaque to infrared rays.

(6) 発明の実施例 以下本発明実施例を図面によつて詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の1つの実施例を説明するため
の赤外線検知器要部の断面図で、同図において符
号11は例えばカドミウム−テルル(CdTe)化
合物半導体基板(波長3〜5μmに対して透明)か
らなる検知素子基板、12は前記基板11の一方
の面に通常の技術で形成された赤外線検知素子、
13は赤外線検知素子12が形成されていない面
から基板11の内部へ向かつて掘られた溝に赤外
線に対し不透明な材料を充填してなるコールドシ
ールドで、この溝は前記した二次元アレイ構成を
提供するよう各赤外線検知素子12の周囲をかこ
むよう形成される。また符号14はZnSまたは
SiO膜などからなるAR(Anti Reflection)コー
ト(反射防止膜)もしくはこれを多層として赤外
波長選択性もたせた膜を示す。
FIG. 2 is a cross-sectional view of the main part of an infrared detector for explaining one embodiment of the present invention. 12 is an infrared sensing element formed on one surface of the substrate 11 by a conventional technique;
Reference numeral 13 denotes a cold shield formed by filling a material opaque to infrared rays into a groove dug toward the inside of the substrate 11 from the surface where the infrared sensing element 12 is not formed. It is formed so as to surround each infrared sensing element 12 so as to provide the same. Also, code 14 is ZnS or
Indicates an AR (Anti-Reflection) coat (anti-reflection film) made of SiO film, etc., or a multilayer film with infrared wavelength selectivity.

上記コールドシールド13の形成は、例えばイ
オンビームミリングなどの半導体製造における微
細立体加工技術を用いて容易に行うことができ、
形成位置は例えば検知素子12間Sを垂直に二等
分する直線上とし(この位置合せは通常の技術で
容易にできる)、また長さLは画素間のクロスト
ークの防止および検知素子12の間隔Sと関連し
て決る視野角θに応じて適宜定める。なお後者の
場合の長さLは検知素子12から溝形成方向への
距離であり、検知素子12の間隔Sを固定した場
合は結局検知素子基板11の厚さによつて決定さ
れる。またコールドシールド13間の基板はコー
ルドフイルタの役割を果たす。
The formation of the cold shield 13 can be easily performed using micro three-dimensional processing technology in semiconductor manufacturing such as ion beam milling, for example,
The formation position is, for example, on a straight line that vertically bisects the space S between the sensing elements 12 (this alignment can be easily done using ordinary techniques), and the length L is set to prevent crosstalk between pixels and to prevent the sensing elements 12 from forming. It is determined as appropriate depending on the viewing angle θ determined in relation to the distance S. Note that in the latter case, the length L is the distance from the sensing element 12 in the groove forming direction, and is ultimately determined by the thickness of the sensing element substrate 11 when the interval S between the sensing elements 12 is fixed. Further, the substrate between the cold shields 13 plays the role of a cold filter.

かかる構成とすることにより、検知素子基板に
コールドフイルタとコールドシールドとを一体構
成で形成でき、またすべての検知素子12が同じ
視野角θを見込むことになり一様な検知特性が得
られる。なお上記構成においては検知素子基板1
1の両面どちらの面に入射した赤外線をも検知す
ることができる。
With this configuration, the cold filter and the cold shield can be integrally formed on the sensing element substrate, and all the sensing elements 12 can see the same viewing angle θ, so that uniform sensing characteristics can be obtained. Note that in the above configuration, the sensing element substrate 1
It is possible to detect infrared rays incident on either side of 1.

第3図は本発明の他の実施例を説明するための
赤外線検知器要部の断面図で、本実施例は母材基
板にエピタキシヤル層を成長し、このエピタキシ
ヤル層に検知素子を形成する場合に応用できるも
のである。
FIG. 3 is a sectional view of the main part of an infrared detector for explaining another embodiment of the present invention. In this embodiment, an epitaxial layer is grown on a base material substrate, and a detection element is formed on this epitaxial layer. It can be applied when

同図を参照して更に詳しく説明すると、例えば
CdTe化合物半導体基板をコールドフイルタの役
割を果たす母材基板(検知素子基板)15とし、
その一方の面に例えば水銀・カドミウム・テルル
(HgCdTe)の三次化合物半導体結晶よりなるエ
ピタキシヤル層16を成長し、エピタキシヤル層
16に赤外線検知素子12を配列形成する。
To explain in more detail with reference to the same figure, for example,
A CdTe compound semiconductor substrate is used as a base material substrate (sensing element substrate) 15 that plays the role of a cold filter,
An epitaxial layer 16 made of a tertiary compound semiconductor crystal of mercury, cadmium, tellurium (HgCdTe), for example, is grown on one surface thereof, and infrared sensing elements 12 are arranged and formed on the epitaxial layer 16.

他方、母材基板15には上記実施例と同様の位
置関係に従つて溝を形成し、その溝に赤外線に不
透明な材料を充填してコールドシールド13を形
成し、また溝形成面にはARコート14を形成し
て赤外線検知器を構成する。なお本実施例におい
ても検知素子12とコールドシールド13との位
置関係は通常の技術(例えば両面マスクアライナ
ー)を用いて容易に達成でき、また視野角θは検
知素子の間隔および母材基板15の厚さ(コール
ドシールド13の長さ)によつて定まる。なお上
記HgCdTeエピタキシヤル層の形成方法は既に公
知の技術である。
On the other hand, grooves are formed in the base substrate 15 according to the same positional relationship as in the above embodiment, and the grooves are filled with a material that is opaque to infrared rays to form the cold shield 13. A coat 14 is formed to constitute an infrared detector. In this embodiment as well, the positional relationship between the sensing element 12 and the cold shield 13 can be easily achieved using a normal technique (for example, double-sided mask aligner), and the viewing angle θ is determined by the distance between the sensing elements and the base material substrate 15. It is determined by the thickness (length of the cold shield 13). Note that the method for forming the HgCdTe epitaxial layer described above is already a known technique.

上述した構成とすることにより、構造が簡単で
あり、また画素分離が確実にできて一様な検知特
性をもつた二次元アレイの赤外線検知器が得られ
る。
With the above configuration, it is possible to obtain a two-dimensional array infrared detector having a simple structure, reliable pixel separation, and uniform detection characteristics.

上述した本発明の実施例においては、基板材料
にCdTeまたはHgCdTe化合物半導体を用いた
が、本発明の適用範囲はこれに限るものではな
く、赤外線透過性のある他の基板を用いる場合に
も及ぶものである。またコールドシールドの形成
位置は上記実施例に示した位置に限るものではな
い。
In the embodiments of the present invention described above, CdTe or HgCdTe compound semiconductors were used as the substrate material, but the scope of the present invention is not limited to this, and also extends to cases where other infrared transparent substrates are used. It is something. Further, the position where the cold shield is formed is not limited to the position shown in the above embodiment.

(7) 発明の効果 以上詳細に説明した如く本発明によれば、赤外
線検知素子基板にコールドフイルタとコールドシ
ールドとを一体化構成とし、構造が簡単でまた画
素分離が確実に行なえる構造の赤外線検知器を提
供できるため、検知素子の微細化、多素子化にお
いても一様な検知特性をもつた赤外線検知器を得
ることができ、赤外線検知器の信頼性向上に効果
大である。
(7) Effects of the Invention As described in detail above, according to the present invention, a cold filter and a cold shield are integrated into an infrared detection element substrate, and the structure is simple and pixel separation can be performed reliably. Since the detector can be provided, it is possible to obtain an infrared detector with uniform detection characteristics even when the detection element is miniaturized and multi-element, which is highly effective in improving the reliability of the infrared detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線検知器要部の断面図、第
2図および第3図は本発明に係わる赤外線検知器
の要部の断面図である。 1,11は検知素子基板、2,12は赤外線検
知素子、3はコールドフイルタ、4,13はコー
ルドシールド、14はARコート、15は母材基
板、16はエピタキシヤル層である。
FIG. 1 is a sectional view of the main part of a conventional infrared detector, and FIGS. 2 and 3 are sectional views of the main part of an infrared detector according to the present invention. 1 and 11 are sensing element substrates, 2 and 12 are infrared sensing elements, 3 is a cold filter, 4 and 13 are cold shields, 14 is an AR coat, 15 is a base material substrate, and 16 is an epitaxial layer.

Claims (1)

【特許請求の範囲】 1 半導体基板11の一方の面に複数の赤外線検
知素子12が形成され、該基板11の他方の面か
ら入射する光を受光する赤外線検知器において、
該半導体基板11の該一方の面側に該赤外線検知
素子12間を垂直に二等分し、該赤外線検知素子
12の周囲をかこんで形成された溝に赤外線に対
して不透明な材料13が充填されてなり、該赤外
線検知素子間距離Sと溝の深さLにより決定され
る赤外線検知素子12の視野角θが複数の赤外線
検知素子12について同一であることを特徴とす
る赤外線検知器。 2 該赤外線検知素子12は化合物半導体基板1
5の一方の面に成長したエピタキシヤル層に形成
され、赤外線に対して不透明な材料13が充填さ
れた溝は該化合物半導体基板15に設けられてな
る特許請求の範囲第1項記載の赤外線検知器。 3 半導体基板11の一方の面に複数の赤外線検
知素子12を形成し、他方の面から入射する光を
受光する赤外線検知器の製造において、 前記他方の入射光面側の半導体基板11に、各
赤外線検知素子12の中間部分を通り、該素子1
2の周囲をかこむように溝を形成し、該溝に赤外
線に対して不透明な材料13を充填することを特
徴とする赤外線検知器の製造方法。
[Claims] 1. In an infrared detector in which a plurality of infrared detection elements 12 are formed on one surface of a semiconductor substrate 11 and receives light incident from the other surface of the substrate 11,
The space between the infrared sensing elements 12 is vertically divided into two on the one surface side of the semiconductor substrate 11, and a groove formed around the infrared sensing elements 12 is filled with a material 13 that is opaque to infrared rays. An infrared detector characterized in that the viewing angle θ of the infrared detecting elements 12 determined by the distance S between the infrared detecting elements and the depth L of the groove is the same for a plurality of infrared detecting elements 12. 2 The infrared sensing element 12 is a compound semiconductor substrate 1
The infrared detection device according to claim 1, wherein the groove formed in the epitaxial layer grown on one surface of the compound semiconductor substrate 5 and filled with a material 13 that is opaque to infrared rays is provided in the compound semiconductor substrate 15. vessel. 3. In manufacturing an infrared detector in which a plurality of infrared detection elements 12 are formed on one surface of a semiconductor substrate 11 and receives light incident from the other surface, each of the semiconductor substrate 11 on the other incident light surface side is Passing through the middle part of the infrared sensing element 12, the element 1
1. A method of manufacturing an infrared detector, comprising: forming a groove surrounding the periphery of the infrared detector 2, and filling the groove with a material 13 that is opaque to infrared rays.
JP58225650A 1983-11-30 1983-11-30 Infrared ray detector Granted JPS60117662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225650A JPS60117662A (en) 1983-11-30 1983-11-30 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225650A JPS60117662A (en) 1983-11-30 1983-11-30 Infrared ray detector

Publications (2)

Publication Number Publication Date
JPS60117662A JPS60117662A (en) 1985-06-25
JPH0525183B2 true JPH0525183B2 (en) 1993-04-12

Family

ID=16832618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225650A Granted JPS60117662A (en) 1983-11-30 1983-11-30 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS60117662A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914299A (en) * 1988-11-09 1990-04-03 Honeywell Inc. Glass cold shield
CN108666328B (en) * 2017-04-01 2020-05-05 奇景光电股份有限公司 Image sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127213A (en) * 1978-03-27 1979-10-03 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converter
JPS58141562A (en) * 1982-02-17 1983-08-22 Fujitsu Ltd Manufacture of cooling type photoelectric transducer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127213A (en) * 1978-03-27 1979-10-03 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converter
JPS58141562A (en) * 1982-02-17 1983-08-22 Fujitsu Ltd Manufacture of cooling type photoelectric transducer

Also Published As

Publication number Publication date
JPS60117662A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
EP0191682B1 (en) Light detector array with individual cold shields integrated into a substrate, and method for its production
CN100397096C (en) Radiation detection device and method of producing the same
EP2916118B1 (en) Infrared sensor module
EP0068456A2 (en) Electromagnetic radiation detection system comprising a radiation limiting shield
EP3196939A1 (en) Solid state imaging device and manufacturing method therefor
US7473903B2 (en) Method and apparatus for deposited hermetic cover for digital X-ray panel
JPS6351495B2 (en)
JPH0593780A (en) Radiation detecting element
JPH0525183B2 (en)
JP6740628B2 (en) Solid-state image sensor and manufacturing method thereof
RU2568953C2 (en) Focal matrix receiver and its fabrication
US5422475A (en) Method and apparatus for concentrating optical flux in a focal plane array
CN109923669B (en) Method for producing an optical sensor device and housing for an optical sensor
JP5759345B2 (en) Method for manufacturing wafer level package focal plane array
JPS6050426A (en) Infrared ray detector
US6204088B1 (en) Glue-free backside illuminated photodiode apparatus and fabrication process
JPH065832A (en) Apparatus and method for position detection
JPH0615988B2 (en) Method for manufacturing multi-element infrared detector
EP4258356A1 (en) Pixel matrix sensor and method of manufacturing the same
JPH05315582A (en) Infrared detector
JPH0510816A (en) Manufacture of infrared ray detecting element
JPH01287972A (en) Infrared ray detector
JPH0481128B2 (en)
JPH01216219A (en) Manufacture of cold shield for infrared detector
JPH0348464A (en) Manufacture of infrared detector