JPS618654A - Production of gas detecting element - Google Patents

Production of gas detecting element

Info

Publication number
JPS618654A
JPS618654A JP13049284A JP13049284A JPS618654A JP S618654 A JPS618654 A JP S618654A JP 13049284 A JP13049284 A JP 13049284A JP 13049284 A JP13049284 A JP 13049284A JP S618654 A JPS618654 A JP S618654A
Authority
JP
Japan
Prior art keywords
gas
aging
detecting element
sensitivity
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13049284A
Other languages
Japanese (ja)
Inventor
Shigekazu Kusanagi
草薙 繁量
Toru Nobetani
延谷 徹
Kazuhisa Fujii
和久 藤井
Toru Fujioka
藤岡 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13049284A priority Critical patent/JPS618654A/en
Publication of JPS618654A publication Critical patent/JPS618654A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To decrease the erroneous announcement of gas leakage and the missing in announcement by exposing preliminarily a gas detecting element to an SO2 atmosphere (SO2 aging) to change the sensitivity of the gas detecting element. CONSTITUTION:The semiconductor type gas detecting element is a metallic oxide semiconductor element consisting of SnO2, FeO3, ZnO, etc. Such detecting element is exposed to the SO2 atm. of a suitable concn. in an ordinary using state for suitable time to change the sensitivity characteristic of the element to a specified state in short time so that the succeeding change with lapse of time is decreased. The concn. of the SO2 in the stage of aging is preferably larger than the concn. of the SO2 in the atmosphere to which the gas detecting element is exposed. On the other hand, the change in the sensitivity characteristic of the detecting element by SO2 aging is larger with gaseous hydrogen than with gaseous methane. The detecting element subjected to the SO2 aging is preferably coated with a filter consisting of active alumina, etc. The setting region of the alarming concn. is widely taken in the same way as prior to the SO2 aging if the element is manufactured in the above-mentioned manner.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、ガス検知素子の製法に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for manufacturing a gas sensing element.

〔背景技術〕[Background technology]

現在の簡易型ガス警報器の多くは、その検知部に5n0
2 、F132’03 、ZnOなどの金属酸化物半導
体素子を用いる半導体式と、Al2O2゜SiO2担体
にPd、Ptなどの燃焼触媒を担持させた素子を用いる
接触燃焼式が使用されている。半導体式は、可燃性ガス
の吸着により素子の導電性が変化する特性を利用したも
のであり、接触燃焼式は、可燃性ガスが素子と接触して
燃焼することによる発熱のため素子温度が変化し、素子
の導電性が変化する特性を利用したものである。
Many of the current simple gas alarms have a 5n0
A semiconductor type using a metal oxide semiconductor element such as 2, F132'03, or ZnO, and a catalytic combustion type using an element in which a combustion catalyst such as Pd or Pt is supported on an Al2O2°SiO2 carrier are used. The semiconductor type uses the property that the conductivity of the element changes due to the adsorption of flammable gas, while the catalytic combustion type uses the element temperature to change due to heat generated when flammable gas comes into contact with the element and burns. However, it takes advantage of the characteristic that the conductivity of the element changes.

ガス検知素子の感知対象は、主として、L、P、G。The sensing targets of the gas detection element are mainly L, P, and G.

(液化石油ガス;主成分プロパン、ブタンなど)と都市
ガス(水素ガス、メタンガス、−酸化炭素ガス、その他
り、P、G、など)とにおいている。しかし、ガス検知
素子は、その作動原理上、上記の成分以外の可燃性ガス
、有機溶媒などもよく感知し、ガス漏れ警報器の誤動作
の原因となっている。
(liquefied petroleum gas; main components propane, butane, etc.) and city gas (hydrogen gas, methane gas, -carbon oxide gas, others, P, G, etc.). However, due to its operating principle, gas detection elements often sense flammable gases, organic solvents, and the like other than the above-mentioned components, causing malfunctions of gas leak alarms.

実際、家庭の台所で使用される調味料1食用油。In fact, 1 edible oil is a seasoning used in home kitchens.

魚、肉、野菜などの調理時に、それらから一時的に発生
するアルコール、煙(煙中の感ガス成分)などで、ガス
漏れ警報器が誤報する場合がある。
When cooking fish, meat, vegetables, etc., alcohol, smoke (gas-sensitive components in smoke), etc. that are temporarily generated can cause a gas leak alarm to give a false alarm.

さらに、これらのガス漏れ警報器を、地下食堂街などの
ように、一般家庭に比べ調理量、調理時間がはるかに多
く、したがって調理時に発生する各種ガスが多く、かつ
換気の悪い場所で使用すると、上記の誤報はもちろん、
その頻度が経時的に増大する傾向がある。その原因を示
す一例として、第1図に、地下食堂街における半導体式
ガス漏れ警報器のメタンガス、水素ガスおよびエタノー
ルガスそれぞれに対する警報濃度(それぞれ、M。
Furthermore, if these gas leak alarms are used in places with poor ventilation, such as underground cafeterias, where the amount of cooking and cooking time is much greater than in a typical home, there is a large amount of various gases generated during cooking. , as well as the above misinformation,
Its frequency tends to increase over time. As an example of the cause, Fig. 1 shows the alarm concentration (M) for each of methane gas, hydrogen gas, and ethanol gas of a semiconductor gas leak alarm in an underground dining area.

HおよびAで示す。)の経時変化を示す。第1図のグラ
フかられかるように、各ガス成分に対して、ガス漏れ警
報器の警報濃度が低下している。すなわち、ガス漏れ警
報器のガス検知素子の各ガス成分に対する感度があがっ
ている。
Denoted by H and A. ) shows the change over time. As can be seen from the graph in FIG. 1, the alarm concentration of the gas leak alarm is decreasing for each gas component. That is, the sensitivity of the gas detection element of the gas leak alarm to each gas component has increased.

上記のような、経時的にガス検知素子の感度の上昇ある
いは低下をもたらす原因となるものは、従来、確定餉に
は分かつていなかった。
The cause of the increase or decrease in sensitivity of a gas detection element over time as described above has not been known in the past.

しかし、一応、地下食堂街などの過酷雰囲気下にあるガ
ス検知素子は、半導体式のものでは、対象ガス(メタン
ガス、ブタンガス、水素ガスなど)に対する感度や非対
象ガス(エタノールなど)に対する感度が経時的に上昇
して、調理時に発生するエタノールに対する発報など誤
報が多発し、他方、接触燃焼式のものでは、対象ガス(
主としてメタン)に対する感度が低下してガス漏れ時に
警報を発しないという失報が生じてくると考えて、感知
対象ガスのみを選択的に感知するため、ガス検知素子に
達するガスをまずガス弁別フィルターを通過させて非対
象ガスを除去し、対象ガスのみをガス検知素子に送ると
いう方法が、特開昭49−129596号公報に見られ
るごとく開発された。この吸着除去の方法では、その吸
着剤として、ゼオライト、珪藻土、シリカゲル、活性ア
ルミナ、活性炭などがあげられ、吸着反応して燃焼除去
する方法では、白金、パラジウム、ロジウムなどがあげ
られている。
However, semiconductor-type gas detection elements used in harsh atmospheres such as underground cafeterias tend to lose their sensitivity to target gases (methane, butane, hydrogen, etc.) and non-target gases (ethanol, etc.) over time. On the other hand, with catalytic combustion type products, the target gas (
Considering that the sensitivity to gases (mainly methane) will decrease and the alarm will not be issued in the event of a gas leak, a false alarm will occur.In order to selectively detect only the target gas, the gas that reaches the gas detection element is first filtered through a gas discrimination filter. A method was developed as seen in Japanese Patent Application Laid-open No. 129596/1983, in which non-target gases are removed by passing through the gas, and only target gases are sent to the gas detection element. In this adsorption removal method, zeolite, diatomaceous earth, silica gel, activated alumina, activated carbon, etc. are used as the adsorbent, and in the adsorption reaction and combustion removal method, platinum, palladium, rhodium, etc. are used.

上記フィルタ法は、調理時に一時的に発生するエタノー
ルや煙中の感ガス成分に対する発報(誤報)を減少させ
ることには効果がある。しかし、この方法は、ガス検知
素子の経時的な感度の上昇あるいは低下をもたらすもの
について具体的に把握していないため、十分な対策とは
なっていない〔発明の目的〕 この発明は、ガス漏れ警報器に関して、一般家庭でまれ
に発生するエタノールなどによる誤報はもちろん、地下
食堂街などで頻繁に起きる誤報および失報を著しく低減
させるガス検知素子の製法を提供することを目的とする
The above filter method is effective in reducing alarms (false alarms) regarding ethanol and gas-sensitive components in smoke that are temporarily generated during cooking. However, this method is not a sufficient countermeasure because it does not specifically understand what causes the increase or decrease in sensitivity of the gas detection element over time. The purpose of the present invention is to provide a method for manufacturing a gas detection element that significantly reduces false alarms and false alarms that frequently occur in underground cafeterias, etc., as well as false alarms caused by ethanol, etc., which rarely occur in ordinary homes.

〔発明の開示〕[Disclosure of the invention]

発明者らは、上記の目的を達成するため、まず、地下街
などでガス検知素子の経時的感度上昇あるいは低下をも
たらす物質を把握するため、地下街の雰囲気分析を行っ
た。この結果、一般家庭の雰囲気に比べて、多量かつ長
時間にわたって存在し、ガス検知素子に不可逆的に影響
を与える主成分が、二酸化イオウガス(以下、S02と
表記する)であることをつきとめた。さらに、302の
ガス検知素子に及ぼす影響に高温、高湿が関与してくる
ことがわかった。もちろん、地下街雰囲気中には、燃料
ガスの成分であるメタンガス、水素ガス、−酸化炭素ガ
ス、燃焼により生じる炭酸ガスや窒素酸化物(NOx、
)、調理時に発生するエタノール、アルデヒドなども多
量に含まれているが、これらはガス検知素子に不可逆な
変化を与えるものではなかった。
In order to achieve the above object, the inventors first conducted an atmosphere analysis of underground malls in order to understand the substances that cause the sensitivity of gas detection elements to increase or decrease over time in underground malls and the like. As a result, it was determined that sulfur dioxide gas (hereinafter referred to as S02) is the main component that exists in larger amounts and for longer periods of time than in the atmosphere of a typical home, and that irreversibly affects the gas detection element. Furthermore, it was found that high temperature and high humidity are involved in the effects on the gas sensing element of 302. Of course, the underground atmosphere contains fuel gas components such as methane gas, hydrogen gas, -carbon oxide gas, carbon dioxide gas and nitrogen oxides (NOx,
), ethanol and aldehydes generated during cooking, but these did not cause irreversible changes to the gas detection element.

これらのことから、発明者らは、ガス検知素子をあらか
じめS02雰囲気にさらして(このことを以後S02エ
ージングという)ガス検知素子の感度を変化させておい
て、地下街などの雰囲気中で使用すれば、その後の80
2による感度変化が無視できるぐらい小さくて済むので
はないかと考えた。
Based on these facts, the inventors proposed that if the sensitivity of the gas detection element was changed by exposing it to an S02 atmosphere in advance (hereinafter referred to as S02 aging), and then used in an atmosphere such as an underground mall, , then 80
I thought that the change in sensitivity caused by 2 could be so small that it could be ignored.

これを確認するため次のような実験を行った。To confirm this, the following experiment was conducted.

試験槽に入れたガス検知素子に所定の回路電圧、ヒータ
電圧をかけた状態で通常の空気雰囲気中に7〜10日間
さらし、その間、上記素子の感度の変化をみるため、空
気中での素子抵抗値Ra、メタンガス濃度がそれぞれ0
.05. 0.15. 0.45vo1%であるときの
素子抵抗値Rm、および水素ガス濃度がそれぞれ0.0
5. 0.15. 0.45vo1%であるときの素子
抵抗値Rhを測定した。つぎに、前記試験槽中に、S0
2濃度が5 ppmのガスを連続的に66時間流し、1
回目の802エージングを行った。この後、上記の各ガ
スに対するガス検知素子の素子抵抗値を測定した。1回
目の802エージング後、このガス検知素子を通電加熱
状態のまま通常の空気雰囲気中に1〜3日間さらしたの
ち、再びS02雰囲気中にさらした。このときの、S0
2濃度は、15ppmで、継続時間は70時間であった
。この2回目のSO2エージングの後でも、上記の各ガ
スに対するガス検知素子の素子抵抗値を測定した。さら
に、ガス検知素子を通電加熱状態のまま、通常の空気雰
囲気中に4日間さらし、その間、先と同様にガス検知素
子の素子抵抗値を測定した。これらの結果を第2a図に
示す。また、1回目のSO2エージング時のSO2濃度
をそれぞれ15 ppm+ 20 ppmと変えて、5
ppI1)のときと同様の測定を行った。・結果をそれ
ぞれ、第2b図、第2C図に示す。なお、これらの図中
、RmおよびRhが3つずつあるのは、それぞれ上から
順にメタンガス濃度が0.05,0.15.0.45y
o1%、水素ガス濃度が0.05,0.15、−0.4
5vo1%での値を示しており、RhがRmに対して横
軸方向にずれているのは、測定時点がずれたのではなく
、グラフ表現土兄やすくするためであり、また、破線で
区別される各領域人および旦は、ガス検知素子がそれぞ
れ通常の空気雰囲気(A)およびSO2雰囲気(B)に
さらされていた期間であることを示す。
A gas detection element placed in a test chamber was exposed to a normal air atmosphere for 7 to 10 days with a predetermined circuit voltage and heater voltage applied. Resistance value Ra and methane gas concentration are both 0.
.. 05. 0.15. The element resistance value Rm when 0.45vo1% and the hydrogen gas concentration are each 0.0
5. 0.15. The element resistance value Rh at 0.45vo1% was measured. Next, in the test tank, S0
2 Gas with a concentration of 5 ppm was continuously flowed for 66 hours, and 1
The 802nd aging was performed. Thereafter, the element resistance value of the gas detection element for each of the above gases was measured. After the first 802 aging, the gas sensing element was exposed to a normal air atmosphere for 1 to 3 days while being heated with electricity, and then exposed to an S02 atmosphere again. At this time, S0
2 concentration was 15 ppm and duration was 70 hours. Even after this second SO2 aging, the element resistance values of the gas sensing element for each of the above gases were measured. Furthermore, the gas sensing element was exposed to a normal air atmosphere for 4 days while being heated with electricity, and during that time, the element resistance value of the gas sensing element was measured in the same manner as before. These results are shown in Figure 2a. In addition, the SO2 concentration during the first SO2 aging was changed to 15 ppm + 20 ppm, and 5
The same measurements as for ppI1) were performed. - The results are shown in Figures 2b and 2C, respectively. In addition, in these figures, the three Rm and Rh indicate that the methane gas concentration is 0.05, 0.15, and 0.45y, respectively from the top.
o1%, hydrogen gas concentration 0.05, 0.15, -0.4
The value is shown at 5vo1%, and the reason why Rh is shifted from Rm in the horizontal axis direction is not due to a shift in the measurement time point, but to make it easier to express the graph. The respective regions and days shown indicate the period during which the gas sensing element was exposed to a normal air atmosphere (A) and an SO2 atmosphere (B), respectively.

第2a図に見るように、1回目のSO2エージング(S
O25ppm )により、Rm、Rhが低下している。
As shown in Figure 2a, the first SO2 aging (S
O25ppm), Rm and Rh are reduced.

すなわち、各ガスに対して感度が鋭敏化している。2回
目のS02エージング(50215ppm)により、感
度がさらに鋭敏化しているが、その影響は若干減少して
いる。
That is, the sensitivity has become more sensitive to each gas. The second S02 aging (50215 ppm) has further sharpened the sensitivity, but its effect has decreased slightly.

第2b図に見るように、1回目のSO2エージング(3
0215ppm )により、Rm、Rhが低下し、感度
が鋭敏化している。2回目のSO2エージング(SO2
15ppm )では、はとんどその影響があられれてい
ない。
As shown in Figure 2b, the first SO2 aging (3
0215 ppm), Rm and Rh decreased, and the sensitivity became more sensitive. Second SO2 aging (SO2
15 ppm), the effect is hardly noticeable.

第2C図に見るように、1回目のS02エージング(S
O220ppm )により2.Rm、Rhが低下し、感
度が鋭敏化している。2回目のSO2エージング(SO
220ppm )では、全くその影響があられれていな
い。
As shown in Figure 2C, the first S02 aging (S
2. Rm and Rh have decreased, and sensitivity has become more sensitive. Second SO2 aging (SO2
220 ppm), there is no effect at all.

すなわち、1回目のSO2エージング時のS02濃度と
同程度以下の濃度で2回目の802エージングをしても
ガス検知素子の感度特性は、変化せず、安定である。地
下街雰囲気の502濃度は、0.O7ppm程度である
ので、ガス検知素子を1ppn+以上の濃度の302雰
囲気にさらせば、素子の感度特性が安定領域に収斂し、
地下街雰囲気中のS02による感度の鋭敏化は防止でき
る。
That is, even if the second 802 aging is performed at a concentration of SO2 that is approximately the same or lower than the SO2 concentration during the first SO2 aging, the sensitivity characteristics of the gas sensing element do not change and remain stable. The 502 concentration in the underground shopping mall atmosphere is 0. Since the O concentration is about 7 ppm, if the gas sensing element is exposed to a 302 atmosphere with a concentration of 1 ppn+ or more, the sensitivity characteristics of the element will converge to a stable region.
Sensitivity increase due to S02 in an underground shopping mall atmosphere can be prevented.

以上の知見に基き、この発明は、半導体式ガス検知素子
を通電加熱状態で二酸化イオウガス(S02)雰囲気中
にさらして、前記ガス検知素子の対象ガスに対する感度
を変化させることを特徴とするガス検知素子の製法をそ
の要旨としている。
Based on the above findings, the present invention provides a gas detection device characterized in that a semiconductor type gas detection element is exposed to a sulfur dioxide gas (S02) atmosphere while being heated with electricity to change the sensitivity of the gas detection element to a target gas. The gist is the manufacturing method of the device.

以下、この発明の製法について詳しく述べる。The manufacturing method of this invention will be described in detail below.

この発明に用いられる半導体式ガス検知素子は、5n0
2 、Fe203 、ZnOなど、通常の製法にしたが
って得られる金属酸化物半導体素子である。前記の半導
体式ガス検知素子を通常の使用状態、すなわち通電加熱
状態で適当なSO2濃度のS02雰囲気中に適当な時間
さらすことによって短時間のうちに素子の感度特性を一
定状態に変化させ、その後の経時的変化を著しく低減さ
せる。このSO2エージングの際のSO2濃度は、その
後ガス検知素子がさらされる雰囲気中のS02濃度より
も大きいことが好ましい。
The semiconductor type gas detection element used in this invention is 5n0
2, Fe203, ZnO, etc., are metal oxide semiconductor elements obtained according to normal manufacturing methods. By exposing the aforementioned semiconductor type gas detection element to an SO2 atmosphere with an appropriate SO2 concentration for an appropriate period of time under normal operating conditions, that is, under electrically heated conditions, the sensitivity characteristics of the element are changed to a constant state in a short period of time, and then Significantly reduces changes over time. The SO2 concentration during this SO2 aging is preferably higher than the SO2 concentration in the atmosphere to which the gas sensing element is exposed afterwards.

ところで1.SO2エージングによるガス検知素子の感
度特性の変化は、第2a〜20図にみたように、メタン
ガスに対するよりも、水素ガスに対する方が大きい。ど
の現象は、都市ガス用警報器にとっては不利である。警
報濃度を、メタンガス、水素ガスそれぞれのLELの1
/100〜1/4の濃度範囲に設定しなければならない
が、水素ガスに対する感度の鋭敏化により、この設定領
域が小さくなるからである。警報濃度の設定領域が小さ
くなると、実際の使用時に、感度特性の経時変動を吸収
しきれなくなり、誤報あるいは失報を招きやすい。
By the way, 1. As seen in FIGS. 2a to 20, changes in the sensitivity characteristics of the gas detection element due to SO2 aging are larger for hydrogen gas than for methane gas. Which phenomena are disadvantageous for city gas alarms. Set the alarm concentration to 1 of each LEL for methane gas and hydrogen gas.
This is because, although the concentration must be set within the range of /100 to 1/4, this setting range becomes smaller due to increased sensitivity to hydrogen gas. If the setting range of the alarm concentration becomes small, during actual use, it will not be possible to fully absorb fluctuations in sensitivity characteristics over time, and false alarms or missed alarms will likely occur.

そのような場合には、SO2エージングしたガス検知素
子を活性アルミナなどのフィルタで覆うようにするのが
好ましい。つまり、フィルタは、水素ガスに対するガス
検知素子の感度を低減化するものであるからである。こ
れは、フィルタによって、水素ガスの通過速度がメタン
ガスに比べて遅くなるのではなく、フィルタを通過した
水素ガスは、ガス検知素子の表面で燃焼しく2H2+’
02→2H20)て水蒸気となり、これがフィルタを通
過する速度が小さいために前記反応が抑えられ、水素ガ
スに対する感度低下につながると考えられる。メタンガ
スの、ガス検知素子による燃焼は起こっていない。
In such a case, it is preferable to cover the SO2 aged gas sensing element with a filter such as activated alumina. That is, the filter reduces the sensitivity of the gas detection element to hydrogen gas. This is because the passing speed of hydrogen gas is slower than that of methane gas due to the filter, and the hydrogen gas that has passed through the filter is not combusted on the surface of the gas detection element.
02→2H20) and becomes water vapor, which passes through the filter at a low speed, which suppresses the reaction, which is thought to lead to a decrease in sensitivity to hydrogen gas. No combustion of methane gas occurs by the gas detection element.

このようにすれば、水素ガスに対する感度の低下と、S
02エージングによる感度上昇が相殺され、警報濃度の
設定領域がso2o−エージング前様広くとれるように
なる。このフィルタは、ガス検知素子の水素ガス感度調
節用とするので、活性アルミナ、活性炭などあらゆるも
のが使える。
In this way, sensitivity to hydrogen gas is reduced and S
The increase in sensitivity due to SO2 aging is offset, and the setting range for the alarm concentration becomes wider than before SO2O aging. This filter is used to adjust the hydrogen gas sensitivity of the gas detection element, so any material such as activated alumina or activated carbon can be used.

以下、実施例を示す。Examples are shown below.

(実施例1) 半導体式ガス検知素子を試験槽に入れ、所定の回路電圧
、ヒータ電圧をかけた状態で通常の空気雰囲気中に7〜
10日間さらしたのち、SO2濃度が5ppmのガスを
前記試験槽中に連続的に66時間流してS02エージン
グを行った。その後、このガス検知素子を活性アルミナ
のフィルタで覆?て第3図のような素子形状にし、通電
加熱状態で通常の空気雰囲気中にさらした。図中、1は
半導体式ガス検知素子、2はコイルヒータ、3は防爆ネ
ット、4は活性、アルミナフィルタである。
(Example 1) A semiconductor type gas detection element was placed in a test chamber, and was placed in a normal air atmosphere for 7 to 70 minutes with predetermined circuit voltage and heater voltage applied.
After exposure for 10 days, SO2 aging was performed by continuously flowing gas with an SO2 concentration of 5 ppm into the test tank for 66 hours. After that, cover this gas detection element with an activated alumina filter? The device was shaped into a device as shown in FIG. 3, and exposed to a normal air atmosphere while being heated with electricity. In the figure, 1 is a semiconductor gas detection element, 2 is a coil heater, 3 is an explosion-proof net, and 4 is an active alumina filter.

(実施例2) 半導体式ガス検知素子を実施例1と同様にSO′2エー
ジングしたのち、フィルタで覆わずに第4図に示すよう
な素子形状にし、通電加熱状態で通常の空気雰囲気中に
さらした。図中、1は半導体式ガス検知素子、2はコイ
ルヒータ、3は防爆ネットである。
(Example 2) After subjecting a semiconductor type gas detection element to SO'2 aging in the same manner as in Example 1, the element was shaped as shown in Fig. 4 without being covered with a filter, and placed in a normal air atmosphere under electrical heating. Exposed. In the figure, 1 is a semiconductor type gas detection element, 2 is a coil heater, and 3 is an explosion-proof net.

(実施例3) 半導体式ガス検知素子を実施例1と同様にSO2エージ
ングしたのち、活性炭のフィルタで覆って、通電加熱状
態で通常の空気雰囲気中にさらした。
(Example 3) After a semiconductor type gas sensing element was subjected to SO2 aging in the same manner as in Example 1, it was covered with an activated carbon filter and exposed to a normal air atmosphere while being heated with electricity.

(実施例4) 半導体式ガス検知素子を実施例2と同様にSO2エージ
ングしたのち、フィルタで覆わずにそのまま、通電加熱
状態で通常の空気雰囲気中にさらした。
(Example 4) A semiconductor type gas detection element was subjected to SO2 aging in the same manner as in Example 2, and then exposed to a normal air atmosphere while being heated with electricity without being covered with a filter.

実施例1〜4のガス検知素子について、SO2エージン
グ前後のメタンガス(濃度はそれぞれOlo 5、 0
.15.0.45vo1%)に対する素子抵抗値(Rm
) 、水素ガス(濃度はそれぞれ0.05゜0.15,
0.45vo1%)に対する素子抵抗値(Rh)、およ
び空気中での素子抵抗値(Ra)を測定した。結果をそ
れぞれ第5〜8図に示す。なお図中、Rm、Rhが3つ
ずつあるのは、それぞれ上から順にメタンガス濃度が0
.05. 0.15. 0゜45vo1%、水素ガス濃
度が0.05.0.15.0゜45νo1%での値を示
しており、表現上具やすくするために<’RhをRmに
対してずらしてあり、また、破線で区別される領域人お
よび一旦一は、それぞれガス検知素子が通常の空気雰囲
気(人)およびS02雰囲気(旦)にさらされていた期
間であり、領域ふは、ガス検知素子がフィルタ付で通常
の空気雰囲気にさらされていた期間であることを示す。
Regarding the gas detection elements of Examples 1 to 4, methane gas (concentrations were Olo 5 and Olo 0, respectively) before and after SO2 aging.
.. 15. Element resistance value (Rm
), hydrogen gas (concentrations are 0.05° and 0.15, respectively)
The element resistance value (Rh) with respect to 0.45vo1%) and the element resistance value (Ra) in air were measured. The results are shown in Figures 5 to 8, respectively. In the figure, the three Rm and Rh indicate that the methane gas concentration is 0 from the top.
.. 05. 0.15. The values are shown when the hydrogen gas concentration is 0°45vo1% and the hydrogen gas concentration is 0.05.0.15.0°45vo1%.<'Rh has been shifted from Rm to make it easier to express. Regions 1 and 1, which are distinguished by broken lines, are periods in which the gas sensing element was exposed to a normal air atmosphere (1) and an S02 atmosphere (1), respectively. Indicates the period of exposure to normal air atmosphere.

第5図〜第8図にみるように、ガス検知素子をS02エ
ージングすれば、短時間のうちにRmとRhが低下して
いる。また、第5図および第7図と第6図および第8図
との対比により、ガス検知素子をSo2エージングした
のち、フィルタで覆えば、RmとRhとの差がエージン
グ後もほとんど同じである。すなわち、ガス検知素子を
S02エージングしたのちフィルタで覆うと、警報濃度
の設定領域を広くとることができる。
As shown in FIGS. 5 to 8, when the gas detection element is subjected to S02 aging, Rm and Rh decrease in a short time. Also, by comparing Figures 5 and 7 with Figures 6 and 8, if the gas detection element is covered with a filter after So2 aging, the difference between Rm and Rh remains almost the same after aging. . That is, if the gas detection element is subjected to S02 aging and then covered with a filter, the alarm concentration setting range can be widened.

なお、上記の実施例1〜4に用いた器具は次のとおりで
ある。
The instruments used in Examples 1 to 4 above are as follows.

ガス検知素子・・・都市ガス用ガス素子、松下電子部品
■製、回路電圧Vc=5 VDC、ヒータ電圧Vh=3.69 DC 試験槽   ・・・卓上型ガス腐食試験器セットGLP
−91型、■山崎精機研究所 製 活性アルミナ・・・5AP−1)(MD−050) 、
住友アルミニウム製錬@製 活性炭   ・・・ミクロライト・A試作品、カネボウ
側製 〔発明の効果〕 この発明の製法は、半導体式ガス検知素子を通電加熱状
態で802雰囲気にさらしてあらかじめ感度を変化させ
、安定な状態にするものである。 ′このため、この製
法によるガス検知素子を用いれば、まわりの802によ
って感度変化することがないので、感度上昇による誤報
を防ぐことができる。また、S02エージング後、素子
をフィルターで覆うようにすれば、エージング後、メタ
ンガス、水素ガスに対する感度変化の差がほとんど生じ
ないので、メタンガス、水素ガスのLELの1/100
〜1/4の濃度範囲に警報レベルを設定する際に、警報
濃度の設定領域が広くとれる。これを用いれば、誤報や
失報のないガス漏れ警報器を作ることができる。
Gas detection element: Gas element for city gas, manufactured by Matsushita Electronics Parts, circuit voltage Vc = 5 VDC, heater voltage Vh = 3.69 DC Test tank: Tabletop gas corrosion tester set GLP
-91 type, ■Activated alumina manufactured by Yamazaki Seiki Laboratory...5AP-1) (MD-050),
Activated carbon manufactured by Sumitomo Aluminum Smelting @ Microlite A prototype, manufactured by Kanebo [Effects of the invention] The manufacturing method of this invention changes the sensitivity in advance by exposing a semiconductor type gas detection element to an 802 atmosphere while heating it with electricity. This is to bring it into a stable state. 'For this reason, if a gas detection element manufactured by this method is used, the sensitivity will not change due to the surrounding 802, and false alarms due to increased sensitivity can be prevented. In addition, if the element is covered with a filter after S02 aging, there will be almost no difference in sensitivity change to methane gas and hydrogen gas after aging, so the LEL of methane gas and hydrogen gas will be 1/100.
When setting the alarm level in the concentration range of ~1/4, the alarm concentration can be set over a wide range. Using this, it is possible to create a gas leak alarm without false alarms or missed alarms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、警報濃度の経時変化を示すグラフ、第2a〜
20図は、SO2エージング前後の素子抵抗値の変化を
示すグラフ、第3図は、フィルタ付半導体式ガス検知素
子の形状を示す図、第4図は、フィルタなし半導体式ガ
ス検知素子の形状を示す図、第5,7図は、So2o−
エージング後ィルタを取り付けたガス検知素子の素子抵
抗値の変化を示すグラフ、第6,8図は、S02エージ
ング後、フィルタを取り付けなかったガス検知素子の素
子抵抗値の変化を示すグラフ。 1・・・半導体式ガス検知素子、4・・・活性アルミナ
フィルタ 代理人 弁理士  松 本 武 彦 第1図 !!I!:過日枚/〔d〕 経過日数/〔d〕 第2a図 経過日欧/〔d〕 経過日数/〔d〕 窮2b図 経過日欧/〔d〕 経過日数/〔d〕 2c図 経過日数、/〔d〕 第3図 第4図 第5図 経過日数/〔d〕 第6図 経過日数、/C(j〕 第7図 経過日数/〔d〕 第8図 経過日数/〔d〕
Figure 1 is a graph showing changes in alarm concentration over time;
Figure 20 is a graph showing the change in element resistance before and after SO2 aging, Figure 3 is a diagram showing the shape of a semiconductor type gas sensing element with a filter, and Figure 4 is a graph showing the shape of a semiconductor type gas sensing element without a filter. The figures shown in Figures 5 and 7 are So2o-
Graphs showing changes in element resistance of a gas sensing element with a filter attached after aging; FIGS. 6 and 8 are graphs showing changes in element resistance of a gas sensing element without a filter attached after S02 aging. 1...Semiconductor type gas detection element, 4...Activated alumina filter Representative Patent Attorney Takehiko Matsumoto Figure 1! ! I! :Past days/[d] Number of days elapsed/[d] Figure 2a Elapsed Japan/Europe/[d] Number of elapsed days/[d] Figure 2b Elapsed Japan/Europe/[d] Number of elapsed days/[d] Figure 2c Number of elapsed days , / [d] Fig. 3 Fig. 4 Fig. 5 Number of elapsed days/[d] Fig. 6 Number of elapsed days, /C (j) Fig. 7 Number of elapsed days/[d] Fig. 8 Number of elapsed days/[d]

Claims (5)

【特許請求の範囲】[Claims] (1)半導体式ガス検知素子を通電加熱状態で二酸化イ
オウガス(SO_2)雰囲気中にさらして、前記ガス検
知素子の対象ガスに対する感度を変化させることを特徴
とするガス検知素子の製法。
(1) A method for manufacturing a gas sensing element, which comprises exposing a semiconductor type gas sensing element to a sulfur dioxide gas (SO_2) atmosphere while heating it with electricity to change the sensitivity of the gas sensing element to a target gas.
(2)対象ガスが、メタンガスおよび水素ガスであり、
各ガスの爆発下限界の1/100〜1/4の範囲に警報
レベルが設定できる程度にガス検知素子の感度を変化さ
せるようにした特許請求の範囲第1項記載のガス検知素
子の製法。
(2) The target gas is methane gas and hydrogen gas,
2. The method of manufacturing a gas detection element according to claim 1, wherein the sensitivity of the gas detection element is varied to such an extent that an alarm level can be set within a range of 1/100 to 1/4 of the lower explosive limit of each gas.
(3)二酸化イオウガス雰囲気にさらしたのちのガス検
知素子が多孔質フイルタで覆われたものである特許請求
の範囲第1項または第2項記載のガス検知素子の製法。
(3) The method for manufacturing a gas sensing element according to claim 1 or 2, wherein the gas sensing element is covered with a porous filter after being exposed to a sulfur dioxide gas atmosphere.
(4)フイルタ材が活性アルミナである特許請求の範囲
第3項記載のガス検知素子の製法。
(4) The method for manufacturing a gas sensing element according to claim 3, wherein the filter material is activated alumina.
(5)フイルタ材が活性炭である特許請求の範囲第3項
記載のガス検知素子の製法。
(5) The method for manufacturing a gas sensing element according to claim 3, wherein the filter material is activated carbon.
JP13049284A 1984-06-25 1984-06-25 Production of gas detecting element Pending JPS618654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13049284A JPS618654A (en) 1984-06-25 1984-06-25 Production of gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13049284A JPS618654A (en) 1984-06-25 1984-06-25 Production of gas detecting element

Publications (1)

Publication Number Publication Date
JPS618654A true JPS618654A (en) 1986-01-16

Family

ID=15035555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13049284A Pending JPS618654A (en) 1984-06-25 1984-06-25 Production of gas detecting element

Country Status (1)

Country Link
JP (1) JPS618654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108882A (en) * 1997-10-08 1999-04-23 Matsushita Electric Ind Co Ltd Gas sensor and its manufacture
JP2013088267A (en) * 2011-10-18 2013-05-13 Figaro Eng Inc Gas sensor
CN110243879A (en) * 2019-06-28 2019-09-17 东北大学 A kind of SnO of sulphion modification2Base low temperature SO2Sensitive material and preparation method thereof
CN113219008A (en) * 2021-04-26 2021-08-06 浙江大学 Porous nanocomposite material for high-selectivity hydrogen gas sensor and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108882A (en) * 1997-10-08 1999-04-23 Matsushita Electric Ind Co Ltd Gas sensor and its manufacture
JP2013088267A (en) * 2011-10-18 2013-05-13 Figaro Eng Inc Gas sensor
CN110243879A (en) * 2019-06-28 2019-09-17 东北大学 A kind of SnO of sulphion modification2Base low temperature SO2Sensitive material and preparation method thereof
CN110243879B (en) * 2019-06-28 2020-09-29 东北大学 Sulfide ion modified SnO2Low temperature SO2Sensitive material and preparation method thereof
CN113219008A (en) * 2021-04-26 2021-08-06 浙江大学 Porous nanocomposite material for high-selectivity hydrogen gas sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
Ihokura et al. The stannic oxide gas sensorprinciples and applications
US5767388A (en) Methane sensor and method for operating a sensor
Sears et al. Algorithms to improve the selectivity of thermally-cycled tin oxide gas sensors
JPS6155062B2 (en)
US5521099A (en) Method and apparatus for sensing combustible gases employing and oxygen-activated sensing element
RU2132551C1 (en) Gas sensor operating process
JPS618654A (en) Production of gas detecting element
JP2001174426A (en) Gas sensor and gas detector
JPH0249466B2 (en)
JPH0618467A (en) Gas sensor
KR20210038552A (en) Gas detection device
JP2007057295A (en) Catalytic combustion type gas sensor
JPS5822947A (en) Gas sensor using sno2 group
JPS61172045A (en) Gas detection element with filter
JPS6128934B2 (en)
TW202011020A (en) Gas detection device having exceptional humidity resistance and exceptional sensitivity
JP3901594B2 (en) Semiconductor hydrogen gas detector
JPS58621B2 (en) CO gas alarm
JPH095275A (en) Composite gas sensor
JP2018179842A (en) Gas detection device
JP3328501B2 (en) Gas sensor for food quality detection
JP2003344342A (en) Semiconductor hydrogen gas detecting element
JPS6170447A (en) Gas detecting element
KR930000542B1 (en) Thin type element for detecting gas
JPH0926406A (en) Gas sensor for detecting food quality